Publicación:
Dinámica cuántica de sistemas supramoleculares derivados de triarilamina en el régimen no-markoviano

dc.audience
dc.contributor.advisorSusa Quintero, Cristian E.spa
dc.contributor.authorVertel Nieto, Alonso de Jesús
dc.date.accessioned2023-08-14T23:30:19Z
dc.date.available2023-08-14T23:30:19Z
dc.date.issued2023-07-13
dc.description.abstractEl objetivo principal de este trabajo es estudiar, bajo los fundamentos de la Mecánica Cuántica, la dinámica de sistemas supramoleculares compuestos por moléculas de Triarilamina, las cuales interactúan fuertemente con un entorno polar (Anisol). La interacción fuerte entre las moléculas está regida por la interacción dipolar, que depende de la distancia de separación entre ellas y la orientación que tengan dentro de la estructura. Para resolver la dinámica abierta se utiliza la técnica de Ecuaciones Jerárquicas de Movimiento (HEOM), donde se considera un sistema cuántico de cuatro niveles de energía que interactúa con un entorno bosónico. La dinámica disipativa del sistema es estudiada desde el régimen Markoviano, donde la aproximación de Born-Markov es válida, al no-Markoviano donde la interacción sistema-entorno es fuerte y los efectos de memoria tienen un papel fundamental en la evolución del sistema. Inicialmente se estudia la dinámica sin tener en cuenta la aplicación de un láser externo sobre el sistema para diferentes estados iniciales, luego se muestran los efectos que tiene el láser en el comportamiento del sistema, así como también se realiza un análisis detallado de la dinámica del sistema a bajas y altas temperaturas. Se muestra que el sistema se ve favorecido cuando se asume que las moléculas se encuentran inicialmente en un estado entrelazado, esto debido a que los fenómenos cuánticos, como la coherencia, permanecen durante más tiempo. spa
dc.description.degreelevelPregradospa
dc.description.degreenameFísico(a)spa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsÍndice de figuras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3spa
dc.description.tableofcontentsResumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4spa
dc.description.tableofcontents1. Introducción 6spa
dc.description.tableofcontents2. Dinámica de Sistemas Cuánticos Abiertos 8spa
dc.description.tableofcontents2.1. Dinámica Cuántica Markoviana . . . . . . . . . . . . . . . . . . . . 8spa
dc.description.tableofcontents2.1.1. Derivación de la ecuación de Lindblad . . . . . . . . . . . . 10spa
dc.description.tableofcontents2.2. Dinámica cuántica no-Markoviana . . . . . . . . . . . . . . . . . . . 14spa
dc.description.tableofcontents2.2.1. Ecuaciones Jerárquicas de Movimiento (HEOM) . . . . . . . 15spa
dc.description.tableofcontents2.2.2. Derivación de la Densidad Espectral de Drude-Lorentz . . . 16spa
dc.description.tableofcontents2.2.3. Funciones de Correlación . . . . . . . . . . . . . . . . . . . . 17spa
dc.description.tableofcontents2.2.4. Modelo de Spin-Boson . . . . . . . . . . . . . . . . . . . . . 19spa
dc.description.tableofcontents3. Sistema Supramolecular 23spa
dc.description.tableofcontents3.1. Triarilamina con Puente de Carbonilo . . . . . . . . . . . . . . . . . 23spa
dc.description.tableofcontents3.1.1. Estructura Supramolecular . . . . . . . . . . . . . . . . . . . 26spa
dc.description.tableofcontents3.1.2. Propiedades Ópticas y Electrónicas del Sistema Supramolecular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28spa
dc.description.tableofcontents4. Correlaciones Cuánticas 31spa
dc.description.tableofcontents4.1. Entropía de Shannon . . . . . . . . . . . . . . . . . . . . . . . . . . 31spa
dc.description.tableofcontents4.2. Entropía Condicional . . . . . . . . . . . . . . . . . . . . . . . . . . 32spa
dc.description.tableofcontents4.3. Entropía de Von Neumann . . . . . . . . . . . . . . . . . . . . . . . 33spa
dc.description.tableofcontents4.4. Información Mutua . . . . . . . . . . . . . . . . . . . . . . . . . . . 33spa
dc.description.tableofcontents4.5. Discordia Cuántica . . . . . . . . . . . . . . . . . . . . . . . . . . . 35spa
dc.description.tableofcontents4.6. Concurrencia y Entrelazamiento de Formación . . . . . . . . . . . . 35spa
dc.description.tableofcontents5. Resultados 37spa
dc.description.tableofcontents5.1. Dinámica Cuántica del Sistema Supramolecular . . . . . . . . . . . 37spa
dc.description.tableofcontents5.1.1. Dinámica de Poblaciones y Coherencias . . . . . . . . . . . . 39spa
dc.description.tableofcontents5.1.2. Dinámica de Correlaciones Cuánticas . . . . . . . . . . . . . 43spa
dc.description.tableofcontents5.1.3. Dinámica Abierta Bajo Excitación del Láser Coherente . . . 45spa
dc.description.tableofcontents6. Conclusiones 51spa
dc.description.tableofcontents6.1. Participación en Eventos Científicos . . . . . . . . . . . . . . . . . . 52spa
dc.description.tableofcontentsA. Decaimiento Espontáneo de un Sistema de Dos Niveles 53spa
dc.description.tableofcontentsB. Derivación de la Expansión de las Funciones de Correlación 57spa
dc.description.tableofcontentsC. Derivación del Hamiltoniano Efectivo 60spa
dc.description.tableofcontentsReferencias Bibliográficas 63spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7643
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programFísicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsSupramolecular systemseng
dc.subject.keywordsOpen Quantum Systemseng
dc.subject.keywordsHierarchical Equations of Motioneng
dc.subject.keywordsQuantum Correlationseng
dc.subject.keywordsDipolar interactioneng
dc.subject.proposalSistemas supramolecularesspa
dc.subject.proposalSistemas cuánticos abiertos
dc.subject.proposalEcuaciones Jerárquicas de Movimiento
dc.subject.proposalCorrelaciones cuánticas
dc.subject.proposalInteracción dipolar
dc.titleDinámica cuántica de sistemas supramoleculares derivados de triarilamina en el régimen no-markovianospa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references[1] Wei-Min Zhang. Exact master equation and general non-markovian dynamics in open quantum systems. The European Physical Journal Special Topics, 227:1849–1867, 01 2019.spa
dcterms.references[2] Moritz Cygorek, Jonathan Keeling, Brendon W Lovett, and Erik M Gauger. Sublinear scaling in non-markovian open quantum systems simulations. arXiv preprint arXiv:2304.05291, 2023spa
dcterms.references[3] Uzma Akram, Z Ficek, and S Swain. Decoherence and coherent population transfer between two coupled systems. Physical Review A, 62(1):013413, 2000.spa
dcterms.references[4] Inés de Vega and Daniel Alonso. Dynamics of non-markovian open quantum systems. Rev. Mod. Phys., 89:015001, Jan 2017.spa
dcterms.references[5] Zbigniew Ficek and Stuart Swain. Quantum interference and coherence: theory and experiments. Springer Science & Business Media, 2005.spa
dcterms.references[6] Bernd Wittmann, Till Biskup, Klaus Kreger, J¨urgen K¨ohler, Hans-Werner Schmidt, and Richard Hildner. All-optical manipulation of singlet exciton transport in individual supramolecular nanostructures by triplet gating. Na noscale Horiz., 6:998–1005, 2021.spa
dcterms.references[7] The National Renewable Energy Laboratory. Best research-cell efficiency chart. NREL.gov, https://www.nrel.gov/pv/cell-efficiency.html, 2022.spa
dcterms.references[8] Duvalier Madrid-Usuga, Cristian E. Susa, and John H. Reina. Room temperature quantum coherence vs. electron transfer in a rhodanine derivative chromophore. Phys. Chem. Chem. Phys., 21:12640–12648, 2019.spa
dcterms.references[9] Duvalier Madrid-Usuga, Carlos A. Melo-Luna, Alberto Insuasty, Alejandro Ortiz, and John H. Reina. Optical and electronic properties of molecular systems derived from rhodanine. The Journal of Physical Chemistry A, 122(43):8469–8476, 2018.spa
dcterms.references[10] Andreas T. Haedler, Klaus Kreger, Abey Issac, Bernd Wittmann, Milan Ki vala, Natalie Hammer, Jürgen K¨ohler, Hans-Werner Schmidt, and Richard Hildner. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature, 523(7559):196–199, July 2015.spa
dcterms.references[11] Bernd Wittmann, Felix A. Wenzel, Stephan Wiesneth, Andreas T. Haedler, Markus Drechsler, Klaus Kreger, Jürgen Köhler, E. W. Meijer, Hans Werner Schmidt, and Richard Hildner. Enhancing long-range energy transport in supramolecular architectures by tailoring coherence properties. Journal of the American Chemical Society, 142(18):8323–8330, May 2020.spa
dcterms.references[12] John H. Reina, Cristian E. Susa, and Felipe F. Fanchini. Extracting information from qubit-environment correlations. Scientific Reports, 4(1), dec 2014.spa
dcterms.references[13] Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford University Press, USA, 2002.spa
dcterms.references[14] Chris Sutherland, Todd A. Brun, and Daniel A. Lidar. Non-markovianity of the post-markovian master equation. Phys. Rev. A, 98:042119, Oct 2018.spa
dcterms.references[15] Yoshitaka Tanimura. Stochastic liouville, langevin, fokker–planck, and master equation approaches to quantum dissipative systems. Journal of the Physical Society of Japan, 75(8):082001, 2006.spa
dcterms.references[16] Akihito Ishizaki and Graham R Fleming. On the adequacy of the redfield equation and related approaches to the study of quantum dynamics in elec tronic energy transfer. The Journal of chemical physics, 130(23), 2009.spa
dcterms.references[17] Hohjai Lee, Yuan-Chung Cheng, and Graham R. Fleming. Coherence dyna mics in photosynthesis: Protein protection of excitonic coherence. Science, 316(5830):1462–1465, 2007.spa
dcterms.references[18] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo. Measure for the degree of non-markovian behavior of quantum processes in open systems. Physical Review Letters, 103(21), nov 2009.spa
dcterms.references[19] Hong-Bin Chen, Neill Lambert, Yuan-Chung Cheng, Yueh-Nan Chen, and Franco Nori. Using non-markovian measures to evaluate quantum master equations for photosynthesis. Scientific Reports, 5:12753, 08 2015.spa
dcterms.references[20] Joachim Seibt and Oliver Kühn. Strong exciton–vibrational coupling in molecular assemblies. dynamics using the polaron transformation in heom space. The Journal of Physical Chemistry A, 125(32):7052–7065, 2021. PMID: 34353023.spa
dcterms.references[21] Neill Lambert, Tarun Raheja, Simon Cross, Paul Menczel, Shahnawaz Ahmed, Alexander Pitchford, Daniel Burgarth, and Franco Nori. Qutip-bofin: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Phys. Rev. Res., 5:013181, Mar 2023.spa
dcterms.references[22] Tatsushi Ikeda and Gregory D. Scholes. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. The Journal of Chemical Physics, 152(20):204101, may 2020.spa
dcterms.references[23] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communica tions, 184(4):1234–1240, 2013.spa
dcterms.references[24] Arend G. Dijkstra and Yoshitaka Tanimura. Non-markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett., 104:250401, Jun 2010.spa
dcterms.references[25] Bruno González-Soria, Francisco Delgado-Cepeda, and Alan Anaya. Predicting entanglement and coherent times in FMO complex using the heom method. Journal of Physics Conference Series, 1730:12033, 02 2021.spa
dcterms.references[26] Neill Lambert, Tarun Raheja, Simon Cross, Paul Menczel, Shahnawaz Ah med, Alexander Pitchford, Daniel Burgarth, and Franco Nori. QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Physical Review Research, 5(1), mar 2023.spa
dcterms.references[27] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications, 183(8):1760–1772, 2012.spa
dcterms.references[28] Volkhard. May. Charge and energy transfer dynamics in molecular systems. Wiley-VCH, Weinheim, 2nd, rev. and enl. ed. edition, 2004.spa
dcterms.references[29] Ulrich Weiss. Quantum dissipative systems. World Scientific, 2012.spa
dcterms.references[30] Joel Gilmore and Ross H. McKenzie. Quantum dynamics of electronic exci tations in biomolecular chromophores: Role of the protein environment and solvent. The Journal of Physical Chemistry A, 112(11):2162–2176, 2008.spa
dcterms.references[31] Joel Gilmore and Ross H McKenzie. Spin boson models for quantum decohe rence of electronic excitations of biomolecules and quantum dots in a solvent. Journal of Physics: Condensed Matter, 17(10):1735, 2005.spa
dcterms.references[32] Joel Gilmore and Ross H. McKenzie. Quantum dynamics of electronic excita tions in biomolecular chromophores: Role of the protein environment and solvent. The Journal of Physical Chemistry A, 112(11):2162–2176, 2008. PMID: 18293949.spa
dcterms.references[33] Chao-Ping Hsu, Zhi-Qiang You, and Hung-Cheng Chen. Characterization of the short-range couplings in excitation energy transfer. The Journal of Physical Chemistry C, 112(4):1204–1212, 2008.spa
dcterms.references[34] Joel Gilmore and Ross H. McKenzie. Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chemical Physics Letters, 421:266–271, 2004.spa
dcterms.references[35] Chao-Ping Hsu. Reorganization energies and spectral densities for electron transfer problems in charge transport materials. Phys. Chem. Chem. Phys., 22:21630–21641, 2020.spa
dcterms.references[36] Akihito Ishizaki and Yoshitaka Tanimura. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach. Journal of the Physical Society of Japan, 74:3131–3134, 12 2005.spa
dcterms.references[37] Qiang Shi, Liping Chen, Guangjun Nan, Rui-Xue Xu, and YiJing Yan. Efficient hierarchical liouville space propagator to quantum dissipative dynamics. The Journal of chemical physics, 130(8), 2009.spa
dcterms.references[38] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and Bassano Vacchini. Nonmarkovian dynamics in open quantum systems. Reviews of Modern Physics, 88(2), apr 2016.spa
dcterms.references[39] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1–85, Jan 1987.spa
dcterms.references[40] M.A. Schlosshauer. Decoherence: And the Quantum-To-Classical Transition. The Frontiers Collection. Springer, 2007.spa
dcterms.references[41] Florian Otterpohl, Peter Nalbach, and Michael Thorwart. Hidden phase of the spin-boson model. Phys. Rev. Lett., 129:120406, Sep 2022.spa
dcterms.references[42] Andreas T. Haedler, Stefan C. J. Meskers, R. Helen Zha, Milan Kivala, Hans Werner Schmidt, and E. W. Meijer. Pathway complexity in the enantioselecti ve self-assembly of functional carbonyl-bridged triarylamine trisamides. Jour nal of the American Chemical Society, 138(33):10539–10545, 2016. PMID: 27462007.spa
dcterms.references[43] Bernd Wittmann. Tailoring long-range energy transport in supramolecular architectures. PhD thesis, Bayreuth, 2021.spa
dcterms.references[44] Ratan W. Jadhav, Rahul V. Hangarge, Mahmood D. Aljabri, Kerba Shivaji More, Jing-Yu Chen, Lathe A. Jones, Richard A. Evans, Jing-Liang Li, Sheshanath V. Bhosale, and Akhil Gupta. The first connection of carbonyl bridged triarylamine and diketopyrrolopyrrole functionalities to generate a three-dimensional, non-fullerene electron acceptor. Mater. Chem. Front., 4:2176–2183, 2020.spa
dcterms.references[45] Maria A. Castellanos, Amro Dodin, and Adam P. Willard. On the design of molecular excitonic circuits for quantum computing: the universal quantum gates. Phys. Chem. Chem. Phys., 22:3048–3057, 2020.spa
dcterms.references[46] Zhen Fang, Vijila Chellappan, Richard D. Webster, Lin Ke, Tianfu Zhang, Bin Liu, and Yee-Hing Lai. Bridged-triarylamine starburst oligomers as hole transporting materials for electroluminescent devices. J. Mater. Chem., 22:15397–15404, 2012.spa
dcterms.references[47] Bruno Bienfait and Peter Ertl. Jsme: a free molecule editor in javascript. Journal of cheminformatics, 5:24, 05 2013spa
dcterms.references[48] V.A. Rana, Hemant Chaube, and D.H. Gadani. Dielectric permittivity, density, viscosity and refractive index of binary mixtures of anisole with metha nol and 1-propanol at different temperatures. Journal of Molecular Liquids, 164(3):191–196, 2011.spa
dcterms.references[49] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Infor mation. Cambridge Series on Information and the Natural Sciences. Cam bridge University Press, 2000.spa
dcterms.references[50] S. Banerjee. Open Quantum Systems: Dynamics of Nonclassical Evolution. Texts and Readings in Physical Sciences. Springer Singapore, 2018spa
dcterms.references[51] Cristian E. Susa and John H. Reina. Correlations in optically controlled quantum emitters. Phys. Rev. A, 85:022111, Feb 2012.spa
dcterms.references[52] Rong Wang, Yao Yao, Zhen-Qiang Yin, and Hoi-Kwong Lo. Quantum discord witness with uncharacterized devices, 2023.spa
dcterms.references[53] John Reina and Cristian Susa. Quantum dynamics of correlations in dissipa tive quan- tum registers. Universidad del Valle, 2011.spa
dcterms.references[54] Lishen. Govender. Determination of quantum entanglement concurrence using multilayer perceptron neural networks. 2017.spa
dcterms.references[55] William K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245–2248, Mar 1998.spa
dcterms.references[56] Yoshitaka Tanimura and Ryogo Kubo. Two-time correlation functions of a system coupled to a heat bath with a gaussian-markoffian interaction. Journal of The Physical Society of Japan - J PHYS SOC JPN, 58:1199–1206, 04 1989.spa
dcterms.references[57] A.O Caldeira and A.J Leggett. Quantum tunnelling in a dissipative system. Annals of Physics, 149(2):374–456, 1983.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
vertelnietoalonsodejesus.pdf
Tamaño:
2.02 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
349.3 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: