Publicación: Evaluación de la producción de Biochar por medio de pirólisis lenta de residuos de la agroindustria del maíz en un reactor alotérmico
dc.audience | ||
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | |
dc.contributor.advisor | Gómez Vásquez, Rafael David | |
dc.contributor.author | Rhenals Hoyos, Jorge Emilio | |
dc.contributor.jury | Rhenals, Jesus | |
dc.contributor.jury | Doria Oviedo, Miguel Emigdio | |
dc.date.accessioned | 2024-04-04T13:00:28Z | |
dc.date.available | 2024-04-04T13:00:28Z | |
dc.date.issued | 2024-02-24 | |
dc.description.abstract | El estudio se enfocó en evaluar la producción de biochar a partir de residuos de la agroindustria del maíz mediante pirólisis lenta en un reactor alotérmico. En primer lugar, se caracterizó la biomasa mediante análisis termoquímicos y físicos, revelando que tasas de calentamiento más altas resultaron en una liberación más rápida de volátiles durante la pirólisis de la tusa de maíz. Además, se encontró consistencia en los niveles de carbono, hidrógeno y nitrógeno, aunque las diferencias en la humedad podrían atribuirse a diversos factores. Se llevaron a cabo experimentos de pirólisis lenta de la biomasa, observando variaciones en la cantidad de biochar producido según diferentes configuraciones experimentales de temperatura y tasa de calentamiento. Se concluyó que se logró la producción de biochar bajo estas condiciones, destacando la influencia de los parámetros de proceso en el resultado final. Por último, se enfocó en caracterizar el biochar obtenido, encontrando que tanto la temperatura de pirólisis como la tasa de calentamiento son determinantes en su rendimiento y propiedades texturales. Al aumentar la temperatura se mejoró la calidad del biochar al incrementar su área superficial y rendimiento. Asimismo, una tasa de calentamiento más rápida aumentó la porosidad y el área superficial, pero disminuyó el rendimiento. Se sugiere que futuras investigaciones profundicen en la caracterización del biochar, centrándose en su capacidad para retener nutrientes y contaminantes, su estabilidad estructural y su capacidad de absorción de agua, para así explorar aún más sus aplicaciones potenciales. | spa |
dc.description.abstract | The study focused on evaluating biochar production from maize agro-industrial residues through slow pyrolysis in an allothermal reactor. Biomass was first characterized using thermochemical and physical analyses, revealing that higher heating rates resulted in faster release of volatiles during maize cob pyrolysis. Consistency was found in carbon, hydrogen, and nitrogen levels, although differences in moisture could be attributed to various factors. Slow pyrolysis experiments were conducted on the biomass, observing variations in biochar yield according to different experimental configurations of temperature and heating rate. It was concluded that biochar production was achieved under these conditions, highlighting the influence of process parameters on the final outcome. Lastly, focus was placed on characterizing the obtained biochar, finding that both pyrolysis temperature and heating rate are determining factors in its yield and textural properties. Increasing temperature improved biochar quality by enhancing its surface area and yield. Likewise, a faster heating rate increased porosity and surface area but decreased yield. Future research is suggested to delve deeper into biochar characterization, focusing on its capacity to retain nutrients and contaminants, structural stability, and water absorption capacity, in order to further explore its potential applications. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería Mecánica | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN .................................................................................................................. 1 | |
dc.description.tableofcontents | ABSTRACT.................................................................................................................. 2 | |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación ..................................... 3 | |
dc.description.tableofcontents | 1.1. Introducción. .................................................................................................. 3 | |
dc.description.tableofcontents | 1.2. Objetivos. ........................................................................................................ 5 | |
dc.description.tableofcontents | 1.2.1. Objetivo general. ........................................................................................5 | |
dc.description.tableofcontents | 1.2.2. Objetivos específicos. ...............................................................................5 | |
dc.description.tableofcontents | 1.3. Estructura de la tesis. ................................................................................. 6 | |
dc.description.tableofcontents | 1.4. Revisión de literatura. ................................................................................ 7 | |
dc.description.tableofcontents | 1.4.1. Biomasa .....................................................................................................7 | |
dc.description.tableofcontents | 1.4.1.1. Composición química de la biomasa ...................................................7 | |
dc.description.tableofcontents | 1.4.1.2. Caracterización de la biomasa. ................................................................8 | |
dc.description.tableofcontents | 1.4.1.3. Conversión de la biomasa ......................................................................9 | |
dc.description.tableofcontents | 1.4.2. Pirólisis .......................................................................................................10 | |
dc.description.tableofcontents | 1.4.3. Biochar ..................................................................................................... 10 | |
dc.description.tableofcontents | 1.4.3.1. Caracterización físico química del biochar ....................................... 11 | |
dc.description.tableofcontents | 1.4.4. Análisis termogravimétrico (TGA) .......................................................... 11 | |
dc.description.tableofcontents | 1.4.5. Método BET ..................................................................................................12 | |
dc.description.tableofcontents | 1.5. Estado del arte ............................................................................................. 12 | |
dc.description.tableofcontents | 2. Capítulo II. Caracterización de la biomasa...................................................18 | |
dc.description.tableofcontents | 2.1. Introducción. ................................................................................................. 18 | |
dc.description.tableofcontents | 2.2. Materiales y Métodos. ...............................................................................19 | |
dc.description.tableofcontents | 2.2.1. Análisis termoquímico. ...........................................................................19 | |
dc.description.tableofcontents | 2.2.2. Análisis Elemental. ..................................................................................... 19 | |
dc.description.tableofcontents | 2.3. Resultados. .................................................................................................... 20 | |
dc.description.tableofcontents | 2.3.1. Análisis termoquímico ................................................................................ 20 | |
dc.description.tableofcontents | 2.3.2. Análisis Elemental ................................................................................... 21 | |
dc.description.tableofcontents | 2.4. Conclusiones ....................................................................................................22 | |
dc.description.tableofcontents | 3. Capítulo III. Pirólisis de la biomasa. ................................................................. 23 | |
dc.description.tableofcontents | 3.1. Introducción. ..................................................................................................23 | |
dc.description.tableofcontents | 3.2. Materiales y Métodos. .....................................................................................25 | |
dc.description.tableofcontents | 3.3. Resultados ..................................................................................................... 29 | |
dc.description.tableofcontents | 3.4. Conclusiones ....................................................................................................31 | |
dc.description.tableofcontents | 4. Capítulo IV. Caracterización del biochar. .....................................................32 | |
dc.description.tableofcontents | 4.1. Introducción ............................................................................................... 32 | |
dc.description.tableofcontents | 4.2. Materiales y Métodos. ............................................................................... 33 | |
dc.description.tableofcontents | 4.2.1. Determinación del Rendimiento del Biochar ....................................... 33 | |
dc.description.tableofcontents | 4.2.2. Medición de la Porosidad del Biochar ................................................... 34 | |
dc.description.tableofcontents | 4.2.3. Análisis del rendimiento y la porosidad del biochar ........................... 35 | |
dc.description.tableofcontents | 4.3. Resultados .......................................................................................................35 | |
dc.description.tableofcontents | 4.3.1. Determinación del Rendimiento del Biochar ........................................35 | |
dc.description.tableofcontents | 4.3.2. Medición de la Porosidad del Biochar ................................................... 37 | |
dc.description.tableofcontents | 4.3.3. Análisis del rendimiento y la porosidad del biochar ............................. 39 | |
dc.description.tableofcontents | 4.3.3.1. Análisis del rendimiento ....................................................................... 41 | |
dc.description.tableofcontents | 4.3.3.2. Análisis de la porosidad del biochar .................................................. 46 | |
dc.description.tableofcontents | 4.4. Conclusiones ................................................................................................ 52 | |
dc.description.tableofcontents | 5. Conclusiones Generales y futuros trabajos. .................................................54 | |
dc.description.tableofcontents | 5.1. Futuros trabajos............................................................................................ 54 | |
dc.description.tableofcontents | 5.1.1. Optimización de Parámetros de Pirólisis................................................54 | |
dc.description.tableofcontents | 5.1.2. Estudio de Características Específicas del Biochar.............................. 55 | |
dc.description.tableofcontents | 5.1.3. Investigación sobre Alternativas de Materias Primas......................... 55 | |
dc.description.tableofcontents | 6. Bibliografía. ......................................................................................................56 | |
dc.format.extent | Páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8263 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ingeniería Mecánica | |
dc.relation.references | Anca-Couce, A., Tsekos, C., Retschitzegger, S., Zimbardi, F., Funke, A., Banks, S., Kraia, T., Marques, P., Scharler, R., de Jong, W., Kienzl, N., 2020. Biomass pyrolysis TGA assessment with an international round robin. Fuel 276, 118002. https://doi.org/10.1016/J.FUEL.2020.118002 | |
dc.relation.references | Arenas Castiblanco, E., Montoya, J.H., Rincón, G.V., Zapata-Benabithe, Z., Gómez-Vásquez, R., Camargo-Trillos, D.A., 2022. A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon 8. https://doi.org/10.1016/j.heliyon.2022.e10195 | |
dc.relation.references | Awasthi, M.K., Sar, T., Gowd, S.C., Rajendran, K., Kumar, V., Sarsaiya, S., Li, Y., Sindhu, R., Binod, P., Zhang, Z., Pandey, A., Taherzadeh, M.J., 2023. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. Fuel 342, 127790. https://doi.org/10.1016/J.FUEL.2023.127790 | |
dc.relation.references | Bajpai, P., 2024. Composition and characterization of lignocellulosic biomass. Microorganisms and Enzymes for Lignocellulosic Biorefineries 33–46. https://doi.org/10.1016/B978-0-443-21492-9.00012-4 | |
dc.relation.references | Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046 | |
dc.relation.references | Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., Zheng, B., 2016. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development 2016 36:2 36, 1–18. https://doi.org/10.1007/S13593-016-0372-Z | |
dc.relation.references | Doumer, M.E., Arízaga, G.G.C., Da Silva, D.A., Yamamoto, C.I., Novotny, E.H., Santos, J.M., Dos Santos, L.O., Wisniewski, A., De Andrade, J.B., Mangrich, A.S., 2015. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J Anal Appl Pyrolysis 113, 434–443. https://doi.org/10.1016/J.JAAP.2015.03.006 | |
dc.relation.references | Fahmy, T.Y.A., Fahmy, Y., Mobarak, F., El-Sakhawy, M., Abou-Zeid, R.E., 2020. Biomass pyrolysis: past, present, and future. Environ Dev Sustain 22, 17–32. https://doi.org/10.1007/s10668-018-0200-5 | |
dc.relation.references | Gibson, N., Kuchenbecker, P., Rasmussen, K., Hodoroaba, V.D., Rauscher, H., 2020. Volume-specific surface area by gas adsorption analysis with the BET method. Characterization of Nanoparticles: Measurement Processes for Nanoparticles 265–294. https://doi.org/10.1016/B978-0-12-814182-3.00017-1 | |
dc.relation.references | Gómez-Vásquez, R.D., Castiblanco, E.A., Zapata Benabithe, Z., José, A., Silvera, B., Camargo-Trillos, D.A., 2021. CaCO 3 and air/steam effect on the gasification and biohydrogen performance of corn cob as received: Application in the Colombian Caribbean region. Biomass Bioenergy 153, 106207. https://doi.org/10.1016/j.biombioe.2021.106207 | |
dc.relation.references | Guo, S., Gao, Y., Wang, Y., Liu, Z., Wei, X., Peng, P., Xiao, B., Yang, Y., 2019. Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal. Environmental Science and Pollution Research 26, 30365–30373. https://doi.org/10.1007/S11356-019-06194-8/METRICS | |
dc.relation.references | Guo, S., Wang, Y., Wei, X., Gao, Y., Xiao, B., Yang, Y., 2020. Structural analysis and heavy metal adsorption of N-doped biochar from hydrothermal carbonization of Camellia sinensis waste. Environmental Science and Pollution Research 27, 18866–18874. https://doi.org/10.1007/S11356-020-08455-3/METRICS | |
dc.relation.references | Gurdo, N., 2016. Mejoramiento de la levadura Saccharomyces cerevisiae Y138 por ingeniería evolutiva para la producción de bioetanol de segunda generación. Universidad Nacional de General San Martín | |
dc.relation.references | Igalavithana, A.D., Mandal, S., Niazi, N.K., Vithanage, M., Parikh, S.J., Mukome, F.N.D., Rizwan, M., Oleszczuk, P., Al-Wabel, M., Bolan, N., Tsang, D.C.W., Kim, K.H., Ok, Y.S., 2017. Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47, 2275–2330. https://doi.org/10.1080/10643389.2017.1421844 | |
dc.relation.references | Jayakumar, M., Hamda, A.S., Abo, L.D., Daba, B.J., Venkatesa Prabhu, S., Rangaraju, M., Jabesa, A., Periyasamy, S., Suresh, S., Baskar, G., 2023. Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications. Chemosphere 345, 140515. https://doi.org/10.1016/J.CHEMOSPHERE.2023.140515 | |
dc.relation.references | Kamali, M., Jahaninafard, D., Mostafaie, A., Davarazar, M., Gomes, A.P.D., Tarelho, L.A.C., Dewil, R., Aminabhavi, T.M., 2020. Scientometric analysis and scientific trends on biochar application as soil amendment. Chemical Engineering Journal 395, 125128. https://doi.org/10.1016/J.CEJ.2020.125128 | |
dc.relation.references | La Rosa-Toro G, A., Cardenas Riojas, A.A., Calderon Zavaleta, S.L., Quiroz Aguinaga, U., Muedas Taipe, G., La Rosa-Toro G, A., Cardenas Riojas, A.A., Calderon Zavaleta, S.L., Quiroz Aguinaga, U., Muedas Taipe, G., 2022. Estudio electroquímico de la remoción de los Iones Cd(II) en soluciones acuosas mediante carbón activado obtenido de la cáscara de naranja. Revista de la Sociedad Química del Perú 88, 155–164. https://doi.org/10.37761/RSQP.V88I2.387 | |
dc.relation.references | Lee, J., Kim, S., You, S., Park, Y.K., 2023. Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renewable and Sustainable Energy Reviews 178, 113240. https://doi.org/10.1016/J.RSER.2023.113240 | |
dc.relation.references | Lee, X.J., Lee, L.Y., Hiew, B.Y.Z., Gan, S., Thangalazhy-Gopakumar, S., Ng, H.K., 2020. Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies. Mater Sci Energy Technol 3, 601–610. https://doi.org/10.1016/J.MSET.2020.06.006 | |
dc.relation.references | Leng, L., Xiong, Q., Yang, L., Li, Hui, Zhou, Y., Zhang, W., Jiang, S., Li, Hailong, Huang, H., 2021a. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 763, 144204. https://doi.org/10.1016/J.SCITOTENV.2020.144204 | |
dc.relation.references | Leng, L., Xiong, Q., Yang, L., Li, Hui, Zhou, Y., Zhang, W., Jiang, S., Li, Hailong, Huang, H., 2021b. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 763, 144204. https://doi.org/10.1016/J.SCITOTENV.2020.144204 | |
dc.relation.references | Li, B., Song, M., Xie, X., Wei, J., Xu, D., Ding, K., Huang, Y., Zhang, Shu, Hu, X., Zhang, Shihong, Liu, D., 2023. Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio. Energy 270, 126987. https://doi.org/10.1016/J.ENERGY.2023.126987 | |
dc.relation.references | Liu, Q., Chmely, S.C., Abdoulmoumine, N., 2017. Biomass Treatment Strategies for Thermochemical Conversion. Energy and Fuels 31, 3525–3536. https://doi.org/10.1021/acs.energyfuels.7b00258 | |
dc.relation.references | Lu, S., Zong, Y., 2018. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environmental Science and Pollution Research 25, 30401–30409. https://doi.org/10.1007/S11356-018-3018-7/METRICS | |
dc.relation.references | Mel’gunov, M.S., Ayupov, A.B., 2017. Direct method for evaluation of BET adsorbed monolayer capacity. Microporous and Mesoporous Materials 243, 147–153. https://doi.org/10.1016/J.MICROMESO.2017.02.019 | |
dc.relation.references | Mendoza J., M., German, S.J.S., García, D.E.L., Guarín, A.M., Julio, J.D.R., 2021. Energy Characterization of Corn Agroindustry Waste in a Multi-Zone Gasification Prototype. Revista Virtual de Quimica 14, 61–67. https://doi.org/10.21577/1984-6835.20210099 | |
dc.relation.references | Mokrzycki, J., Magdziarz, A., Rutkowski, P., 2022. The influence of the Miscanthus giganteus pyrolysis temperature on the application of obtained biochars as solid biofuels and precursors of high surface area activated carbons. Biomass Bioenergy 164, 106550. https://doi.org/10.1016/J.BIOMBIOE.2022.106550 | |
dc.relation.references | Muhammad, N., Ge, L., Chan, W.P., Khan, A., Nafees, M., Lisak, G., 2022a. Impacts of pyrolysis temperatures on physicochemical and structural properties of green waste derived biochars for adsorption of potentially toxic elements. J Environ Manage 317, 115385. https://doi.org/10.1016/J.JENVMAN.2022.115385 | |
dc.relation.references | Muhammad, N., Ge, L., Chan, W.P., Khan, A., Nafees, M., Lisak, G., 2022b. Impacts of pyrolysis temperatures on physicochemical and structural properties of green waste derived biochars for adsorption of potentially toxic elements. J Environ Manage 317, 115385. https://doi.org/10.1016/J.JENVMAN.2022.115385 | |
dc.relation.references | Muzyka, R., Misztal, E., Hrabak, J., Banks, S.W., Sajdak, M., 2023a. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 263, 126128. https://doi.org/10.1016/J.ENERGY.2022.126128 | |
dc.relation.references | Muzyka, R., Misztal, E., Hrabak, J., Banks, S.W., Sajdak, M., 2023b. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 263, 126128. https://doi.org/10.1016/J.ENERGY.2022.126128 | |
dc.relation.references | Muzyka, R., Misztal, E., Hrabak, J., Banks, S.W., Sajdak, M., 2023c. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 263, 126128. https://doi.org/10.1016/J.ENERGY.2022.126128 | |
dc.relation.references | Nguyen, T.-B., Sherpa, K., Bui, X.-T., Nguyen, V.-T., Vo, T.-D.-H., Ho, H.-T.-T., Chen, C.-W., Dong, C.-D., 2023. Biochar for soil remediation: A comprehensive review of current research on pollutant removal. Environmental Pollution 337, 122571. https://doi.org/10.1016/J.ENVPOL.2023.122571 | |
dc.relation.references | Nunes, L.J.R., De Oliveira Matias, J.C., Da Silva Catalão, J.P., 2018. Introduction. Torrefaction of Biomass for Energy Applications 1–43. https://doi.org/10.1016/B978-0-12-809462-4.00001-8 | |
dc.relation.references | Osman, A.I., Mehta, N., Elgarahy, A.M., Al-Hinai, A., Al-Muhtaseb, A.H., Rooney, D.W., 2021. Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett 19, 4075–4118. https://doi.org/10.1007/s10311-021-01273-0 | |
dc.relation.references | Pariyar, P., Kumari, K., Jain, M.K., Jadhao, P.S., 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of The Total Environment 713, 136433. https://doi.org/10.1016/J.SCITOTENV.2019.136433 | |
dc.relation.references | Peng, X., Hu, F., Zhang, T., Qiu, F., Dai, H., 2018. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study. Bioresour Technol 249, 924–934. https://doi.org/10.1016/J.BIORTECH.2017.10.095 | |
dc.relation.references | Phuakpunk, K., Chalermsinsuwan, B., Assabumrungrat, S., 2020. ScienceDirect Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports 6, 168–178. https://doi.org/10.1016/j.egyr.2020.08.041 | |
dc.relation.references | Piazza, V., da Silva Junior, R.B., Frassoldati, A., Lietti, L., Chiaberge, S., Gambaro, C., Siviero, A., Faravelli, T., Beretta, A., 2024. Detailed speciation of biomass pyrolysis products with a novel TGA-based methodology: the case-study of cellulose. J Anal Appl Pyrolysis 106413. https://doi.org/10.1016/J.JAAP.2024.106413 | |
dc.relation.references | Premchand, P., Demichelis, F., Chiaramonti, D., Bensaid, S., Fino, D., 2023. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste. Waste Management 172, 308–319. https://doi.org/10.1016/J.WASMAN.2023.10.035 | |
dc.relation.references | Purkait, M.K., Haldar, D., 2021. Compositional aspects of lignocellulosic biomass. Lignocellulosic Biomass to Value-Added Products 17–30. https://doi.org/10.1016/B978-0-12-823534-8.00001-6 | |
dc.relation.references | Qu, B., Liu, C., Wang, Y., Li, A., Qu, Y., Zhang, Y.S., Ji, G., 2023. Fast pyrolysis kinetics of waste tires and its products studied by a wireless-powered thermo-balance. J Hazard Mater 460, 132494. https://doi.org/10.1016/J.JHAZMAT.2023.132494 | |
dc.relation.references | Quesada, O., Cantos, M., Duharte, W., Pozo, D., Bigñot, L., 2019. Effect of the rate of heating and the biomass in the kinetic of its pyrolysis. Revista Cubana de Química 32, 478–497 | |
dc.relation.references | Rasool, T., Kumar, S., 2020. Kinetic and Thermodynamic Evaluation of Pyrolysis of Plant Biomass using TGA. Mater Today Proc 21, 2087–2095. https://doi.org/10.1016/J.MATPR.2020.01.328 | |
dc.relation.references | Rego, F., Xiang, H., Yang, Y., Ordovás, J.L., Chong, K., Wang, J., Bridgwater, A., 2022. Investigation of the role of feedstock properties and process conditions on the slow pyrolysis of biomass in a continuous auger reactor. J Anal Appl Pyrolysis 161, 105378. https://doi.org/10.1016/J.JAAP.2021.105378 | |
dc.relation.references | Reyhanitabar, A., Frahadi, E., Ramezanzadeh, H., Oustan, Sh., 2020. Effect of Pyrolysis Temperature and Feedstock Sources on Physicochemical Characteristics of Biochar. Journal of Agricultural Science and Technology 22, 547–561 | |
dc.relation.references | Romero Millán, L.M., Cruz Domínguez, M.A., Sierra Vargas, F.E., 2016. Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Tecnura 20, 89–99. https://doi.org/10.14483/UDISTRITAL.JOUR.TECNURA.2016.2.A06 | |
dc.relation.references | Rosas Mayoral, J.G., 2015. Producción de biochar a partir de viñas agotadas mediante pirólisis en reactor a escala piloto y en reactor móvil energéticamente sostenible. Universidad de León, León | |
dc.relation.references | Safarian, S., 2023. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Reports 9, 4574–4593. https://doi.org/10.1016/J.EGYR.2023.03.111 | |
dc.relation.references | Shahrun, M.S., Rahman, M.H.A., Baharom, N.A., Jumat, F., Saad, M.J., Mail, M.F., Zawawi, N.Z., Suherman, F.H.S., 2024. Design of a pyrolysis system and the characterisation data of biochar produced from coconut shells, carambola pruning, and mango pruning using a low-temperature slow pyrolysis process. Data Brief 52, 109997. https://doi.org/10.1016/J.DIB.2023.109997 | |
dc.relation.references | Simona Paraschiv, L., Paraschiv, S., 2023. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Reports 9, 535–544. https://doi.org/10.1016/j.egyr.2023.07.024 | |
dc.relation.references | Simsek, Y., Santika, W.G., Anisuzzaman, M., Urmee, T., Bahri, P.A., Escobar, R., 2020. An analysis of additional energy requirement to meet the sustainable development goals. J Clean Prod 272, 122646. https://doi.org/10.1016/J.JCLEPRO.2020.122646 | |
dc.relation.references | Singh, Y.D., Mahanta, P., Bora, U., 2017. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy 103, 490–500. https://doi.org/10.1016/J.RENENE.2016.11.039 | |
dc.relation.references | Soka, O., Oyekola, O., 2020. A feasibility assessment of the production of char using the slow pyrolysis process. Heliyon 6, e04346. https://doi.org/10.1016/J.HELIYON.2020.E04346 | |
dc.relation.references | Su, J.Z., Wang, C.C., Zhang, M.Y., Zong, X.B., Huang, X.F., Deng, Z.H., Xiang, P., 2023. Advances and prospectives of iron/biochar composites: Application, influencing factors and characterization methods. Ind Crops Prod 205, 117496. https://doi.org/10.1016/J.INDCROP.2023.117496 | |
dc.relation.references | Vieira, F.R., Romero Luna, C.M., Arce, G.L.A.F., Ávila, I., 2020. Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass Bioenergy 132, 105412. https://doi.org/10.1016/J.BIOMBIOE.2019.105412 | |
dc.relation.references | Wang, Q., Li, Y., Yu, Z., Li, X., Yin, S., Ji, W., Hu, Y., Cai, W., Wang, X., 2023. Highly porous carbon derived from hydrothermal-pyrolysis synergistic carbonization of biomass for enhanced CO2 capture. Colloids Surf A Physicochem Eng Asp 673, 131787. https://doi.org/10.1016/J.COLSURFA.2023.131787 | |
dc.relation.references | Wang, S., Dai, G., Yang, H., Luo, Z., 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog Energy Combust Sci 62, 33–86. https://doi.org/10.1016/J.PECS.2017.05.004 | |
dc.relation.references | Wang, Y., Wu, J., 2023. Thermochemical conversion of biomass: Potential future prospects. https://doi.org/10.1016/j.rser.2023.113754 | |
dc.relation.references | WBA, 2019. GLOBAL BIOENERGY STATISTICS 2019. World Bioenergy Association | |
dc.relation.references | Wu, Y., Wang, H., Li, H., Han, X., Zhang, M., Sun, Y., Fan, X., Tu, R., Zeng, Y., Xu, C.C., Xu, X., 2022a. Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renew Energy 196, 462–481. https://doi.org/10.1016/J.RENENE.2022.07.031 | |
dc.relation.references | Wu, Y., Wang, H., Li, H., Han, X., Zhang, M., Sun, Y., Fan, X., Tu, R., Zeng, Y., Xu, C.C., Xu, X., 2022b. Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renew Energy 196, 462–481. https://doi.org/10.1016/J.RENENE.2022.07.031 | |
dc.relation.references | Yuan, T., He, W., Yin, G., Xu, S., 2020. Comparison of bio-chars formation derived from fast and slow pyrolysis of walnut shell. Fuel 261, 116450. https://doi.org/10.1016/J.FUEL.2019.116450 | |
dc.relation.references | Zhang, H., Yang, K., Tao, Y., Yang, Q., Xu, L., Liu, C., Ma, L., Xiao, R., 2023. Biomass directional pyrolysis based on element economy to produce high-quality fuels, chemicals, carbon materials – A review. Biotechnol Adv 108262. https://doi.org/10.1016/J.BIOTECHADV.2023.108262 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Biochar | |
dc.subject.keywords | Pyrolysis | |
dc.subject.keywords | Heating rate | |
dc.subject.keywords | Biomass | |
dc.subject.keywords | Corn cob | |
dc.subject.proposal | Biochar | |
dc.subject.proposal | Pirólisis | |
dc.subject.proposal | Tasa de calentamiento | |
dc.subject.proposal | Biomasa | |
dc.subject.proposal | Tusa de maíz | |
dc.title | Evaluación de la producción de Biochar por medio de pirólisis lenta de residuos de la agroindustria del maíz en un reactor alotérmico | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: