Publicación: Solución numérica de un modelo de transmisión de virus usando esquemas de diferencias finitas no estándar
dc.contributor.author | Saenz, Miguel A. | spa |
dc.coverage.spatial | Montería, Córdoba | spa |
dc.date.accessioned | 2019-11-19T14:49:01Z | spa |
dc.date.available | 2019-11-19T14:49:01Z | spa |
dc.date.issued | 2019-08-16 | spa |
dc.description.abstract | En este trabajo,diseñamos un esquema de diferencias finitas no estándar,paraobtenersolucionesnuméricasdeunmodelorepresentadoporunconjuntodeecuaciones diferenciales ordinarias, que describe la infección de una Población Diana de células susceptibles a una tasa proporcional a la concentración de viriones. Estas células recién infectadas experimentan por primera vez una fase de eclipse, antes de que se vuelvan infecciosas y produzcan virus a una velocidad constante. Las simulaciones numéricas muestran que el esquema desarrollado conserva las propiedades del modelo continuo, como positividad, límite, etc. El esquema propuesto presenta un comportamiento robusto con diferentes valores de parámetros. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Estadístico(a) | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN 1 | spa |
dc.description.tableofcontents | 2. MODELOS MATEMÁTICOS DE ENFERMEDADES INFECCIOSAS 5 | spa |
dc.description.tableofcontents | 3. PROPIEDADES DEL MODELO CONTINUO 11 | spa |
dc.description.tableofcontents | 3.1. Positividad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 | spa |
dc.description.tableofcontents | 3.2. Punto de equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 | spa |
dc.description.tableofcontents | 3.3. Estabilidad local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 | spa |
dc.description.tableofcontents | 4. CONSTRUCCIÓN DEL ESQUEMA DISCRETO 19 | spa |
dc.description.tableofcontents | 5. PROPIEDADES DEL NSFD 21 | spa |
dc.description.tableofcontents | 5.1. Punto de Equlibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 | spa |
dc.description.tableofcontents | 5.2. Positividad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 | spa |
dc.description.tableofcontents | 5.3. Estabilidad local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 | spa |
dc.description.tableofcontents | 5.4. Estabilidad Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 | spa |
dc.description.tableofcontents | 5.5. Simulaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES 41 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/2201 | spa |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.program | Estadística | spa |
dc.relation.references | Anderson, Roy M. y Robert M. May (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press | spa |
dc.relation.references | Anguelov,R.,J.M.-S.LubumayS.M.Mahudu(2003).«Qualitativelystablefinitedifference schemes for advection-reaction equations». En: Journal of Computational and Applied Mathematics 158, págs. 19-30 | spa |
dc.relation.references | Arenas, Abraham J., Benito M. Chen-Charpentier y Gilberto González-Parra (2008). «Dynamical analysis of the transmission of seasonal diseases using the differentialtransformationmethod».En:MathematicalandComputerModellingSubmitted. | spa |
dc.relation.references | Arenas, Abraham J., Gilberto González-Parra y Benito M. Chen-Charpentier (2008). «Positivityandboundlessnessofsolutionsforastochasticitymodelforthetransmissionofrespiratorysyncytialvirus(RSV)».En:Submitted,AppliedMathematics Letters. | spa |
dc.relation.references | Arenas,AbrahamJ.,JoséAntonioMoraˆnoyJuanCarlosCortés(2008).«Non-standard numerical method for a mathematical model of RSV epidemiological transmission». En: Computers & Mathematics with Applications 56, págs. 670-678 | spa |
dc.relation.references | Bailey, Norman T. (1975). The Mathematical Theory of Infectious Diseases. 2nd Edition. Hafner Press/ MacMillian Pub. Co. | spa |
dc.relation.references | E. Isaacson, H. B. Keller (1994). Analysis of numerical methods. Dover Publications, INC., New York | spa |
dc.relation.references | Farkas, Miklós (2001). Dynamical models in biology. 1.a ed. Academic Press. | spa |
dc.relation.references | Foppa, Ivo M. (2016). A Historical Introduction to Mathematical Modeling of Infectious Diseases. Seminal Papers in Epidemiology. First Edition. Academic Press. | spa |
dc.relation.references | Frauenthal, James C. (1980). Mathematical Modeling in Epidemiology. 1.a ed. SpringerVerlag Berlin Heidelberg. | spa |
dc.relation.references | Fred Brauer, Carlos Castillo-Chavez (auth.) (2012). Mathematical Models in Population Biology and Epidemiology. Second Edition. Texts in Applied Mathematics 40. Springer-Verlag New York. | spa |
dc.relation.references | Friedman, Avner (2018). Mathematical Biology. Modeling and Analysis. First Edition. Conference Board of the Mathematical Sciences / Regional Conference Series in Mathematics 127. American Mathematical Society | spa |
dc.relation.references | Gumel, A.B., R.E. Mickens y B.D. Corbett (2003). «A non standard finite difference scheme for a model of HIV transmission and control». En: Journal of Computational Methods in Sciences and Engineering 3(1), págs. 91-98. | spa |
dc.relation.references | Gumel,A.B.ycol.(2001).«NumericalmodellingoftheperturbationofHIV-1during combination anti-retroviral therapy». En: Computers in Biology and Medicine 31, págs. 287-774 | spa |
dc.relation.references | Hermann, Martin y Masoud Saravi (2016). Nonlinear Ordinary Differential Equations: Analytical Approximation and Numerical Methods. First Edition. Springer India. | spa |
dc.relation.references | Hirsch, Morris W., Stephen Smale y Robert L. Devaney (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos. Second edition, ELSEVIER Academic Press | spa |
dc.relation.references | Jódar, Lucas y col. (2008). «Nonstandard numerical methods for a mathematical model for influenza disease». En: Mathematics and Computers in Simulation 79, págs. 622-633 | spa |
dc.relation.references | — (2013).«Nonstandardnumericalmethodsforamathematicalmodelforinfluenza disease». En: Journal of Applied Mathematics 79, págs. 622-633. | spa |
dc.relation.references | Kermack, W. O. y A. G. McKendrick (1927). «A contribution to the mathematical theoryofepidemics».En:ProceedingsoftheRoyalSocietyofLondonA:Mathematical, Physical and Engineering Sciences 115.772, págs. 700-721. | spa |
dc.relation.references | Lady Tatiana Pinilla Benjamin P. Holder, Yacine Abed Guy Boivin y Catherine A. A. Beauchemin (2012). «The H275Y Neuraminidase Mutation of the Pandemic A/H1N1 Influenza Virus Lengthens the Eclipse Phase and Reduces Viral OutputofInfectedCells,PotentiallyCompromisingFitnessinFerrets».En:Journalof Virology. | spa |
dc.relation.references | Lambert, J. D. (1973). ComputationalMethodsinOrdinaryDifferentialEquations. Wiley, New York. | spa |
dc.relation.references | Li, Michael Y. (2018). An Introduction to Mathematical Modeling of Infectious Diseases. First Edition. Mathematics of Planet Earth 2. Springer International Publishing | spa |
dc.relation.references | Martcheva, Maia (2015). An Introduction to Mathematical Epidemiology. First Edition. Texts in Applied Mathematics 61. Springer US | spa |
dc.relation.references | Mickens, R. E. (1994). Nonstandard Finite Difference Models of Differential Equations. World Scientific. | spa |
dc.relation.references | — (1999).«Anintroductiontononstandardfinitedifferenceschemes».En:Journalof Computational Acoustics 7.1, págs. 39-58. | spa |
dc.relation.references | — (2000). Application of Nonstandard Finite Difference Schemes. World Scientific Publishing Co. Pte. Ltd. | spa |
dc.relation.references | — (2002). «Nonstandard finite difference schemes for differential equations». En: J. Difference Eqns. Appl. 8.9, págs. 823-847. | spa |
dc.relation.references | — (2005).«Dynamicconsistency:afundamentalprincipleforconstructingnonstandardfinitedifferenceschemesfordifferentialequations».En:JournalofDifference Equations and Applications 11.7, págs. 645-653. | spa |
dc.relation.references | — (2007).«Numericalintegrationofpopulationmodelssatisfyingconservationlaws: NSFD methods». En: Biological Dynamics 1.4, págs. 1751-1766 | spa |
dc.relation.references | Patidar, K. C. (2016). «Nonstandard finite difference methods: recent trends and further developments». En: Journal of Difference Equations and Applications 22.6, págs. 817-849 | spa |
dc.relation.references | Solis, Francisco J. y Benito Chen-Charpentier (2004). «Nonstandard Discrete Approximations Preserving Stability Properties of Continuous Mathematical Models». En: Mathematical and Computer Modelling 40, págs. 481-490. | spa |
dc.rights | Copyright Universidad de Córdoba, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.keywords | Model | spa |
dc.subject.keywords | Difference | spa |
dc.subject.keywords | Transmission | spa |
dc.subject.proposal | Modelo | spa |
dc.subject.proposal | Trasmisión | spa |
dc.subject.proposal | Diferencias | spa |
dc.title | Solución numérica de un modelo de transmisión de virus usando esquemas de diferencias finitas no estándar | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_16ec | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: