Publicación:
Solución numérica de un modelo de transmisión de virus usando esquemas de diferencias finitas no estándar

dc.contributor.authorSaenz, Miguel A.spa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2019-11-19T14:49:01Zspa
dc.date.available2019-11-19T14:49:01Zspa
dc.date.issued2019-08-16spa
dc.description.abstractEn este trabajo,diseñamos un esquema de diferencias finitas no estándar,paraobtenersolucionesnuméricasdeunmodelorepresentadoporunconjuntodeecuaciones diferenciales ordinarias, que describe la infección de una Población Diana de células susceptibles a una tasa proporcional a la concentración de viriones. Estas células recién infectadas experimentan por primera vez una fase de eclipse, antes de que se vuelvan infecciosas y produzcan virus a una velocidad constante. Las simulaciones numéricas muestran que el esquema desarrollado conserva las propiedades del modelo continuo, como positividad, límite, etc. El esquema propuesto presenta un comportamiento robusto con diferentes valores de parámetros.spa
dc.description.degreelevelPregradospa
dc.description.degreenameEstadístico(a)spa
dc.description.tableofcontents1. INTRODUCCIÓN 1spa
dc.description.tableofcontents2. MODELOS MATEMÁTICOS DE ENFERMEDADES INFECCIOSAS 5spa
dc.description.tableofcontents3. PROPIEDADES DEL MODELO CONTINUO 11spa
dc.description.tableofcontents3.1. Positividad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11spa
dc.description.tableofcontents3.2. Punto de equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14spa
dc.description.tableofcontents3.3. Estabilidad local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16spa
dc.description.tableofcontents4. CONSTRUCCIÓN DEL ESQUEMA DISCRETO 19spa
dc.description.tableofcontents5. PROPIEDADES DEL NSFD 21spa
dc.description.tableofcontents5.1. Punto de Equlibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21spa
dc.description.tableofcontents5.2. Positividad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23spa
dc.description.tableofcontents5.3. Estabilidad local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24spa
dc.description.tableofcontents5.4. Estabilidad Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33spa
dc.description.tableofcontents5.5. Simulaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37spa
dc.description.tableofcontents6. CONCLUSIONES 41spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/2201spa
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programEstadísticaspa
dc.relation.referencesAnderson, Roy M. y Robert M. May (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Pressspa
dc.relation.referencesAnguelov,R.,J.M.-S.LubumayS.M.Mahudu(2003).«Qualitativelystablefinitedifference schemes for advection-reaction equations». En: Journal of Computational and Applied Mathematics 158, págs. 19-30spa
dc.relation.referencesArenas, Abraham J., Benito M. Chen-Charpentier y Gilberto González-Parra (2008). «Dynamical analysis of the transmission of seasonal diseases using the differentialtransformationmethod».En:MathematicalandComputerModellingSubmitted.spa
dc.relation.referencesArenas, Abraham J., Gilberto González-Parra y Benito M. Chen-Charpentier (2008). «Positivityandboundlessnessofsolutionsforastochasticitymodelforthetransmissionofrespiratorysyncytialvirus(RSV)».En:Submitted,AppliedMathematics Letters.spa
dc.relation.referencesArenas,AbrahamJ.,JoséAntonioMoraˆnoyJuanCarlosCortés(2008).«Non-standard numerical method for a mathematical model of RSV epidemiological transmission». En: Computers & Mathematics with Applications 56, págs. 670-678spa
dc.relation.referencesBailey, Norman T. (1975). The Mathematical Theory of Infectious Diseases. 2nd Edition. Hafner Press/ MacMillian Pub. Co.spa
dc.relation.referencesE. Isaacson, H. B. Keller (1994). Analysis of numerical methods. Dover Publications, INC., New Yorkspa
dc.relation.referencesFarkas, Miklós (2001). Dynamical models in biology. 1.a ed. Academic Press.spa
dc.relation.referencesFoppa, Ivo M. (2016). A Historical Introduction to Mathematical Modeling of Infectious Diseases. Seminal Papers in Epidemiology. First Edition. Academic Press.spa
dc.relation.referencesFrauenthal, James C. (1980). Mathematical Modeling in Epidemiology. 1.a ed. SpringerVerlag Berlin Heidelberg.spa
dc.relation.referencesFred Brauer, Carlos Castillo-Chavez (auth.) (2012). Mathematical Models in Population Biology and Epidemiology. Second Edition. Texts in Applied Mathematics 40. Springer-Verlag New York.spa
dc.relation.referencesFriedman, Avner (2018). Mathematical Biology. Modeling and Analysis. First Edition. Conference Board of the Mathematical Sciences / Regional Conference Series in Mathematics 127. American Mathematical Societyspa
dc.relation.referencesGumel, A.B., R.E. Mickens y B.D. Corbett (2003). «A non standard finite difference scheme for a model of HIV transmission and control». En: Journal of Computational Methods in Sciences and Engineering 3(1), págs. 91-98.spa
dc.relation.referencesGumel,A.B.ycol.(2001).«NumericalmodellingoftheperturbationofHIV-1during combination anti-retroviral therapy». En: Computers in Biology and Medicine 31, págs. 287-774spa
dc.relation.referencesHermann, Martin y Masoud Saravi (2016). Nonlinear Ordinary Differential Equations: Analytical Approximation and Numerical Methods. First Edition. Springer India.spa
dc.relation.referencesHirsch, Morris W., Stephen Smale y Robert L. Devaney (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos. Second edition, ELSEVIER Academic Pressspa
dc.relation.referencesJódar, Lucas y col. (2008). «Nonstandard numerical methods for a mathematical model for influenza disease». En: Mathematics and Computers in Simulation 79, págs. 622-633spa
dc.relation.references— (2013).«Nonstandardnumericalmethodsforamathematicalmodelforinfluenza disease». En: Journal of Applied Mathematics 79, págs. 622-633.spa
dc.relation.referencesKermack, W. O. y A. G. McKendrick (1927). «A contribution to the mathematical theoryofepidemics».En:ProceedingsoftheRoyalSocietyofLondonA:Mathematical, Physical and Engineering Sciences 115.772, págs. 700-721.spa
dc.relation.referencesLady Tatiana Pinilla Benjamin P. Holder, Yacine Abed Guy Boivin y Catherine A. A. Beauchemin (2012). «The H275Y Neuraminidase Mutation of the Pandemic A/H1N1 Influenza Virus Lengthens the Eclipse Phase and Reduces Viral OutputofInfectedCells,PotentiallyCompromisingFitnessinFerrets».En:Journalof Virology.spa
dc.relation.referencesLambert, J. D. (1973). ComputationalMethodsinOrdinaryDifferentialEquations. Wiley, New York.spa
dc.relation.referencesLi, Michael Y. (2018). An Introduction to Mathematical Modeling of Infectious Diseases. First Edition. Mathematics of Planet Earth 2. Springer International Publishingspa
dc.relation.referencesMartcheva, Maia (2015). An Introduction to Mathematical Epidemiology. First Edition. Texts in Applied Mathematics 61. Springer USspa
dc.relation.referencesMickens, R. E. (1994). Nonstandard Finite Difference Models of Differential Equations. World Scientific.spa
dc.relation.references— (1999).«Anintroductiontononstandardfinitedifferenceschemes».En:Journalof Computational Acoustics 7.1, págs. 39-58.spa
dc.relation.references— (2000). Application of Nonstandard Finite Difference Schemes. World Scientific Publishing Co. Pte. Ltd.spa
dc.relation.references— (2002). «Nonstandard finite difference schemes for differential equations». En: J. Difference Eqns. Appl. 8.9, págs. 823-847.spa
dc.relation.references— (2005).«Dynamicconsistency:afundamentalprincipleforconstructingnonstandardfinitedifferenceschemesfordifferentialequations».En:JournalofDifference Equations and Applications 11.7, págs. 645-653.spa
dc.relation.references— (2007).«Numericalintegrationofpopulationmodelssatisfyingconservationlaws: NSFD methods». En: Biological Dynamics 1.4, págs. 1751-1766spa
dc.relation.referencesPatidar, K. C. (2016). «Nonstandard finite difference methods: recent trends and further developments». En: Journal of Difference Equations and Applications 22.6, págs. 817-849spa
dc.relation.referencesSolis, Francisco J. y Benito Chen-Charpentier (2004). «Nonstandard Discrete Approximations Preserving Stability Properties of Continuous Mathematical Models». En: Mathematical and Computer Modelling 40, págs. 481-490.spa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.keywordsModelspa
dc.subject.keywordsDifferencespa
dc.subject.keywordsTransmissionspa
dc.subject.proposalModelospa
dc.subject.proposalTrasmisiónspa
dc.subject.proposalDiferenciasspa
dc.titleSolución numérica de un modelo de transmisión de virus usando esquemas de diferencias finitas no estándarspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TESIS_SAENZ.pdf
Tamaño:
749.92 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicaciónSaenz.pdf
Tamaño:
351.91 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: