Publicación:
Simulación CFD de la interacción del SARS-CoV-2 con el sistema HVAC en un aula de clases

dc.audience
dc.contributor.advisorMendoza Fandiño, Jorge Mario
dc.contributor.advisorGomez Vazques, Rafael David
dc.contributor.authorTapia Vertel, Andres Felipe
dc.contributor.jurySagastume Gutierrez, Alexis
dc.contributor.juryMartinez Guarín, Arnold Rafael
dc.date.accessioned2025-02-07T14:05:07Z
dc.date.available2025-02-07T14:05:07Z
dc.date.issued2025-02-03
dc.description.abstractEn este trabajo se estudia la transmisión del virus SARS-COV-2 en aulas de clase de Colombia, basándose en la cantidad de gotículas y masa de saliva que se alojan en la diferentes superficies y personas del recinto. Se construyo un modelo numérico mediante volúmenes finitos, compuesto por la geometría simplificada de un aula, construida según las especificaciones de la NTC 4595, incluyendo figuras que representan estudiantes y un profesor, siendo este último el origen de la infección. Empleando ANSYS Fluent, se modelaron las fases continua y discreta de un estornudo y se liberaron en 5 escenarios diferentes, donde se combinaron 2 tipos de ventilación y 2 patrones de flujo con el fin de determinar el número posible de contagios en cada uno de ellos. En el escenario 0, un entorno estanco, se analizó la velocidad del aire en varias condiciones mediante estudios de independencia de malla. La investigación arrojo que en el escenario 1, que combina la ventilación natural y un patrón de flujo mesclado, se da el menor número de contagios posibles en los estudiantes del aula, así como una menor deposición de masa de saliva infectada en las personas y en el aire luego de 3 s de haberse originado el estornudo. La ventilación natural es la mejor opción para frenar los contagios, independientemente del patrón de flujo, a pesar de las variaciones en la velocidad del viento. Estar ubicado justo al frente de una persona infectada de COVID-19 que estornuda, con una densidad viral de 109 copias/ml a una distancia no mayor a 1 metro, garantiza infectarse de la enfermedad.spa
dc.description.abstractIn this work, the transmission of the SARS-CoV-2 virus in classrooms in Colombia is studied, focusing on the amount of droplets and saliva mass that settle on various surfaces and people within the room .A numerical model based on the finite volume method was constructed, featuring a simplified geometry of a classroom built according to the specifications of NTC 4595. The model includes figures representing students and a teacher, with the latter being the origin of the infection. Using ANSYS Fluent, the continuous and discrete phases of a sneeze were simulated and released in five different scenarios. These scenarios combined two types of ventilation and two airflow patterns to determine the potential number of infections in each case. In scenario 0, a sealed environment, the air velocity was analyzed under various conditions through mesh independence studies. The research found that scenario 1, which combines natural ventilation with a mixed airflow pattern, results in the lowest possible number of infections among students in the classroom, as well as reduced deposition of infected saliva mass on people and in the air three seconds after the sneeze originated. Natural ventilation proves to be the best option to reduce infections, regardless of the airflow pattern, despite variations in wind speed. Being located directly in front of a COVID-19-infected individual sneezing, with a viral density of 109 copies/ml at a distance of no more than 1 meter, guarantees infection.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsTABLA DE CONTENIDOspa
dc.description.tableofcontentsLISTA DE TABLAS ............................................................................................................ 9spa
dc.description.tableofcontentsLISTA DE FIGURAS ........................................................................................................ 10spa
dc.description.tableofcontentsLISTA DE ANEXOS ......................................................................................................... 14spa
dc.description.tableofcontentsLISTA DE SÍMBOLOS Y ABREVIATURAS .................................................................... 15spa
dc.description.tableofcontentsRESUMEN ....................................................................................................................... 16spa
dc.description.tableofcontentsABSTRACT ...................................................................................................................... 17spa
dc.description.tableofcontents1 INTRODUCCIÓN ..................................................................................................... 18spa
dc.description.tableofcontents1.1 Vías de transmisión del COVID 19 ................................................................... 19spa
dc.description.tableofcontents1.2 Sistemas HVAC ................................................................................................. 20spa
dc.description.tableofcontents1.3 Factores de los sistemas HVAC incidentes en la dispersión de contaminantes 20spa
dc.description.tableofcontents2 REVISIÓN DE LITERATURA .................................................................................. 22spa
dc.description.tableofcontents2.1 Anghel, L. P. (2020). Impact of hvac-systems on the dispersion of infectious aerosols in a cardiac intensive care unit. International Journal of Environmental Research and Public Health, ....................................................................................... 22spa
dc.description.tableofcontents2.2 Borro, L. M. (2020). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research. ..................................................................................................................... 22spa
dc.description.tableofcontents2.3 Ho , C. K. (2021). Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Applied Mathematical Modelling, 297-319. ...................................... 22spa
dc.description.tableofcontents2.4 Li, Y., Qian, H., Hang, J., Chen, X., Cheng, P., Ling, H., & Wang, S. (2021). Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment, 107788. ............................................................................. 23spa
dc.description.tableofcontents2.5 ICONTEC. (2020). PLANEAMIENTO Y DISEÑO DE INSTALACIONES Y AMBIENTES ESCOLARES (NTC 4595). ICONTEC. ................................................. 23spa
dc.description.tableofcontents3 OBJETIVOS ............................................................................................................. 24spa
dc.description.tableofcontents3.1 Objetivo general. ............................................................................................... 24spa
dc.description.tableofcontents3.2 Objetivos específicos. ....................................................................................... 24spa
dc.description.tableofcontents3.2.1 Objetivo específico I. .................................................................................. 24spa
dc.description.tableofcontents3.2.2 Objetivo específico II. ................................................................................. 24spa
dc.description.tableofcontents3.2.3 Objetivo específico III. ................................................................................ 24spa
dc.description.tableofcontents4 MATERIALES Y MÉTODOS ................................................................................... 25spa
dc.description.tableofcontents4.1 Variables HVAC ................................................................................................. 25spa
dc.description.tableofcontents4.2 Modelo numérico ............................................................................................... 29spa
dc.description.tableofcontents4.2.1 Geometría Del Aula De Clases .................................................................. 29spa
dc.description.tableofcontents4.2.2 Escenarios de simulación .......................................................................... 31spa
dc.description.tableofcontents4.2.3 Sistemas de ventilación del aula ............................................................... 33spa
dc.description.tableofcontents4.3 Mallado .............................................................................................................. 37spa
dc.description.tableofcontents4.4 Condiciones de frontera .................................................................................... 41spa
dc.description.tableofcontents4.4.1 Condiciones de frontera escenario 0 ......................................................... 46spa
dc.description.tableofcontents4.4.2 Condiciones de frontera escenarios 1 y 2 ................................................. 46spa
dc.description.tableofcontents4.4.3 Condiciones de frontera escenarios 3 y 4 ................................................. 46spa
dc.description.tableofcontents5 RESULTADOS Y DISCUSIONES ........................................................................... 48spa
dc.description.tableofcontents5.1 Escenario 0 ........................................................................................................ 49spa
dc.description.tableofcontents5.2 Escenario 1 ........................................................................................................ 56spa
dc.description.tableofcontents5.3 Escenario 2 ........................................................................................................ 64spa
dc.description.tableofcontents5.4 Escenario 3 ........................................................................................................ 72spa
dc.description.tableofcontents5.5 Escenario 4 ........................................................................................................ 80spa
dc.description.tableofcontents5.6 Comparativos .................................................................................................... 87spa
dc.description.tableofcontents6 CONCLUSIONES .................................................................................................... 90spa
dc.description.tableofcontents7 RECOMENDACIONES ............................................................................................ 92spa
dc.description.tableofcontents8 REFERENCIAS BIBLIOGRÁFICAS ........................................................................ 93spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9031
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ingeniería Mecánica
dc.relation.referencesAbuhegazy, M., Talaat, K., Anderoglu, O., & Poroseva, S. (2020). Numerical investigation of aerosol transport in a classroom with relevance to COVID-19. Physics of Fluids.
dc.relation.referencesAnghel, L. P. (2020). Impact of hvac-systems on the dispersion of infectious aerosols in a cardiac intensive care unit. International Journal of Environmental Research and Public Health, 1–17.
dc.relation.referencesANSYS, I. (2009). ANSYS FLUENT 12.0/12.1 Documentation. Obtenido de ANSYS FLUENT 12.0/12.1 Documentation: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node692.htm
dc.relation.referencesBlocken, B. (2018). LES over RANS in building simulation for outdoor and indoor. Building Simulation, 821-870.
dc.relation.referencesBorro, L. M. (2020). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research.
dc.relation.referencesBorro, L., Mazzei, L., Raponi, M., Piscitelli, P., & Miani, A. (2020). The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environmental Research.
dc.relation.referencesBusco, G., Yang, S. R., Seo, J., & Hassan, Y. A. (2020). Sneezing and asymptomatic virus transmission. Physics of Fluids.
dc.relation.referencesCDC, C. C. (17 de Junio de 2021). CDC. Obtenido de Scientific Brief: SARS-CoV-2 Transmission: https://www.cdc.gov/coronavirus/2019-ncov/science/sciencebriefs/sars-cov-2transmission.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcorona virus%2F2019-ncov%2Fscience%2Fscience-briefs%2Fscientific-brief-sars-cov2.html
dc.relation.referencesCui, F., Geng, X., Zervaki, O., Dionysiou, D., Katz, J., Haig, S.-J., & Boufadel, M. (2021). Transport and Fate of Virus-Laden Particles in a Supermarket: Recommendations for Risk Reduction of COVID-19 Spreading. Journal of Environmental Engineering.
dc.relation.referencesDe Padova, D., & Mossa, M. (2021). Multi-phase simulation of infected respiratory cloud transmission in air. AIP Advances.
dc.relation.referencesFaulkner, C. A., Castellini, J. E., Zuo, W., & Lorenzetti, D. M. (2022). Investigation of HVAC operation strategies for office buildings during COVID-19 pandemic. Building and Environment.
dc.relation.referencesGupta, J. K., Lin, C. H., & Chen, Q. (2009). Flow dynamics and characterization of a cough. INDOOR AIR.
dc.relation.referencesHan, Z. Y., Weng, W. G., & Huang, Q. Y. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of royal society Interface.
dc.relation.referencesHo , C. K. (2021). Modeling airborne pathogen transport and transmission risks of SARSCoV-2. Applied Mathematical Modelling, 297-319.
dc.relation.referencesICONTEC. (2020). PLANEAMIENTO Y DISEÑO DE INSTALACIONES Y AMBIENTES ESCOLARES (NTC 4595). ICONTEC.
dc.relation.referencesLi, H., Leong, F., Xu, G., Kang, C., Lim, K., Tan, B., & Loo, C. (2021). Airborne dispersion of droplets during coughing: a physical model of viral transmission. Scientific Reports.
dc.relation.referencesLi, Y., Qian, H., Hang, J., Chen, X., Cheng, P., Ling, H., & Wang, S. (2021). Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment, 107788.
dc.relation.referencesNavarro, G. R. (2019). Modelos de turbulencia introductorio. cOSTA rICA: Costa Rican Institute of Technology.
dc.relation.referencesPan, Y., Du, C., Fu, Z., & Fu, M. (2021). Re-thinking of engineering operation solutions to HVAC systems under the emerging COVID-19 pandemic. Journal of Building Engineering.
dc.relation.referencesPrentiss, M., Chu, A., & Berggren, K. K. (2022). Finding the infectious dose for COVID19 by applying an airborne-transmission model to superspreader events. PLOS ONE.
dc.relation.referencesPriyanka, C. O. (2020). Aerosol transmission of SARS-CoV-2: The unresolved paradox. Travel medicine and infectious disease. Travel medicine and infectious disease, 37.
dc.relation.referencesRuiz, J. F., Serna , J., & Zapata, H. J. (2017). Atlas de viento de colombia. Bogota: Imprenta Nacional de Colombia.
dc.relation.referencesShamim, J. A., Hsu, W.-L., & Daiguji, H. (2022). Review of component designs for postCOVID-19 HVAC systems: possibilities and challenges. Heliyon.
dc.relation.referencesSodiq, A., Khan, M., Naas, M., & Amhamed, A. (2021). Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: Will an innovative air recirculation concept provide a practical solution? Environmental Research, 111329.
dc.relation.referencesSolmaz, S. (24 de 06 de 2021). Turbulence: Which Model Should I Select for My CFD Analysis? Obtenido de https://www.simscale.com/blog/2017/12/turbulence-cfdanalysis/
dc.relation.referencesWalker, J. E., Wells, R. E., & Merill, E. W. (1961). Heat and Water Exchange in the Respiratory tract. The american journal of medicine.
dc.relation.referencesWank, S. K., & Lavan, Z. (1999). “Air-Conditioning and Refrigeration” Mechanical Engineering Handbook. Boca Raton: CRC Press LLC.
dc.relation.referencesZhang, Y., Feng, G., Bi, Y., Cai, Y., Zhang, Z., & Cao, G. (2019). Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room. Sustainable Cities and Society.
dc.relation.referencesZheng, W., Hu, J., Wang, Z., Li, J., Fu, Z., Li, H., . . . Yan, J. (2021). COVID-19 Impact on Operation and Energy Consumption of Heating, Ventilation and AirConditioning (HVAC) Systems. Advances in Applied Energy.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsCFD
dc.subject.keywordsSARS-CoV-2
dc.subject.keywordsClassroom
dc.subject.keywordsAirborne contaminants
dc.subject.keywordsNatural ventilation
dc.subject.keywordsMechanical ventilation
dc.subject.keywordsAirflow patterns
dc.subject.proposalCFD
dc.subject.proposalSARS-COV-2
dc.subject.proposalAula de clases
dc.subject.proposalContaminantes aerotransportados
dc.subject.proposalVentilación natural
dc.subject.proposalVentilación mecánica
dc.subject.proposalPatrones de flujo de aire
dc.titleSimulación CFD de la interacción del SARS-CoV-2 con el sistema HVAC en un aula de clasesspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Autorizacion firmada2.pdf
Tamaño:
593.34 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Andrés Felipe Tapia Vertel.pdf
Tamaño:
4.81 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones