Publicación: Simulación CFD de la interacción del SARS-CoV-2 con el sistema HVAC en un aula de clases
dc.audience | ||
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | |
dc.contributor.advisor | Gomez Vazques, Rafael David | |
dc.contributor.author | Tapia Vertel, Andres Felipe | |
dc.contributor.jury | Sagastume Gutierrez, Alexis | |
dc.contributor.jury | Martinez Guarín, Arnold Rafael | |
dc.date.accessioned | 2025-02-07T14:05:07Z | |
dc.date.available | 2025-02-07T14:05:07Z | |
dc.date.issued | 2025-02-03 | |
dc.description.abstract | En este trabajo se estudia la transmisión del virus SARS-COV-2 en aulas de clase de Colombia, basándose en la cantidad de gotículas y masa de saliva que se alojan en la diferentes superficies y personas del recinto. Se construyo un modelo numérico mediante volúmenes finitos, compuesto por la geometría simplificada de un aula, construida según las especificaciones de la NTC 4595, incluyendo figuras que representan estudiantes y un profesor, siendo este último el origen de la infección. Empleando ANSYS Fluent, se modelaron las fases continua y discreta de un estornudo y se liberaron en 5 escenarios diferentes, donde se combinaron 2 tipos de ventilación y 2 patrones de flujo con el fin de determinar el número posible de contagios en cada uno de ellos. En el escenario 0, un entorno estanco, se analizó la velocidad del aire en varias condiciones mediante estudios de independencia de malla. La investigación arrojo que en el escenario 1, que combina la ventilación natural y un patrón de flujo mesclado, se da el menor número de contagios posibles en los estudiantes del aula, así como una menor deposición de masa de saliva infectada en las personas y en el aire luego de 3 s de haberse originado el estornudo. La ventilación natural es la mejor opción para frenar los contagios, independientemente del patrón de flujo, a pesar de las variaciones en la velocidad del viento. Estar ubicado justo al frente de una persona infectada de COVID-19 que estornuda, con una densidad viral de 109 copias/ml a una distancia no mayor a 1 metro, garantiza infectarse de la enfermedad. | spa |
dc.description.abstract | In this work, the transmission of the SARS-CoV-2 virus in classrooms in Colombia is studied, focusing on the amount of droplets and saliva mass that settle on various surfaces and people within the room .A numerical model based on the finite volume method was constructed, featuring a simplified geometry of a classroom built according to the specifications of NTC 4595. The model includes figures representing students and a teacher, with the latter being the origin of the infection. Using ANSYS Fluent, the continuous and discrete phases of a sneeze were simulated and released in five different scenarios. These scenarios combined two types of ventilation and two airflow patterns to determine the potential number of infections in each case. In scenario 0, a sealed environment, the air velocity was analyzed under various conditions through mesh independence studies. The research found that scenario 1, which combines natural ventilation with a mixed airflow pattern, results in the lowest possible number of infections among students in the classroom, as well as reduced deposition of infected saliva mass on people and in the air three seconds after the sneeze originated. Natural ventilation proves to be the best option to reduce infections, regardless of the airflow pattern, despite variations in wind speed. Being located directly in front of a COVID-19-infected individual sneezing, with a viral density of 109 copies/ml at a distance of no more than 1 meter, guarantees infection. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería Mecánica | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | TABLA DE CONTENIDO | spa |
dc.description.tableofcontents | LISTA DE TABLAS ............................................................................................................ 9 | spa |
dc.description.tableofcontents | LISTA DE FIGURAS ........................................................................................................ 10 | spa |
dc.description.tableofcontents | LISTA DE ANEXOS ......................................................................................................... 14 | spa |
dc.description.tableofcontents | LISTA DE SÍMBOLOS Y ABREVIATURAS .................................................................... 15 | spa |
dc.description.tableofcontents | RESUMEN ....................................................................................................................... 16 | spa |
dc.description.tableofcontents | ABSTRACT ...................................................................................................................... 17 | spa |
dc.description.tableofcontents | 1 INTRODUCCIÓN ..................................................................................................... 18 | spa |
dc.description.tableofcontents | 1.1 Vías de transmisión del COVID 19 ................................................................... 19 | spa |
dc.description.tableofcontents | 1.2 Sistemas HVAC ................................................................................................. 20 | spa |
dc.description.tableofcontents | 1.3 Factores de los sistemas HVAC incidentes en la dispersión de contaminantes 20 | spa |
dc.description.tableofcontents | 2 REVISIÓN DE LITERATURA .................................................................................. 22 | spa |
dc.description.tableofcontents | 2.1 Anghel, L. P. (2020). Impact of hvac-systems on the dispersion of infectious aerosols in a cardiac intensive care unit. International Journal of Environmental Research and Public Health, ....................................................................................... 22 | spa |
dc.description.tableofcontents | 2.2 Borro, L. M. (2020). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research. ..................................................................................................................... 22 | spa |
dc.description.tableofcontents | 2.3 Ho , C. K. (2021). Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Applied Mathematical Modelling, 297-319. ...................................... 22 | spa |
dc.description.tableofcontents | 2.4 Li, Y., Qian, H., Hang, J., Chen, X., Cheng, P., Ling, H., & Wang, S. (2021). Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment, 107788. ............................................................................. 23 | spa |
dc.description.tableofcontents | 2.5 ICONTEC. (2020). PLANEAMIENTO Y DISEÑO DE INSTALACIONES Y AMBIENTES ESCOLARES (NTC 4595). ICONTEC. ................................................. 23 | spa |
dc.description.tableofcontents | 3 OBJETIVOS ............................................................................................................. 24 | spa |
dc.description.tableofcontents | 3.1 Objetivo general. ............................................................................................... 24 | spa |
dc.description.tableofcontents | 3.2 Objetivos específicos. ....................................................................................... 24 | spa |
dc.description.tableofcontents | 3.2.1 Objetivo específico I. .................................................................................. 24 | spa |
dc.description.tableofcontents | 3.2.2 Objetivo específico II. ................................................................................. 24 | spa |
dc.description.tableofcontents | 3.2.3 Objetivo específico III. ................................................................................ 24 | spa |
dc.description.tableofcontents | 4 MATERIALES Y MÉTODOS ................................................................................... 25 | spa |
dc.description.tableofcontents | 4.1 Variables HVAC ................................................................................................. 25 | spa |
dc.description.tableofcontents | 4.2 Modelo numérico ............................................................................................... 29 | spa |
dc.description.tableofcontents | 4.2.1 Geometría Del Aula De Clases .................................................................. 29 | spa |
dc.description.tableofcontents | 4.2.2 Escenarios de simulación .......................................................................... 31 | spa |
dc.description.tableofcontents | 4.2.3 Sistemas de ventilación del aula ............................................................... 33 | spa |
dc.description.tableofcontents | 4.3 Mallado .............................................................................................................. 37 | spa |
dc.description.tableofcontents | 4.4 Condiciones de frontera .................................................................................... 41 | spa |
dc.description.tableofcontents | 4.4.1 Condiciones de frontera escenario 0 ......................................................... 46 | spa |
dc.description.tableofcontents | 4.4.2 Condiciones de frontera escenarios 1 y 2 ................................................. 46 | spa |
dc.description.tableofcontents | 4.4.3 Condiciones de frontera escenarios 3 y 4 ................................................. 46 | spa |
dc.description.tableofcontents | 5 RESULTADOS Y DISCUSIONES ........................................................................... 48 | spa |
dc.description.tableofcontents | 5.1 Escenario 0 ........................................................................................................ 49 | spa |
dc.description.tableofcontents | 5.2 Escenario 1 ........................................................................................................ 56 | spa |
dc.description.tableofcontents | 5.3 Escenario 2 ........................................................................................................ 64 | spa |
dc.description.tableofcontents | 5.4 Escenario 3 ........................................................................................................ 72 | spa |
dc.description.tableofcontents | 5.5 Escenario 4 ........................................................................................................ 80 | spa |
dc.description.tableofcontents | 5.6 Comparativos .................................................................................................... 87 | spa |
dc.description.tableofcontents | 6 CONCLUSIONES .................................................................................................... 90 | spa |
dc.description.tableofcontents | 7 RECOMENDACIONES ............................................................................................ 92 | spa |
dc.description.tableofcontents | 8 REFERENCIAS BIBLIOGRÁFICAS ........................................................................ 93 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9031 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ingeniería Mecánica | |
dc.relation.references | Abuhegazy, M., Talaat, K., Anderoglu, O., & Poroseva, S. (2020). Numerical investigation of aerosol transport in a classroom with relevance to COVID-19. Physics of Fluids. | |
dc.relation.references | Anghel, L. P. (2020). Impact of hvac-systems on the dispersion of infectious aerosols in a cardiac intensive care unit. International Journal of Environmental Research and Public Health, 1–17. | |
dc.relation.references | ANSYS, I. (2009). ANSYS FLUENT 12.0/12.1 Documentation. Obtenido de ANSYS FLUENT 12.0/12.1 Documentation: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node692.htm | |
dc.relation.references | Blocken, B. (2018). LES over RANS in building simulation for outdoor and indoor. Building Simulation, 821-870. | |
dc.relation.references | Borro, L. M. (2020). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research. | |
dc.relation.references | Borro, L., Mazzei, L., Raponi, M., Piscitelli, P., & Miani, A. (2020). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research. | |
dc.relation.references | Busco, G., Yang, S. R., Seo, J., & Hassan, Y. A. (2020). Sneezing and asymptomatic virus transmission. Physics of Fluids. | |
dc.relation.references | CDC, C. C. (17 de Junio de 2021). CDC. Obtenido de Scientific Brief: SARS-CoV-2 Transmission: https://www.cdc.gov/coronavirus/2019-ncov/science/sciencebriefs/sars-cov-2transmission.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcorona virus%2F2019-ncov%2Fscience%2Fscience-briefs%2Fscientific-brief-sars-cov2.html | |
dc.relation.references | Cui, F., Geng, X., Zervaki, O., Dionysiou, D., Katz, J., Haig, S.-J., & Boufadel, M. (2021). Transport and Fate of Virus-Laden Particles in a Supermarket: Recommendations for Risk Reduction of COVID-19 Spreading. Journal of Environmental Engineering. | |
dc.relation.references | De Padova, D., & Mossa, M. (2021). Multi-phase simulation of infected respiratory cloud transmission in air. AIP Advances. | |
dc.relation.references | Faulkner, C. A., Castellini, J. E., Zuo, W., & Lorenzetti, D. M. (2022). Investigation of HVAC operation strategies for office buildings during COVID-19 pandemic. Building and Environment. | |
dc.relation.references | Gupta, J. K., Lin, C. H., & Chen, Q. (2009). Flow dynamics and characterization of a cough. INDOOR AIR. | |
dc.relation.references | Han, Z. Y., Weng, W. G., & Huang, Q. Y. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of royal society Interface. | |
dc.relation.references | Ho , C. K. (2021). Modeling airborne pathogen transport and transmission risks of SARSCoV-2. Applied Mathematical Modelling, 297-319. | |
dc.relation.references | ICONTEC. (2020). PLANEAMIENTO Y DISEÑO DE INSTALACIONES Y AMBIENTES ESCOLARES (NTC 4595). ICONTEC. | |
dc.relation.references | Li, H., Leong, F., Xu, G., Kang, C., Lim, K., Tan, B., & Loo, C. (2021). Airborne dispersion of droplets during coughing: a physical model of viral transmission. Scientific Reports. | |
dc.relation.references | Li, Y., Qian, H., Hang, J., Chen, X., Cheng, P., Ling, H., & Wang, S. (2021). Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment, 107788. | |
dc.relation.references | Navarro, G. R. (2019). Modelos de turbulencia introductorio. cOSTA rICA: Costa Rican Institute of Technology. | |
dc.relation.references | Pan, Y., Du, C., Fu, Z., & Fu, M. (2021). Re-thinking of engineering operation solutions to HVAC systems under the emerging COVID-19 pandemic. Journal of Building Engineering. | |
dc.relation.references | Prentiss, M., Chu, A., & Berggren, K. K. (2022). Finding the infectious dose for COVID19 by applying an airborne-transmission model to superspreader events. PLOS ONE. | |
dc.relation.references | Priyanka, C. O. (2020). Aerosol transmission of SARS-CoV-2: The unresolved paradox. Travel medicine and infectious disease. Travel medicine and infectious disease, 37. | |
dc.relation.references | Ruiz, J. F., Serna , J., & Zapata, H. J. (2017). Atlas de viento de colombia. Bogota: Imprenta Nacional de Colombia. | |
dc.relation.references | Shamim, J. A., Hsu, W.-L., & Daiguji, H. (2022). Review of component designs for postCOVID-19 HVAC systems: possibilities and challenges. Heliyon. | |
dc.relation.references | Sodiq, A., Khan, M., Naas, M., & Amhamed, A. (2021). Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: Will an innovative air recirculation concept provide a practical solution? Environmental Research, 111329. | |
dc.relation.references | Solmaz, S. (24 de 06 de 2021). Turbulence: Which Model Should I Select for My CFD Analysis? Obtenido de https://www.simscale.com/blog/2017/12/turbulence-cfdanalysis/ | |
dc.relation.references | Walker, J. E., Wells, R. E., & Merill, E. W. (1961). Heat and Water Exchange in the Respiratory tract. The american journal of medicine. | |
dc.relation.references | Wank, S. K., & Lavan, Z. (1999). “Air-Conditioning and Refrigeration” Mechanical Engineering Handbook. Boca Raton: CRC Press LLC. | |
dc.relation.references | Zhang, Y., Feng, G., Bi, Y., Cai, Y., Zhang, Z., & Cao, G. (2019). Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room. Sustainable Cities and Society. | |
dc.relation.references | Zheng, W., Hu, J., Wang, Z., Li, J., Fu, Z., Li, H., . . . Yan, J. (2021). COVID-19 Impact on Operation and Energy Consumption of Heating, Ventilation and AirConditioning (HVAC) Systems. Advances in Applied Energy. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | CFD | |
dc.subject.keywords | SARS-CoV-2 | |
dc.subject.keywords | Classroom | |
dc.subject.keywords | Airborne contaminants | |
dc.subject.keywords | Natural ventilation | |
dc.subject.keywords | Mechanical ventilation | |
dc.subject.keywords | Airflow patterns | |
dc.subject.proposal | CFD | |
dc.subject.proposal | SARS-COV-2 | |
dc.subject.proposal | Aula de clases | |
dc.subject.proposal | Contaminantes aerotransportados | |
dc.subject.proposal | Ventilación natural | |
dc.subject.proposal | Ventilación mecánica | |
dc.subject.proposal | Patrones de flujo de aire | |
dc.title | Simulación CFD de la interacción del SARS-CoV-2 con el sistema HVAC en un aula de clases | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: