Publicación:
Análisis ferromagnético de la configuración bosónica-fermiónica de espines (S_i^A = 3, S_j^B = 5/2)

dc.contributor.advisorEspriella Vélez, Nicolas Antonio de la
dc.contributor.advisorMadera Yances, Julio Cesar
dc.contributor.authorHernández Herazo, Richard Manuel
dc.contributor.juryTORRES HOYOS, FRANCISCO JOSE
dc.contributor.juryOrtega Lopez, César
dc.date.accessioned2025-07-05T19:43:57Z
dc.date.available2025-07-05T19:43:57Z
dc.date.issued2025-07-03
dc.description.abstractEn el presente trabajo se investiga el comportamiento térmico y magnético de un sistema ferromagnético bosónico-fermiónico de espines S_i^A = 3 y S_j^B = 5/2, alternados en una red cuadrada bipartita, mediante un modelo de Ising mixto, usando simulaciones Monte Carlo y condiciones de borde periódicas. El Hamiltoniano del sistema contiene interacciones de intercambio a primeros y segundos vecinos, campos cristalinos y un campo magnético longitudinal. Se calculan las magnetizaciones totales y de las subredes, la energía y la susceptibilidad magnética en función de la temperatura, para diferentes valores de las anisotropías (D_A, D_B), y el campo magnético externo (h). Los resultados muestran que el ferromagneto experimenta transiciones de fase continuas y discontinuas, en los intervalos -5 ≤ D_A < 4 y campo h < 0. Las transiciones discontinuas se destruyen cuando el sistema es sometido a campos positivos. En el análisis del comportamiento histérico del sistema en función de las anisotropías y acoplamientos de intercambio, se hallaron lazos simétricos y rectangulares, así como también fenómenos superparamagnéticos.spa
dc.description.degreelevelPregrado
dc.description.degreenameFísico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1 Introducciónspa
dc.description.tableofcontents2 Marco teóricospa
dc.description.tableofcontents2.0.1 Magnetización e inducción magnéticaspa
dc.description.tableofcontents2.0.2 Susceptibilidad y permeabilidadspa
dc.description.tableofcontents2.0.3 Materiales magnéticosspa
dc.description.tableofcontents2.0.4 Tipos de materiales magnéticosspa
dc.description.tableofcontents2.0.5 Interacciones magnéticasspa
dc.description.tableofcontents2.0.6 Energía de intercambiospa
dc.description.tableofcontents2.0.7 Transiciones de fasespa
dc.description.tableofcontents2.0.8 Modelo Isingspa
dc.description.tableofcontents2.0.9 Método Monte Carlospa
dc.description.tableofcontents3 Resultados y análisisspa
dc.description.tableofcontents3.1 Modelo y Hamiltoniano de interacciónspa
dc.description.tableofcontents3.2 Variables termodinámicas del sistemaspa
dc.description.tableofcontents3.3 Efecto anisotrópico sobre el ferromagnetospa
dc.description.tableofcontents3.3.1 Influencia sobre la magnetizaciónspa
dc.description.tableofcontents3.3.2 Influencia sobre la susceptibilidad magnética (χ_T)spa
dc.description.tableofcontents3.3.3 Influencia sobre la energía (E)spa
dc.description.tableofcontents3.3.4 Efectos sobre la temperaturaspa
dc.description.tableofcontents3.4 Comportamiento histérico del ferromagnetospa
dc.description.tableofcontents3.4.1 Modelo J_AB – J_SA – D; T = 5spa
dc.description.tableofcontents3.4.2 Modelo J_AB – J_SA – J_SB – D; T = 5spa
dc.description.tableofcontents3.4.3 Modelo J_AB – J_SA – D_A – D_B; T = 5spa
dc.description.tableofcontents3.4.4 Modelo J_AB – J_SA – D_A – D_B; T = 10spa
dc.description.tableofcontents3.4.5 Modelo J_AB – D_A – D_B; T = 10spa
dc.description.tableofcontents4 Conclusionesspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9276
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programFísica
dc.relation.referencesK. H. Buschow y F. R. de Boer. Physics of Magnetism and Magnetic Materials. Springer, 2003, pág. 19.
dc.relation.referencesM. Karimou y N. De La Espriella. “Critical phenomena in a two-dimensional ferrimagnetic system: Monte Carlo and Mean-Field Analysis”. En: Physica A: Statistical Mechanics and its Applications 531 (2019), pág. 121738. ISSN: 0378-4371. DOI: https://doi.org/10.1016/j.physa.2019.121738.
dc.relation.referencesAndrea Grimaldi et al. “Evaluating Spintronics-Compatible Implementations of Ising Machines”. En: Physical Review Applied 20 (2 ago. de 2023), pág. 024005. DOI: 10.1103/PhysRevApplied.20.024005.
dc.relation.referencesS. M. Yakout. “Spintronics: Future Technology for New Data Storage and Communication Devices”. En: Journal of Superconductivity and Novel Magnetism 33 (2020), págs. 2557–2580. DOI: 10.1007/s10948-020-05545-8.
dc.relation.referencesAbeer Mera, Q. Mahmood y Syed Awais Rouf. “Quantum ferromagnetism in transition metals doped II-VI semiconductors for spintronic applications: A merging technology”. En: Solid State Communications 352 (2022), pág. 114835. ISSN: 0038-1098. DOI: https://doi.org/10.1016/j.ssc.2022.114835.
dc.relation.referencesB. Deviren y M. Keskin. “Dynamic Phase Transitions and Compensation Temperatures in a Mixed Spin-3/2 and Spin-5/2 Ising System”. En: Journal of Statistical Physics 140 (2010), págs. 934–947. DOI: 10.1007/s10955-010-0025-6.
dc.relation.referencesErhan Albayrak y A. Yigit. “The phase diagrams of the mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice”. En: physica status solidi (b) 244 (2007).
dc.relation.referencesIgor F. Lyuksyutov, Thomas Nattermann y Valery Pokrovsky. “Theory of the hysteresis loop in ferromagnets”. En: Physical Review B 59 (6 feb. de 1999), págs. 4260–4272. DOI: 10.1103/PhysRevB.59.4260.
dc.relation.referencesMustafa Keskin y Mehmet Ertaş. “Dynamic magnetic hysteresis loop behaviors of a mixed spin (2, 5/2) Ising model on two interpenetrating square lattices”. En: Physica Scripta 95.5 (mar. de 2020), pág. 055805. DOI: 10.1088/1402-4896/ab783f.
dc.relation.referencesS. L. Driver et al. “Multiferroic (ferroelastic/ferromagnetic/ferrimagnetic) aspects of phase transitions in RCo2 Laves phases”. En: Journal of Physics: Condensed Matter 26.5 (ene. de 2014), pág. 056001. DOI: 10.1088/0953-8984/26/5/056001.
dc.relation.referencesR. Houenou et al. “The critical behaviors of a ferromagnetic–ferrimagnetic Ising ternary alloy with mixed spin-(1/2, 3/2, 5/2)”. En: The European Physical Journal Plus 136 (2021).
dc.relation.referencesD. Fouejio, P. Noudem y S. S. Zekeng. “Magnetic and thermodynamic properties of mixed spin-3/2 and spin-3 Ising ferrimagnets on a 2D triangular lattice: Monte Carlo study”. En: Chinese Journal of Physics (2024).
dc.relation.referencesBo-chen Li y Wei Wang. “Exploration of dynamic phase transition of 3D Ising model with a new long-range interaction by using the Monte Carlo method”. En: Chinese Journal of Physics 90 (2024), págs. 15–30. ISSN: 0577-9073. DOI: https://doi.org/10.1016/j.cjph.2024.05.021.
dc.relation.referencesZhaoxu Chen et al. “High-Tc Ferromagnetic Semiconductor in Thinned 3D Ising Ferromagnetic Metal Fe₃GaTe₂”. En: Nano Letters 24.3 (2024), págs. 993–1000. PMID: 38190333. DOI: 10.1021/acs.nanolett.3c04462.
dc.relation.referencesYu Liu et al. “Three-dimensional Ising ferrimagnetism of Cr–Fe–Cr trimers in Fe Cr 2 Te 4”. En: Physical Review B 102 (ago. de 2020). DOI: 10.1103/PhysRevB.102.085158.
dc.relation.referencesHadey K. Mohamad. “Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet”. En: Journal of Magnetism and Magnetic Materials 323.1 (2011), págs. 61–66. ISSN: 0304-8853. DOI: https://doi.org/10.1016/j.jmmm.2010.08.030.
dc.relation.referencesJuan Adrian Reyes, N. De La Espriella y Gloria M. Buendía. “Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: A Monte Carlo study”. En: physica status solidi (b) 252 (2015).
dc.relation.references“Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer”. En: Journal of Magnetism and Magnetic Materials 429 (2017), págs. 34–39. ISSN: 0304-8853. DOI: https://doi.org/10.1016/j.jmmm.2017.01.004.
dc.relation.referencesNicolás De La Espriella, Mounirou Karimou y Gloria M. Buendía. “Mixed Spin (3/2, 7/2) Ising-Type Ferrimagnet: Monte Carlo–Mean Field Treatment”. En: physica status solidi (b) 258.4 (), pág. 2000536. DOI: https://doi.org/10.1002/pssb.202000536.
dc.relation.referencesK. H. Jürgen Buschow, Piet van Engen y R. Jongebreur. “Magneto-optical properties of metallic ferromagnetic materials”. En: Journal of Magnetism and Magnetic Materials 38 (1983), págs. 1–22.
dc.relation.references“Magnetic properties of mixed integer and half-integer spins in a Blume–Capel model: A Monte Carlo study”. En: Journal of Magnetism and Magnetic Materials 421 (2017), págs. 76–81. ISSN: 0304-8853. DOI: https://doi.org/10.1016/j.jmmm.2016.07.069.
dc.relation.referencesM. Bessimou y Rachid Masrour. “Magnetocaloric effect and magnetic properties of Dy2CoMnO6: Monte Carlo study”. En: Philosophical Magazine 103 (2022), págs. 56–66.
dc.relation.references“Mixed spin-3/2 and spin-2 Ising model on diamond-like decorated square: A Monte Carlo simulation”. En: Physica A: Statistical Mechanics and its Applications 539 (2020), pág. 122878. ISSN: 0378-4371. DOI: https://doi.org/10.1016/j.physa.2019.122878.
dc.relation.references“Compensation behavior for a mixed spin-3 and spin-7/2 Blume–Capel system with crystal field interaction”. En: Chinese Journal of Physics 88 (2024), págs. 879–887. ISSN: 0577-9073. DOI: https://doi.org/10.1016/j.cjph.2024.02.023.
dc.relation.references“Magnetic characteristics of a mixed spin-3 and spin-7/2 Blume–Capel system for square and simple cubic lattices”. En: Solid State Communications 338 (2021), pág. 114456. ISSN: 0038-1098. DOI: https://doi.org/10.1016/j.ssc.2021.114456.
dc.relation.referencesNicola A. Spaldin. Magnetic Materials. 2a. Cambridge University Press, 2010.
dc.relation.referencesB. D. Cullity y C. D. Graham. Introduction to Magnetic Materials. 2a. John Wiley Sons, 2008.
dc.relation.referencesY. Cao et al. “Overview and advances in a layered chiral helimagnet Cr1/3NbS2”. En: Materials Today Advances 7 (2020), pág. 100080. ISSN: 2590-0498. DOI: https://doi.org/10.1016/j.mtadv.2020.100080.
dc.relation.referencesMichael Shatruk y Judith K. Clark. “Magnetic materials”. En: Comprehensive Inorganic Chemistry III. Editado por Jan Reedijk y Kenneth R. Poeppelmeier. Vol. 4.08. Elsevier, 2023, págs. 236–261. ISBN: 9780128231531.
dc.relation.referencesAbdel-Mohsen Onsy Mohamed y Evan K. Paleologos. “Chapter 15 – Magnetic Properties of Soils”. En: Fundamentals of Geoenvironmental Engineering. Editado por Abdel-Mohsen Onsy Mohamed y Evan K. Paleologos. Butterworth-Heinemann, 2018, págs. 535–580. ISBN: 978-0-12-804830-6. DOI: https://doi.org/10.1016/B978-0-12-804830-6.00015-6.
dc.relation.referencesAlessia Berti, Claudio Giorgi y Elena Vuk. “Hysteresis and temperature-induced transitions in ferromagnetic materials”. En: Applied Mathematical Modelling 39.2 (2015), págs. 820–837. ISSN: 0307-904X. DOI: https://doi.org/10.1016/j.apm.2014.07.004.
dc.relation.referencesMatthias B. Jungfleisch, Wei Zhang y Axel Hoffmann. “Perspectives of antiferromagnetic spintronics”. En: Physics Letters A 382.13 (2018), págs. 865–871. ISSN: 0375-9601. DOI: https://doi.org/10.1016/j.physleta.2018.01.008.
dc.relation.referencesR. K. Kotnala y Jyoti Shah. “Chapter 4 – Ferrite Materials: Nano to Spintronics Regime”. En: editado por K. H. J. Buschow. Vol. 23. Handbook of Magnetic Materials. Elsevier, 2015, págs. 291–379. DOI: https://doi.org/10.1016/B978-0-444-63528-0.00004-8.
dc.relation.referencesElena Bartolomé et al. “Chapter 1 – Magnetic Relaxation of Lanthanide-Based Molecular Magnets”. En: editado por Ekkes Brück. Vol. 26. Handbook of Magnetic Materials. Elsevier, 2017, págs. 1–289. DOI: https://doi.org/10.1016/bs.hmm.2017.09.002.
dc.relation.referencesGayanath W. Fernando. “Chapter 4 – Magnetic Anisotropy in Transition Metal Systems”. En: Metallic Multilayers and their Applications. Editado por Gayanath W. Fernando. Vol. 4. Handbook of Metal Physics. Elsevier, 2008, págs. 89–110. DOI: https://doi.org/10.1016/S1570-002X(07)00004-3.
dc.relation.referencesAnanya Renuka Balakrishna. “Rethinking hysteresis in magnetic materials”. En: MRS communications 14.5 (ago. de 2024). doi: 10.1557/s43579-024-00624-6.
dc.relation.referencesAngélica L. Gelover-Santiago. Simulación del modelo de Ising con el m´etodo de Monte Carlo. 2a. Coordinaci´ on de Servicios Editoriales UNAM, 1990.
dc.relation.referencesD. P. Landau y K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics. 4a. Cambridge University Press, 2014.
dc.relation.referencesT. Ostler et al. “Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet”. En: Nature Communications 3 (2012), pág. 666. DOI: 10.1038/ncomms1666. URL: https://doi.org/10.1038/ncomms1666.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsFerromagneteng
dc.subject.keywordsMixed Ising modeleng
dc.subject.keywordsDiscontinuous transitioneng
dc.subject.keywordsSuperparamagnetismeng
dc.subject.proposalFerromagnetospa
dc.subject.proposalModelo de Ising mixtospa
dc.subject.proposalTransición discontinuaspa
dc.subject.proposalSuperparamagnetismospa
dc.titleAnálisis ferromagnético de la configuración bosónica-fermiónica de espines (S_i^A = 3, S_j^B = 5/2)spa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
HernándezHerazoRichardManuel.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
733.44 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: