Publicación: Dinámica cuántica de sistemas supramoleculares derivados de triarilamina en el régimen no-markoviano
dc.audience | ||
dc.contributor.advisor | Susa Quintero, Cristian E. | spa |
dc.contributor.author | Vertel Nieto, Alonso de Jesús | |
dc.date.accessioned | 2023-08-14T23:30:19Z | |
dc.date.available | 2023-08-14T23:30:19Z | |
dc.date.issued | 2023-07-13 | |
dc.description.abstract | El objetivo principal de este trabajo es estudiar, bajo los fundamentos de la Mecánica Cuántica, la dinámica de sistemas supramoleculares compuestos por moléculas de Triarilamina, las cuales interactúan fuertemente con un entorno polar (Anisol). La interacción fuerte entre las moléculas está regida por la interacción dipolar, que depende de la distancia de separación entre ellas y la orientación que tengan dentro de la estructura. Para resolver la dinámica abierta se utiliza la técnica de Ecuaciones Jerárquicas de Movimiento (HEOM), donde se considera un sistema cuántico de cuatro niveles de energía que interactúa con un entorno bosónico. La dinámica disipativa del sistema es estudiada desde el régimen Markoviano, donde la aproximación de Born-Markov es válida, al no-Markoviano donde la interacción sistema-entorno es fuerte y los efectos de memoria tienen un papel fundamental en la evolución del sistema. Inicialmente se estudia la dinámica sin tener en cuenta la aplicación de un láser externo sobre el sistema para diferentes estados iniciales, luego se muestran los efectos que tiene el láser en el comportamiento del sistema, así como también se realiza un análisis detallado de la dinámica del sistema a bajas y altas temperaturas. Se muestra que el sistema se ve favorecido cuando se asume que las moléculas se encuentran inicialmente en un estado entrelazado, esto debido a que los fenómenos cuánticos, como la coherencia, permanecen durante más tiempo. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Físico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | Índice de figuras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 | spa |
dc.description.tableofcontents | Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | spa |
dc.description.tableofcontents | 1. Introducción 6 | spa |
dc.description.tableofcontents | 2. Dinámica de Sistemas Cuánticos Abiertos 8 | spa |
dc.description.tableofcontents | 2.1. Dinámica Cuántica Markoviana . . . . . . . . . . . . . . . . . . . . 8 | spa |
dc.description.tableofcontents | 2.1.1. Derivación de la ecuación de Lindblad . . . . . . . . . . . . 10 | spa |
dc.description.tableofcontents | 2.2. Dinámica cuántica no-Markoviana . . . . . . . . . . . . . . . . . . . 14 | spa |
dc.description.tableofcontents | 2.2.1. Ecuaciones Jerárquicas de Movimiento (HEOM) . . . . . . . 15 | spa |
dc.description.tableofcontents | 2.2.2. Derivación de la Densidad Espectral de Drude-Lorentz . . . 16 | spa |
dc.description.tableofcontents | 2.2.3. Funciones de Correlación . . . . . . . . . . . . . . . . . . . . 17 | spa |
dc.description.tableofcontents | 2.2.4. Modelo de Spin-Boson . . . . . . . . . . . . . . . . . . . . . 19 | spa |
dc.description.tableofcontents | 3. Sistema Supramolecular 23 | spa |
dc.description.tableofcontents | 3.1. Triarilamina con Puente de Carbonilo . . . . . . . . . . . . . . . . . 23 | spa |
dc.description.tableofcontents | 3.1.1. Estructura Supramolecular . . . . . . . . . . . . . . . . . . . 26 | spa |
dc.description.tableofcontents | 3.1.2. Propiedades Ópticas y Electrónicas del Sistema Supramolecular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 | spa |
dc.description.tableofcontents | 4. Correlaciones Cuánticas 31 | spa |
dc.description.tableofcontents | 4.1. Entropía de Shannon . . . . . . . . . . . . . . . . . . . . . . . . . . 31 | spa |
dc.description.tableofcontents | 4.2. Entropía Condicional . . . . . . . . . . . . . . . . . . . . . . . . . . 32 | spa |
dc.description.tableofcontents | 4.3. Entropía de Von Neumann . . . . . . . . . . . . . . . . . . . . . . . 33 | spa |
dc.description.tableofcontents | 4.4. Información Mutua . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 | spa |
dc.description.tableofcontents | 4.5. Discordia Cuántica . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 | spa |
dc.description.tableofcontents | 4.6. Concurrencia y Entrelazamiento de Formación . . . . . . . . . . . . 35 | spa |
dc.description.tableofcontents | 5. Resultados 37 | spa |
dc.description.tableofcontents | 5.1. Dinámica Cuántica del Sistema Supramolecular . . . . . . . . . . . 37 | spa |
dc.description.tableofcontents | 5.1.1. Dinámica de Poblaciones y Coherencias . . . . . . . . . . . . 39 | spa |
dc.description.tableofcontents | 5.1.2. Dinámica de Correlaciones Cuánticas . . . . . . . . . . . . . 43 | spa |
dc.description.tableofcontents | 5.1.3. Dinámica Abierta Bajo Excitación del Láser Coherente . . . 45 | spa |
dc.description.tableofcontents | 6. Conclusiones 51 | spa |
dc.description.tableofcontents | 6.1. Participación en Eventos Científicos . . . . . . . . . . . . . . . . . . 52 | spa |
dc.description.tableofcontents | A. Decaimiento Espontáneo de un Sistema de Dos Niveles 53 | spa |
dc.description.tableofcontents | B. Derivación de la Expansión de las Funciones de Correlación 57 | spa |
dc.description.tableofcontents | C. Derivación del Hamiltoniano Efectivo 60 | spa |
dc.description.tableofcontents | Referencias Bibliográficas 63 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7643 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Física | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Supramolecular systems | eng |
dc.subject.keywords | Open Quantum Systems | eng |
dc.subject.keywords | Hierarchical Equations of Motion | eng |
dc.subject.keywords | Quantum Correlations | eng |
dc.subject.keywords | Dipolar interaction | eng |
dc.subject.proposal | Sistemas supramoleculares | spa |
dc.subject.proposal | Sistemas cuánticos abiertos | |
dc.subject.proposal | Ecuaciones Jerárquicas de Movimiento | |
dc.subject.proposal | Correlaciones cuánticas | |
dc.subject.proposal | Interacción dipolar | |
dc.title | Dinámica cuántica de sistemas supramoleculares derivados de triarilamina en el régimen no-markoviano | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Wei-Min Zhang. Exact master equation and general non-markovian dynamics in open quantum systems. The European Physical Journal Special Topics, 227:1849–1867, 01 2019. | spa |
dcterms.references | [2] Moritz Cygorek, Jonathan Keeling, Brendon W Lovett, and Erik M Gauger. Sublinear scaling in non-markovian open quantum systems simulations. arXiv preprint arXiv:2304.05291, 2023 | spa |
dcterms.references | [3] Uzma Akram, Z Ficek, and S Swain. Decoherence and coherent population transfer between two coupled systems. Physical Review A, 62(1):013413, 2000. | spa |
dcterms.references | [4] Inés de Vega and Daniel Alonso. Dynamics of non-markovian open quantum systems. Rev. Mod. Phys., 89:015001, Jan 2017. | spa |
dcterms.references | [5] Zbigniew Ficek and Stuart Swain. Quantum interference and coherence: theory and experiments. Springer Science & Business Media, 2005. | spa |
dcterms.references | [6] Bernd Wittmann, Till Biskup, Klaus Kreger, J¨urgen K¨ohler, Hans-Werner Schmidt, and Richard Hildner. All-optical manipulation of singlet exciton transport in individual supramolecular nanostructures by triplet gating. Na noscale Horiz., 6:998–1005, 2021. | spa |
dcterms.references | [7] The National Renewable Energy Laboratory. Best research-cell efficiency chart. NREL.gov, https://www.nrel.gov/pv/cell-efficiency.html, 2022. | spa |
dcterms.references | [8] Duvalier Madrid-Usuga, Cristian E. Susa, and John H. Reina. Room temperature quantum coherence vs. electron transfer in a rhodanine derivative chromophore. Phys. Chem. Chem. Phys., 21:12640–12648, 2019. | spa |
dcterms.references | [9] Duvalier Madrid-Usuga, Carlos A. Melo-Luna, Alberto Insuasty, Alejandro Ortiz, and John H. Reina. Optical and electronic properties of molecular systems derived from rhodanine. The Journal of Physical Chemistry A, 122(43):8469–8476, 2018. | spa |
dcterms.references | [10] Andreas T. Haedler, Klaus Kreger, Abey Issac, Bernd Wittmann, Milan Ki vala, Natalie Hammer, Jürgen K¨ohler, Hans-Werner Schmidt, and Richard Hildner. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature, 523(7559):196–199, July 2015. | spa |
dcterms.references | [11] Bernd Wittmann, Felix A. Wenzel, Stephan Wiesneth, Andreas T. Haedler, Markus Drechsler, Klaus Kreger, Jürgen Köhler, E. W. Meijer, Hans Werner Schmidt, and Richard Hildner. Enhancing long-range energy transport in supramolecular architectures by tailoring coherence properties. Journal of the American Chemical Society, 142(18):8323–8330, May 2020. | spa |
dcterms.references | [12] John H. Reina, Cristian E. Susa, and Felipe F. Fanchini. Extracting information from qubit-environment correlations. Scientific Reports, 4(1), dec 2014. | spa |
dcterms.references | [13] Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford University Press, USA, 2002. | spa |
dcterms.references | [14] Chris Sutherland, Todd A. Brun, and Daniel A. Lidar. Non-markovianity of the post-markovian master equation. Phys. Rev. A, 98:042119, Oct 2018. | spa |
dcterms.references | [15] Yoshitaka Tanimura. Stochastic liouville, langevin, fokker–planck, and master equation approaches to quantum dissipative systems. Journal of the Physical Society of Japan, 75(8):082001, 2006. | spa |
dcterms.references | [16] Akihito Ishizaki and Graham R Fleming. On the adequacy of the redfield equation and related approaches to the study of quantum dynamics in elec tronic energy transfer. The Journal of chemical physics, 130(23), 2009. | spa |
dcterms.references | [17] Hohjai Lee, Yuan-Chung Cheng, and Graham R. Fleming. Coherence dyna mics in photosynthesis: Protein protection of excitonic coherence. Science, 316(5830):1462–1465, 2007. | spa |
dcterms.references | [18] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo. Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters, 103(21), nov 2009. | spa |
dcterms.references | [19] Hong-Bin Chen, Neill Lambert, Yuan-Chung Cheng, Yueh-Nan Chen, and Franco Nori. Using non-markovian measures to evaluate quantum master equations for photosynthesis. Scientific Reports, 5:12753, 08 2015. | spa |
dcterms.references | [20] Joachim Seibt and Oliver Kühn. Strong exciton–vibrational coupling in molecular assemblies. dynamics using the polaron transformation in heom space. The Journal of Physical Chemistry A, 125(32):7052–7065, 2021. PMID: 34353023. | spa |
dcterms.references | [21] Neill Lambert, Tarun Raheja, Simon Cross, Paul Menczel, Shahnawaz Ahmed, Alexander Pitchford, Daniel Burgarth, and Franco Nori. Qutip-bofin: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Phys. Rev. Res., 5:013181, Mar 2023. | spa |
dcterms.references | [22] Tatsushi Ikeda and Gregory D. Scholes. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. The Journal of Chemical Physics, 152(20):204101, may 2020. | spa |
dcterms.references | [23] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communica tions, 184(4):1234–1240, 2013. | spa |
dcterms.references | [24] Arend G. Dijkstra and Yoshitaka Tanimura. Non-markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett., 104:250401, Jun 2010. | spa |
dcterms.references | [25] Bruno González-Soria, Francisco Delgado-Cepeda, and Alan Anaya. Predicting entanglement and coherent times in FMO complex using the heom method. Journal of Physics Conference Series, 1730:12033, 02 2021. | spa |
dcterms.references | [26] Neill Lambert, Tarun Raheja, Simon Cross, Paul Menczel, Shahnawaz Ah med, Alexander Pitchford, Daniel Burgarth, and Franco Nori. QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Physical Review Research, 5(1), mar 2023. | spa |
dcterms.references | [27] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–1772, 2012. | spa |
dcterms.references | [28] Volkhard. May. Charge and energy transfer dynamics in molecular systems. Wiley-VCH, Weinheim, 2nd, rev. and enl. ed. edition, 2004. | spa |
dcterms.references | [29] Ulrich Weiss. Quantum dissipative systems. World Scientific, 2012. | spa |
dcterms.references | [30] Joel Gilmore and Ross H. McKenzie. Quantum dynamics of electronic exci tations in biomolecular chromophores: Role of the protein environment and solvent. The Journal of Physical Chemistry A, 112(11):2162–2176, 2008. | spa |
dcterms.references | [31] Joel Gilmore and Ross H McKenzie. Spin boson models for quantum decohe rence of electronic excitations of biomolecules and quantum dots in a solvent. Journal of Physics: Condensed Matter, 17(10):1735, 2005. | spa |
dcterms.references | [32] Joel Gilmore and Ross H. McKenzie. Quantum dynamics of electronic excita tions in biomolecular chromophores: Role of the protein environment and solvent. The Journal of Physical Chemistry A, 112(11):2162–2176, 2008. PMID: 18293949. | spa |
dcterms.references | [33] Chao-Ping Hsu, Zhi-Qiang You, and Hung-Cheng Chen. Characterization of the short-range couplings in excitation energy transfer. The Journal of Physical Chemistry C, 112(4):1204–1212, 2008. | spa |
dcterms.references | [34] Joel Gilmore and Ross H. McKenzie. Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chemical Physics Letters, 421:266–271, 2004. | spa |
dcterms.references | [35] Chao-Ping Hsu. Reorganization energies and spectral densities for electron transfer problems in charge transport materials. Phys. Chem. Chem. Phys., 22:21630–21641, 2020. | spa |
dcterms.references | [36] Akihito Ishizaki and Yoshitaka Tanimura. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach. Journal of the Physical Society of Japan, 74:3131–3134, 12 2005. | spa |
dcterms.references | [37] Qiang Shi, Liping Chen, Guangjun Nan, Rui-Xue Xu, and YiJing Yan. Efficient hierarchical liouville space propagator to quantum dissipative dynamics. The Journal of chemical physics, 130(8), 2009. | spa |
dcterms.references | [38] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and Bassano Vacchini. Nonmarkovian dynamics in open quantum systems. Reviews of Modern Physics, 88(2), apr 2016. | spa |
dcterms.references | [39] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1–85, Jan 1987. | spa |
dcterms.references | [40] M.A. Schlosshauer. Decoherence: And the Quantum-To-Classical Transition. The Frontiers Collection. Springer, 2007. | spa |
dcterms.references | [41] Florian Otterpohl, Peter Nalbach, and Michael Thorwart. Hidden phase of the spin-boson model. Phys. Rev. Lett., 129:120406, Sep 2022. | spa |
dcterms.references | [42] Andreas T. Haedler, Stefan C. J. Meskers, R. Helen Zha, Milan Kivala, Hans Werner Schmidt, and E. W. Meijer. Pathway complexity in the enantioselecti ve self-assembly of functional carbonyl-bridged triarylamine trisamides. Jour nal of the American Chemical Society, 138(33):10539–10545, 2016. PMID: 27462007. | spa |
dcterms.references | [43] Bernd Wittmann. Tailoring long-range energy transport in supramolecular architectures. PhD thesis, Bayreuth, 2021. | spa |
dcterms.references | [44] Ratan W. Jadhav, Rahul V. Hangarge, Mahmood D. Aljabri, Kerba Shivaji More, Jing-Yu Chen, Lathe A. Jones, Richard A. Evans, Jing-Liang Li, Sheshanath V. Bhosale, and Akhil Gupta. The first connection of carbonyl bridged triarylamine and diketopyrrolopyrrole functionalities to generate a three-dimensional, non-fullerene electron acceptor. Mater. Chem. Front., 4:2176–2183, 2020. | spa |
dcterms.references | [45] Maria A. Castellanos, Amro Dodin, and Adam P. Willard. On the design of molecular excitonic circuits for quantum computing: the universal quantum gates. Phys. Chem. Chem. Phys., 22:3048–3057, 2020. | spa |
dcterms.references | [46] Zhen Fang, Vijila Chellappan, Richard D. Webster, Lin Ke, Tianfu Zhang, Bin Liu, and Yee-Hing Lai. Bridged-triarylamine starburst oligomers as hole transporting materials for electroluminescent devices. J. Mater. Chem., 22:15397–15404, 2012. | spa |
dcterms.references | [47] Bruno Bienfait and Peter Ertl. Jsme: a free molecule editor in javascript. Journal of cheminformatics, 5:24, 05 2013 | spa |
dcterms.references | [48] V.A. Rana, Hemant Chaube, and D.H. Gadani. Dielectric permittivity, density, viscosity and refractive index of binary mixtures of anisole with metha nol and 1-propanol at different temperatures. Journal of Molecular Liquids, 164(3):191–196, 2011. | spa |
dcterms.references | [49] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Infor mation. Cambridge Series on Information and the Natural Sciences. Cam bridge University Press, 2000. | spa |
dcterms.references | [50] S. Banerjee. Open Quantum Systems: Dynamics of Nonclassical Evolution. Texts and Readings in Physical Sciences. Springer Singapore, 2018 | spa |
dcterms.references | [51] Cristian E. Susa and John H. Reina. Correlations in optically controlled quantum emitters. Phys. Rev. A, 85:022111, Feb 2012. | spa |
dcterms.references | [52] Rong Wang, Yao Yao, Zhen-Qiang Yin, and Hoi-Kwong Lo. Quantum discord witness with uncharacterized devices, 2023. | spa |
dcterms.references | [53] John Reina and Cristian Susa. Quantum dynamics of correlations in dissipa tive quan- tum registers. Universidad del Valle, 2011. | spa |
dcterms.references | [54] Lishen. Govender. Determination of quantum entanglement concurrence using multilayer perceptron neural networks. 2017. | spa |
dcterms.references | [55] William K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245–2248, Mar 1998. | spa |
dcterms.references | [56] Yoshitaka Tanimura and Ryogo Kubo. Two-time correlation functions of a system coupled to a heat bath with a gaussian-markoffian interaction. Journal of The Physical Society of Japan - J PHYS SOC JPN, 58:1199–1206, 04 1989. | spa |
dcterms.references | [57] A.O Caldeira and A.J Leggett. Quantum tunnelling in a dissipative system. Annals of Physics, 149(2):374–456, 1983. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: