Publicación:
Energéticos en la Interfaz T-MnO2/grafeno: un estudio de primeros principios

dc.contributor.advisorCasiano, Gladys Rocíospa
dc.contributor.authorSuárez Ubarnes, Luis David
dc.date.accessioned2022-11-10T21:39:29Z
dc.date.available2022-11-10T21:39:29Z
dc.date.issued2022-11-10
dc.description.abstractEn este trabajo se estudian los energéticos en la interfaz T-MnO2/grafeno, tales como; la energía de formación, energía de enlace, el trabajo de adhesión y la energía de la interfaz. Los cálculos se realizaron utilizando la Teoría del Funcional de Densidad (DFT) en el marco de la aproximación del gradiente generalizado (GGA) de Perdew - Burke-Ernzerhof (PBE). La interfaz se modeló usando el esquema de slab periodico. Acoplando una monocapa de √3 × √3 T-MnO2 a una monocapa de 2×2-Grafeno. Los valores obtenidos para la energía de formación Ef, la energía de enlace Eb, el trabajo de adhesión Wad y la energía de la interfaz Eint son; -20.30 meV/Å^2, -22.17 meV/Å^2, 20.30 meV/Å^2 y 23.20 meV/Å^2, respectivamente. Los valores negativos obtenidos para la energía de formación, muestran que la heteroestructura es termodinámicamente estable, lo que sugiere que la heterobicapa se puede crecer fácilmente en el experimento. El patrón de acople y sus energías de enlace, más que la interacción débil de van der Waals (vdW), sugiere la estabilidad de la interfaz. Finalmente, las energías de interfaz similares para diferentes geometrías interfaciales, indican que el menor valor para la energía de la interfaz es la geometría interfacial más estable.spa
dc.description.degreelevelPregradospa
dc.description.degreenameFísico(a)spa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontents1. Resumen……………..…………….………..…………….………………...………4spa
dc.description.tableofcontents2. Introducción…………………..……………………………………………..……...5spa
dc.description.tableofcontents3. Marco teorico……………………………………………..………………………...6spa
dc.description.tableofcontents3.1 El problema general……………………………………..………....……………6spa
dc.description.tableofcontents3.2 El problema electrónico…………………………………………………...........7spa
dc.description.tableofcontents3.3 Teoría del funcional densidad (DFT)……………………………………..........7spa
dc.description.tableofcontents3.3.1 Teoremas de Hohenberg-Khon…………………………………………….8spa
dc.description.tableofcontents3.3.2 Método de Khon-Sham……………………………………………………8spa
dc.description.tableofcontents3.4 Aproximación de densidad local (L.D.A)………………………………………9spa
dc.description.tableofcontents3.5 Aproximación de gradiente generalizado (G.G.A)………………………........10spa
dc.description.tableofcontents3.6 Pseudopotenciales que conservan la norma …………………………………..10spa
dc.description.tableofcontents3.7 Pseudopotenciales ultrasuaves………………………………………………….11spa
dc.description.tableofcontents3.8 Ciclo de auto consistencia……………………………………………………..12spa
dc.description.tableofcontents3.9 Energías en la interfaz……………..……………………………………..........13spa
dc.description.tableofcontents3.9.1 Energía de formación de la interfaz…………………………………….....13spa
dc.description.tableofcontents3.9.2 Energía de enlace de la interfaz…………………………………………..14spa
dc.description.tableofcontents3.9.3 Trabajo de adhesión………………………………………………............14spa
dc.description.tableofcontents3.9.4 Energia de la interfaz………………………………………………………14spa
dc.description.tableofcontents4. Detalles computacionales………………………………………………………………16spa
dc.description.tableofcontents5. Resultados y análisis……………………………………………………………………16spa
dc.description.tableofcontents5.1. Selección de la configuración de acoplo…………………………………………...17spa
dc.description.tableofcontents5.2. Propiedades estructurales…………………………………………………………..17spa
dc.description.tableofcontents5.3. Cálculos de las energías……………………………………………………………19spa
dc.description.tableofcontents5.3.1. Energía de la Superficie………………………………………………………….19spa
dc.description.tableofcontents5.3.2. Energía de formación de la superficie……………………………………………20spa
dc.description.tableofcontents5.3.3. Trabajo de adhesión……………………………………………………………...21spa
dc.description.tableofcontents5.3.4. Energía de formación……………………………………………………………..21spa
dc.description.tableofcontents5.3.5. Energía interfacial………………………………………………………………...22spa
dc.description.tableofcontents3.3.6. Energía de enlace………………………………………………………………....22spa
dc.description.tableofcontents6. Conclusiones…………………………………………………………………………….24spa
dc.description.tableofcontents7. Referencias…………………………………………………………………………...…25spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6766
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programFísicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsT-MnO2/graphene interfaceeng
dc.subject.keywordsAdhesion workeng
dc.subject.keywordsInterfacial energyeng
dc.subject.keywordsFormation energyeng
dc.subject.keywordsBinding energyeng
dc.subject.keywordsDFTeng
dc.subject.proposalInterfaz T-MnO2/grafenospa
dc.subject.proposalTrabajo de adhesiónspa
dc.subject.proposalEnergía interfacialspa
dc.subject.proposalEnergía de formaciónspa
dc.subject.proposalEnergía de enlacespa
dc.subject.proposalDFTspa
dc.titleEnergéticos en la Interfaz T-MnO2/grafeno: un estudio de primeros principiosspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references[1] Omomo, Y., Sasaki, T., Wang, L., & Watanabe, M. (2003). Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. Journal of the American Chemical Society, 125(12), 3568-3575.spa
dcterms.references[2] Shinde, P. A., Lokhande, V. C., Patil, A. M., Yadav, A. A., & Lokhande, C. D. (2017). Hydrothermal synthesis of manganese oxide thin films using different oxidizing agents for supercapacitor application. Int. J. Eng. Res. Technol, 10(1), 532-537.spa
dcterms.references[3] Xia, H., Lai, M. O., & Lu, L. (2011). Nanostructured manganese oxide thin films as electrode material for supercapacitors. Jom, 63(1), 54-59.spa
dcterms.references[4] Shuo Deng, Lu Wang, Tingjun Hou and Youyong Li, Two-dimensional MnO2 as A Better Cathode Material for Lithium-Ion Batteries. J. Phys. Chem. C, 2015.spa
dcterms.references[5] Song, M. K., Cheng, S., Chen, H., Qin, W., Nam, K. W., Xu, S., ... & Liu, M. (2012). Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano letters, 12(7), 3483-3490.spa
dcterms.references[6] Wu, M., Hou, P., Dong, L., Cai, L., Chen, Z., Zhao, M., & Li, J. (2019). Manganese dioxide nanosheets: from preparation to biomedical applications. International journal of nanomedicine, 14, 4781.spa
dcterms.references[7] Ataca, C., Sahin, H., & Ciraci, S. (2012). Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 116(16), 8983-8999.spa
dcterms.references[8] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The intrinsic ferromagnetism in a MnO2 monolayer. The journal of physical chemistry letters, 4(20), 3382-3386.spa
dcterms.references[9] Xi, Y., & Ren, J. C. (2016). Design of a CO oxidation catalyst based on two-dimensional MnO2. The Journal of Physical Chemistry C, 120(42), 24302-24306.spa
dcterms.references[10] Singu, B. S., & Yoon, K. R. (2017). Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochimica Acta, 231, 749-758.spa
dcterms.references[11] Peng, L., Peng, X., Liu, B., Wu, C., Xie, Y., & Yu, G. (2013). Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 13(5), 2151-2157.spa
dcterms.references[12] Li, Z., An, Y., Hu, Z., An, N., Zhang, Y., Guo, B., ... & Wu, H. (2016). Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. Journal of Materials Chemistry A, 4(27), 10618-10626.spa
dcterms.references[13] Li, J., Zhao, Y., Wang, N., Ding, Y., & Guan, L. (2012). Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. Journal of Materials Chemistry, 22(26), 13002-13004.spa
dcterms.references[14] Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107-131.spa
dcterms.references[15] Liu, Y., Zhang, X., He, D., Ma, F., Fu, Q., & Hu, Y. (2016). An amperometric glucose biosensor based on a MnO2/graphene composite modified electrode. RSC advances, 6(22), 18654-18661.spa
dcterms.references[16] Muhammad, R., Shuai, Y., Irfan, A., & He-Ping, T. (2018). First-principles investigations of manganese oxide (MnOx) complex-sandwiched bilayer graphene systems. RSC advances, 8(42), 23688-23697.spa
dcterms.references[17] Wu, S., Fan, K., Wu, M., & Yin, G. (2016). Two-dimensional MnO2/graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 30(27), 1650208.spa
dcterms.references[18] Humanez, A. (2020). Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición (Tesis de maestría). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia.spa
dcterms.references[19] Burke, K. (2007). The abc of dft. Department of Chemistry, University of California, 40.spa
dcterms.references[20] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.spa
dcterms.references[21] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133.spa
dcterms.references[22] Gómez Fuentes, C. J. (2022). Efectos del sustrato grafeno sobre la monocapa 1H-MgF2 en la juntura 1H-MgF2/grafeno (Tesis de pregrado). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia.spa
dcterms.references[23] Burke, K. (2012). Perspective on density functional theory. The Journal of chemical physics, 136(15), 150901.spa
dcterms.references[24] Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048.spa
dcterms.references[25] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.spa
dcterms.references[26] Hamann, D. R., Schlüter, M., & Chiang, C. (1979). Norm-conserving pseudopotentials. Physical Review Letters, 43(20), 1494.spa
dcterms.references[27] Bachelet, G. B., Hamann, D. R., & Schluter, M. (1982). Pseudopotentials that ¨ work: From H to Pu. Physical Review B, 26(8), 4199spa
dcterms.references[28] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892.spa
dcterms.references[29] Laasonen, K., Car, R., Lee, C., & Vanderbilt, D. (1991). Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Physical Review B, 43(8), 6796.spa
dcterms.references[30] Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). CarParrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142.spa
dcterms.references[31] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresol, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502spa
dcterms.references[32] Ortega López, C. (2009). Adsorción de átomos de Ru sobre la superficie (0001) GaN y superredes hexagonales (0001) GaN/RuN (Tesis doctoral). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Física, Sede Bogotá.spa
dcterms.references[33] Peng, Q., Wang, Z., Sa, B., Wu, B., & Sun, Z. (2016). Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific reports, 6(1), 1-10.spa
dcterms.references[34] Zhao, X., Yuan, X., Liu, S., Zhao, C., Wang, C., Zhou, Y., & Yang, Q. (2017). Investigation on WC/LaAlO3 heterogeneous nucleation interface by first-principles. Journal of Alloys and Compounds, 695, 1753-1762.spa
dcterms.references[35] Wang, M., Zhang, G., Xu, H., & Fu, Y. (2020). Investigation on Mg3Sb2/Mg2Si Heterogeneous Nucleation Interface Using Density Functional Theory. Materials, 13(7), 1681.spa
dcterms.references[36] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.spa
dcterms.references[37] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133.spa
dcterms.references[38] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.spa
dcterms.references[39] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188.spa
dcterms.references[40] Van Troeye, B., Torrent, M., & Gonze, X. (2016). Interatomic force constants including the DFT-D dispersion contribution. Physical Review B, 93(14), 144304.spa
dcterms.references[41] Morinson Negrete, J. (2022-08-18.). Adsorción de especies de mercurio sobre las superficies 1t-mno2 y 1t-mno2/grafeno. Facultad de Ciencias Básicas.spa
dcterms.references[42] Bendavid, L. I., & Carter, E. A. (2013). First principles study of bonding, adhesion, and electronic structure at the Cu2O (111)/ZnO101 0 interface. Surface science, 618, 62-71.spa
dcterms.references[43] Zhao, X., Yuan, X., Liu, S., Zhao, C., Wang, C., Zhou, Y., & Yang, Q. (2017). Investigation on WC/LaAlO3 heterogeneous nucleation interface by first-principles. Journal of Alloys and Compounds, 695, 1753-1762.spa
dcterms.references[44] Wang, M., Zhang, G., Xu, H., & Fu, Y. (2020). Investigation on Mg3Sb2/Mg2Si Heterogeneous Nucleation Interface Using Density Functional Theory. Materials, 13(7), 1681.spa
dcterms.references[45] Oxford, G. A., & Chaka, A. M. (2011). First-principles calculations of clean, oxidized, and reduced β-MnO2 surfaces. The Journal of Physical Chemistry C, 115(34), 16992-17008.spa
dcterms.references[46] Shi, Z., Shao, W., Hu, T., Zhao, C., Xing, X., Zhou, Y., & Yang, Q. (2019). Adhesive sliding and interfacial property of YAlO3/TiC interface: A first principles investigation. Journal of Alloys and Compounds, 805, 1052-1059.spa
dcterms.references[47] Wang, C., & Wang, C. Y. (2009). Ni/Ni3Al interface: A density functional theory study. Applied Surface Science, 255(6), 3669-3675.spa
dcterms.references3675. [48] Liao, J., Sa, B., Zhou, J., Ahuja, R., & Sun, Z. (2014). Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructures. The Journal of Physical Chemistry C, 118(31), 17594-17599.spa
dcterms.references[49] Linghu, Y., Wu, X., Wang, R., Li, W., & Liu, Q. (2016). The adhesive properties of coherent and semicoherent nial/v interfaces within the peierls-nabarro model. Crystals, 6(4), 32.spa
dcterms.references[50] Ferdous, N., Islam, M. S., Park, J., & Hashimoto, A. (2019). Tunable electronic properties in stanene and two dimensional silicon-carbide heterobilayer: A first principles investigation. AIP Advances, 9(2), 025120.spa
dcterms.references[51] Peng, E. structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep, (6), 31994.spa
dcterms.references[52] Wang, et al. 2013: adhesion work of the Mg/Al2CO interface.spa
dcterms.references[53] Fan, et al. 2018: formation energy of the InSe/GaTe interface.spa
dcterms.references[54] Wang, et al. 2020: Interface energy of the Mg2Si (111)/Mg3Sb2 (0001) systemspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
suarezubarensluisdavid.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
337.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: