Publicación: Efectos del sustrato grafeno sobre la monocapa 1H-MgF2 en la juntura 1H-MgF2/grafeno
dc.contributor.advisor | Ortega López, César | spa |
dc.contributor.advisor | Espitia Rico, Miguel | spa |
dc.contributor.author | Gómez Fuentes, C. Javier | |
dc.date.accessioned | 2022-02-28T02:32:08Z | |
dc.date.available | 2022-02-28T02:32:08Z | |
dc.date.issued | 2022-02-21 | |
dc.description.abstract | En este trabajo, se hace un estudio de los efectos del sustrato grafeno sobre las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (a través de las densidades de estados -- DOS -- parciales y totales y la estructura de bandas electrónicas) del fluoruro de magnesio (MgF2), en la fase hexagonal (1H-MgF2), en la juntura 1H-MgF2/grafeno. Los cálculos se realizan usando la teoría de la funcional de la densidad (Density Functional Theory: DFT) dentro de la aproximación del gradiente generalizado (Generalized Gradient Approximation: GGA) de Perdew-Burke-Ernzerhof (PBE) junto con pseudopotenciales atómicos y una base de ondas planas, como se implementa en el paquete Quantum-ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization). La heteroestructura se modela teniendo en cuenta el criterio de desajuste mínimo (mismatch<3%); el modelo de slab o terraza periódica, una monocapa 3x3$ -MgF2 gr. # 187 se acopla a una monocapa de sqrt{13}xsqrt{13}-grafeno, y los sitios geométricamente especiales del sistema. Escogida la configuración, 1H-MgF2/grafeno; inicialmente, se optimizan, de manera simultánea, la distancia de separación de las monocapas de juntura 1H-MgF2/grafeno, y las contantes de red del sistema. Una vez que el sistema alcanza los valores óptimos precitados, se determinan las contantes de red, longitudes de enlace, energía total, energía de formación del sistema. Seguidamente, se determinan las propiedades electrónicas y magnéticas de la juntura 1H-MgF2/grafeno, a través de la densidad de estados (parciales y totales) y la estructura de bandas electrónicas. Finalmente, se analiza y determina: cuál es el efecto del sustrato grafeno, sobre las propiedades estructurales y electrónicas del 1H-MgF2 en el sistema en estudio. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Físico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. Introducción 10 | spa |
dc.description.tableofcontents | 2. Descripción cuántica del sólido 14 | spa |
dc.description.tableofcontents | 2.1 El problema general 14 | spa |
dc.description.tableofcontents | 2.2 El problema electrónico 16 | spa |
dc.description.tableofcontents | 2.3 Teoría del Funcional de la Densidad (DFT) 16 | spa |
dc.description.tableofcontents | 2.3.1 La densidad electrónica 17 | spa |
dc.description.tableofcontents | 2.3.2. Teoremas de Hohenberg-Khon 19 | spa |
dc.description.tableofcontents | 2.3.3. Método de Kohn-Sham 20 | spa |
dc.description.tableofcontents | 2.3.4. Aproximaciones para el funcional de correlación e intercambio 22 | spa |
dc.description.tableofcontents | 2.3.5. Teoría de pseudopotenciales 24 | spa |
dc.description.tableofcontents | 2.3.6. Ciclo de autoconsistencia 30 | spa |
dc.description.tableofcontents | 3. Metodología y detalles computacionales 33 | spa |
dc.description.tableofcontents | 4. Resultados y análisis 35 | spa |
dc.description.tableofcontents | 4.1. Monocapa prístina, 1H-MgF2 35 | spa |
dc.description.tableofcontents | 4.1.1. Parámetros estructurales de la monocapa prístina 36 | spa |
dc.description.tableofcontents | 4.1.2. Carácter electrónico de la monocapa prístina 37 | spa |
dc.description.tableofcontents | 4.2. Juntura 1H-MgF2/grafeno 39 | spa |
dc.description.tableofcontents | 4.2.1. Resultados estructurales y estabilidad energética de la juntura 40 | spa |
dc.description.tableofcontents | 4.2.2. Carácter electrónico de la juntura 44 | spa |
dc.description.tableofcontents | 5. Conclusiones 49 | spa |
dc.description.tableofcontents | A. Demostración de los Teoremas de Hohenberg-Khon 50 | spa |
dc.description.tableofcontents | B. Grupos espaciales considerados 54 | spa |
dc.description.tableofcontents | B.1. Grupo espacial P-6m2 (#187) 55 | spa |
dc.description.tableofcontents | B.2. Grupo espacial P6/mmm (#191) 55 | spa |
dc.description.tableofcontents | C. Corrección DFT-D2 de Grimme 57 | spa |
dc.description.tableofcontents | D. Propiedades estructurales y electrónicas del grafeno 60 | spa |
dc.description.tableofcontents | E. Optimizaciones 64 | spa |
dc.description.tableofcontents | E.1. Optimización de los parámetros estructurales 64 | spa |
dc.description.tableofcontents | E.2. Optimización de los parámetros de control 66 | spa |
dc.description.tableofcontents | F. Archivos de entrada 68 | spa |
dc.description.tableofcontents | F.1. Archivo scf.in de la monocapa 1H-MgF2 68 | spa |
dc.description.tableofcontents | F.2. Archivo scf.in del grafeno 70 | spa |
dc.description.tableofcontents | F.3. Archivo scf.in de la juntura 1H-MgF2/grafeno 73 | spa |
dc.description.tableofcontents | F.4. Archivo nscf.in de la juntura 1H-MgF2/grafeno 76 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4826 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Física | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Magnesium fluoride | eng |
dc.subject.keywords | Mraphene | eng |
dc.subject.keywords | MgF2/graphene junction | eng |
dc.subject.keywords | DFT | eng |
dc.subject.keywords | GGA - PBE - D2 | eng |
dc.subject.keywords | Priodic slab | eng |
dc.subject.keywords | Structural properties | eng |
dc.subject.keywords | Thermodynamic stability | eng |
dc.subject.keywords | Electronic properties | eng |
dc.subject.proposal | Fluoruro de magnesio | spa |
dc.subject.proposal | Grafeno | spa |
dc.subject.proposal | Juntura MgF2/grafeno | spa |
dc.subject.proposal | DFT | spa |
dc.subject.proposal | GGA - PBE - D2 | spa |
dc.subject.proposal | Slab periódico | spa |
dc.subject.proposal | Propiedades estructurales | spa |
dc.subject.proposal | Estabilidad termodinámica | spa |
dc.subject.proposal | Propiedades electrónicas | spa |
dc.title | Efectos del sustrato grafeno sobre la monocapa 1H-MgF2 en la juntura 1H-MgF2/grafeno | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. | spa |
dcterms.references | Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19). | spa |
dcterms.references | The Nobel Prize in Physics 2010. NobelPrize.org. Nobel Media AB 2021. Sat. 27 Mar 2021. https://www.nobelprize.org/prizes/physics/2010/summary/ | spa |
dcterms.references | Novoselov, K. S., Morozov, S. V., Mohinddin, T. M. G., Ponomarenko, L. A., Elias, D. C., Yang, R., ... & Geim, A. K. (2007). The electronic properties of graphene; phys. stat. sol.(b) 244. | spa |
dcterms.references | Novoselov, K. S., Mishchenko, O. A., Carvalho, O. A., & Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298), aac9439. | spa |
dcterms.references | Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: a review of graphene. Chemical reviews, 110(1), 132-145. | spa |
dcterms.references | Propiedades y aplicaciones del Grafeno. Monografías del SOPT – Dirección General de Armamento y Material. Subdirección General de Tecnología e Innovación. Ministerio de defensa España, 2013. | spa |
dcterms.references | Bosch, D., Estudio, aplicaciones y obtención del Grafeno. Treball de Recerca. Escola Vedruna Girona, 2014. | spa |
dcterms.references | Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: past, present and future. Progress in materials science, 56(8), 1178-1271. | spa |
dcterms.references | Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109. | spa |
dcterms.references | Choi, S. M., Jhi, S. H., & Son, Y. W. (2010). Effects of strain on electronic properties of graphene. Physical Review B, 81(8), 081407. | spa |
dcterms.references | Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: a theoretical perspective. Advances in Physics, 59(4), 261-482. | spa |
dcterms.references | Bunch, J. S. (2008). Mechanical and electrical properties of graphene sheets. Ithaca, NY: Cornell University. | spa |
dcterms.references | Ovid’Ko, I. A. (2013). Mechanical properties of graphene. Rev. Adv. Mater. Sci, 34(1), 1-11. | spa |
dcterms.references | Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25(6), 2558-2561. | spa |
dcterms.references | Min, K., & Aluru, N. R. (2011). Mechanical properties of graphene under shear deformation. Applied Physics Letters, 98(1), 013113. | spa |
dcterms.references | Sepioni, M. (2013). Magnetic properties of graphene. The University of Manchester (United Kingdom). | spa |
dcterms.references | Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. nature, 438(7065), 201-204. | spa |
dcterms.references | Sen, F. G., Qi, Y., & Alpas, A. T. (2012). Anchoring platinum on graphene using metallic adatoms: a first principles investigation. Journal of Physics: Condensed Matter, 24(22), 225003. | spa |
dcterms.references | Garcia, A. G., Baltazar, S. E., Castro, A. H. R., Robles, J. F. P., & Rubio, A. (2008). Influence of S and P doping in a graphene sheet. Journal of Computational and Theoretical Nanoscience, 5(11), 2221-2229. | spa |
dcterms.references | BalbináVillaverde, A. (1996). Magneto-optical constants of fluoride optical crystals and other AB 2 and A 2 B type compounds. Journal of the Chemical Society, Faraday Transactions, 92(15), 2753-2757. | spa |
dcterms.references | Fernández Perea, M. (2009). Búsqueda y caracterización de nuevos materiales y su aplicación en recubrimientos ópticos para el ultravioleta lejano y extremo. | spa |
dcterms.references | Kanchana, V., Vaitheeswaran, G., & Rajagopalan, M. (2003). High-pressure structural phase transitions in magnesium fluoride studied by electronic structure calculations. Journal of alloys and compounds, 352(1-2), 60-65. | spa |
dcterms.references | Riss, A., Blaha, P., Schwarz, K., & Zemann, J. (2003). Theoretical explanation of the octahedral distortion in FeF2 and MgF2. Zeitschrift für Kristallographie-Crystalline Materials, 218(9), 585-589. | spa |
dcterms.references | Babu, K. R., Lingam, C. B., Auluck, S., Tewari, S. P., & Vaitheeswaran, G. (2011). Structural, thermodynamic and optical properties of MgF2 studied from first-principles theory. Journal of Solid State Chemistry, 184(2), 343-350. | spa |
dcterms.references | Yi, Z., & Jia, R. (2012). Quasiparticle band structures and optical properties of magnesium fluoride. Journal of Physics: Condensed Matter, 24(8), 085602. | spa |
dcterms.references | Abuova, F. U., Akilbekov, A. T., & Kotomin, E. A. (2012, August). Ab initio calculations of the H centers in MgF2 crystals. In IOP Conference Series: Materials Science and Engineering (Vol. 38, No. 1, p. 012041). IOP Publishing. | spa |
dcterms.references | Sun, X. W., Song, T., Wei, X. P., Quan, W. L., Liu, X. B., & Su, W. F. (2014). Thermal stability and thermal expansion studies of cubic fluorite-type MgF2 up to 135 GPa. Materials Research Bulletin, 52, 151-157. | spa |
dcterms.references | Zouboulis, I. S., Jiang, F., Wang, J., & Duffy, T. S. (2014). Single-crystal elastic constants of magnesium difluoride (MgF2) to 7.4 GPa. Journal of Physics and Chemistry of Solids, 75(1), 136-141. | spa |
dcterms.references | Öztürk, H., Kürkçü, C., & Kürkçü, C. (2015). I4/mmm phase of MgF2: An ab initio molecular dynamics study. Russian Journal of Physical Chemistry A, 89(13), 2407-2410. | spa |
dcterms.references | Zhang, T., Cheng, Y., Lv, Z. L., Ji, G. F., & Gong, M. (2014). Phase Transition and Thermodynamic Properties of Magnesium Fluoride by First Principles. International Journal of Modern Physics B, 28(08), 1450026. | spa |
dcterms.references | Zhang, Y., Tan, T., Liu, Z., Liu, S., & Su, J. (2015). Electronic and optical properties of O-doped MgF2: First-principles calculations and experiments. Vacuum, 120, 50-53. | spa |
dcterms.references | Arroussi, A., & Ghezali, M. (2018). First-principles study of the structural, electronic and optical properties of MgF2. Optik, 164, 16-27. | spa |
dcterms.references | Quesnel, E., Dumas, L., Jacob, D., & Peiró, F. (2000). Optical and microstructural properties of MgF 2 UV coatings grown by ion beam sputtering process. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(6), 2869-2876. | spa |
dcterms.references | Yang, H. H., Baek, S. U., Na, K. J., So, S. Y., Park, G. C., Lee, J., & Chung, H. D. (2009). A Study on Properties of $ MgF_2 $ antireflection film for solar cell. In Proceedings of the KIEE Conference (pp. 1272-1274). The Korean Institute of Electrical Engineers. | spa |
dcterms.references | Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A., & Aznárez, J. A. (2017). Self-consistent optical constants of MgF 2, LaF 3, and CeF 3 films. Optical Materials Express, 7(3), 989-1006. | spa |
dcterms.references | Löbmann, P. (2018). Sol-gel processing of MgF2 antireflective coatings. Nanomaterials, 8(5), 295. | spa |
dcterms.references | Zhao, C., Ma, C., Liu, J., Liu, Z., & Chen, Y. (2020). Preparation of wide optical spectrum and high antireflection MgF2 thin film with SF6 as reactive gas. Materials Research Express, 7(2), 026415. | spa |
dcterms.references | Wang, L. P., Zhang, Z. X., Zhang, C. L., & Xu, B. S. (2013). Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study. Computational materials science, 7, 281-285. | spa |
dcterms.references | Mahida, H. R., Singh, D., Sonvane, Y., Gupta, S. K., & Thakor, P. B. (2017). MgF2 monolayer as an anti-reflecting material. Solid State Communications, 252, 22-28. | spa |
dcterms.references | Mahida, H. R., Singh, D., Panda, P. K., Sonvane, Y., Thakor, P. B., & Ahuja, R. (2020, May). Electronic and optical properties of a structural defect in 2D MgF2 monolayer. In AIP Conference Proceedings (Vol. 2220, No. 1, p. 100008). AIP Publishing LLC. | spa |
dcterms.references | Mahida, H. R., Singh, D., Sonvane, Y., Ahuja, R., & Thakor, P. B. (2021). 2D MgF2 nanosheet as a promising candidate for thermoelectric material. Materials Today: Proceedings, 47, 555-558. | spa |
dcterms.references | Baskurt, M., Kang, J., & Sahin, H. (2020). Octahedrally coordinated single layered CaF 2: Robust insulating behaviour. Physical Chemistry Chemical Physics, 22(5), 2949-2954. | spa |
dcterms.references | Su, Z., Yin, J., & Zhao, X. (2015). Terahertz dual-band metamaterial absorber based on graphene/MgF 2 multilayer structures. Optics express, 23(2), 1679-1690. | spa |
dcterms.references | Xu, Q., Yang, X., Rao, M., Lin, D., Yan, K., Du, R., ... & Qiu, Y. (2020). High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Materials, 26, 73-82. | spa |
dcterms.references | Grenier, B., & Ballou, R. (2012). Crystallography: Symmetry groups and group representations. In EPJ Web of Conferences (Vol. 22, p. 00006). EDP Sciences. | spa |
dcterms.references | Nespolo, M. (2017). International Tables for Crystallography, Volume A, Space-group symmetry. Acta Crystallographica Section A Foundations and Advances, 73(3), 274-276. | spa |
dcterms.references | Bilbao Crystallographic Server, website: http://www.cryst.ehu.es/ | spa |
dcterms.references | Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. | spa |
dcterms.references | Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. | spa |
dcterms.references | Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502. | spa |
dcterms.references | Born, M., & Oppenheimer, J. R. (1927). ``Zur Quantentheorie der Molekeln'' [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457–484. | spa |
dcterms.references | Kohanoff, J., & Gidopoulos, N. I. (2003). Density functional theory: basics, new trends and applications. Handbook of molecular physics and quantum chemistry, 2(Part 5), 532-568. | spa |
dcterms.references | Kohanoff, J. (2006). Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge university press. | spa |
dcterms.references | Toffoli, H. (2009). Principles of Density Functional Theory [Lecture notes]. Middle East Technical University. | spa |
dcterms.references | David, J., Guerra, D., & Fuentealba, P. (2017). Teoría de las funcionales de la densidad [Material del aula]. Universidad de Chile, Facultad de Ciencias, Departamento de Física. Santiago, Chile. | spa |
dcterms.references | Burke, K. (2007). The abc of dft. Department of Chemistry, University of California, 40. | spa |
dcterms.references | Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. | spa |
dcterms.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. | spa |
dcterms.references | Singh, D. J., & Nordstrom, L. (2006). Planewaves, Pseudopotentials, and the LAPW method. Springer Science & Business Media. | spa |
dcterms.references | Hamann, D. R., Schlüter, M., & Chiang, C. (1979). Norm-conserving pseudopotentials. Physical Review Letters, 43(20), 1494. | spa |
dcterms.references | Bachelet, G. B., Hamann, D. R., & Schlüter, M. (1982). Pseudopotentials that work: From H to Pu. Physical Review B, 26(8), 4199. | spa |
dcterms.references | Vanderbilt, D. (1985). Optimally smooth norm-conserving pseudopotentials. Physical Review B, 32(12), 8412. | spa |
dcterms.references | Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892. | spa |
dcterms.references | Laasonen, K., Car, R., Lee, C., & Vanderbilt, D. (1991). Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Physical Review B, 43(8), 6796. | spa |
dcterms.references | Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142. | spa |
dcterms.references | Ortega López, C. (2009). Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN (Tesis doctoral). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Física, Sede Bogotá. | spa |
dcterms.references | Espitia Rico, M. J. (2016). Adsorción, crecimiento e incorporación de átomos de carbono en GaN: un estudio basado en DFT (Tesis doctoral). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Física, Sede Bogotá. | spa |
dcterms.references | Casiano Jiménez, G. R. (2019). Estudio de la interfaz grafeno/BN mediante DFT (Tesis doctoral). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia. | spa |
dcterms.references | Humánez Tobar, Á. (2020). Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición (Tesis de maestría). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia. | spa |
dcterms.references | Hernández Márquez, S. M. (2022). Efectos de Grafeno sobre 1T-MgF2 en la juntura MgF2/Grafeno (Tesis de pregrado). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia. | spa |
dcterms.references | Methfessel, M. P. A. T., & Paxton, A. T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616. | spa |
dcterms.references | Blöchl, P. E., Jepsen, O., & Andersen, O. K. (1994). Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23), 16223. | spa |
dcterms.references | Jorgensen, J. J., & Hart, G. L. (2021). Effectiveness of smearing and tetrahedron methods: best practices in DFT codes. Modelling and Simulation in Materials Science and Engineering, 29(6), 065014. | spa |
dcterms.references | Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of computational chemistry, 25(12), 1463-1473. | spa |
dcterms.references | Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799. | spa |
dcterms.references | Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104. | spa |
dcterms.references | Bucko, T., Hafner, J., Lebegue, S., & Angyán, J. G. (2010). Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. | spa |
dcterms.references | Campos, D., & Romero, D. C. (1997). Fundamentos de física atómica y molecular. Univ. Nacional de Colombia. | spa |
dcterms.references | Cardona, M., & Peter, Y. Y. (2005). Fundamentals of semiconductors (Vol. 619). Springer-Verlag Berlin Heidelberg. | spa |
dcterms.references | Liao, J., Sa, B., Zhou, J., Ahuja, R., & Sun, Z. (2014). Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructures. The Journal of Physical Chemistry C, 118(31), 17594-17599. | spa |
dcterms.references | Chen, S. H., Wang, J. J., Huang, J., & Li, Q. X. (2017). G-c3n4/sns2 heterostructure: A promising water splitting photocatalyst. Chinese Journal of Chemical Physics, 30(1), 36. | spa |
dcterms.references | Fan, Y., Ma, X., Liu, X., Wang, J., Ai, H., & Zhao, M. (2018). Theoretical design of an InSe/GaTe vdW heterobilayer: a potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 122(49), 27803-27810. | spa |
dcterms.references | Luo, Y., Ren, K., Wang, S., Chou, J. P., Yu, J., Sun, Z., & Sun, M. (2019). First-principles study on transition-metal dichalcogenide/BSe van der Waals heterostructures: a promising water-splitting photocatalyst. The Journal of Physical Chemistry C, 123(37), 22742-22751. | spa |
dcterms.references | Gong, A., Feng, Y., Liu, C., Chen, J., Wang, Z., & Shen, T. (2022). A promising ZnO/Graphene van der Waals heterojunction as solar cell devices: A first-principles study. Energy Reports, 8, 904-910. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: