Publicación: Energéticos en la Interfaz T-MnO2/grafeno: un estudio de primeros principios
dc.contributor.advisor | Casiano, Gladys Rocío | spa |
dc.contributor.author | Suárez Ubarnes, Luis David | |
dc.date.accessioned | 2022-11-10T21:39:29Z | |
dc.date.available | 2022-11-10T21:39:29Z | |
dc.date.issued | 2022-11-10 | |
dc.description.abstract | En este trabajo se estudian los energéticos en la interfaz T-MnO2/grafeno, tales como; la energía de formación, energía de enlace, el trabajo de adhesión y la energía de la interfaz. Los cálculos se realizaron utilizando la Teoría del Funcional de Densidad (DFT) en el marco de la aproximación del gradiente generalizado (GGA) de Perdew - Burke-Ernzerhof (PBE). La interfaz se modeló usando el esquema de slab periodico. Acoplando una monocapa de √3 × √3 T-MnO2 a una monocapa de 2×2-Grafeno. Los valores obtenidos para la energía de formación Ef, la energía de enlace Eb, el trabajo de adhesión Wad y la energía de la interfaz Eint son; -20.30 meV/Å^2, -22.17 meV/Å^2, 20.30 meV/Å^2 y 23.20 meV/Å^2, respectivamente. Los valores negativos obtenidos para la energía de formación, muestran que la heteroestructura es termodinámicamente estable, lo que sugiere que la heterobicapa se puede crecer fácilmente en el experimento. El patrón de acople y sus energías de enlace, más que la interacción débil de van der Waals (vdW), sugiere la estabilidad de la interfaz. Finalmente, las energías de interfaz similares para diferentes geometrías interfaciales, indican que el menor valor para la energía de la interfaz es la geometría interfacial más estable. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Físico(a) | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. Resumen……………..…………….………..…………….………………...………4 | spa |
dc.description.tableofcontents | 2. Introducción…………………..……………………………………………..……...5 | spa |
dc.description.tableofcontents | 3. Marco teorico……………………………………………..………………………...6 | spa |
dc.description.tableofcontents | 3.1 El problema general……………………………………..………....……………6 | spa |
dc.description.tableofcontents | 3.2 El problema electrónico…………………………………………………...........7 | spa |
dc.description.tableofcontents | 3.3 Teoría del funcional densidad (DFT)……………………………………..........7 | spa |
dc.description.tableofcontents | 3.3.1 Teoremas de Hohenberg-Khon…………………………………………….8 | spa |
dc.description.tableofcontents | 3.3.2 Método de Khon-Sham……………………………………………………8 | spa |
dc.description.tableofcontents | 3.4 Aproximación de densidad local (L.D.A)………………………………………9 | spa |
dc.description.tableofcontents | 3.5 Aproximación de gradiente generalizado (G.G.A)………………………........10 | spa |
dc.description.tableofcontents | 3.6 Pseudopotenciales que conservan la norma …………………………………..10 | spa |
dc.description.tableofcontents | 3.7 Pseudopotenciales ultrasuaves………………………………………………….11 | spa |
dc.description.tableofcontents | 3.8 Ciclo de auto consistencia……………………………………………………..12 | spa |
dc.description.tableofcontents | 3.9 Energías en la interfaz……………..……………………………………..........13 | spa |
dc.description.tableofcontents | 3.9.1 Energía de formación de la interfaz…………………………………….....13 | spa |
dc.description.tableofcontents | 3.9.2 Energía de enlace de la interfaz…………………………………………..14 | spa |
dc.description.tableofcontents | 3.9.3 Trabajo de adhesión………………………………………………............14 | spa |
dc.description.tableofcontents | 3.9.4 Energia de la interfaz………………………………………………………14 | spa |
dc.description.tableofcontents | 4. Detalles computacionales………………………………………………………………16 | spa |
dc.description.tableofcontents | 5. Resultados y análisis……………………………………………………………………16 | spa |
dc.description.tableofcontents | 5.1. Selección de la configuración de acoplo…………………………………………...17 | spa |
dc.description.tableofcontents | 5.2. Propiedades estructurales…………………………………………………………..17 | spa |
dc.description.tableofcontents | 5.3. Cálculos de las energías……………………………………………………………19 | spa |
dc.description.tableofcontents | 5.3.1. Energía de la Superficie………………………………………………………….19 | spa |
dc.description.tableofcontents | 5.3.2. Energía de formación de la superficie……………………………………………20 | spa |
dc.description.tableofcontents | 5.3.3. Trabajo de adhesión……………………………………………………………...21 | spa |
dc.description.tableofcontents | 5.3.4. Energía de formación……………………………………………………………..21 | spa |
dc.description.tableofcontents | 5.3.5. Energía interfacial………………………………………………………………...22 | spa |
dc.description.tableofcontents | 3.3.6. Energía de enlace………………………………………………………………....22 | spa |
dc.description.tableofcontents | 6. Conclusiones…………………………………………………………………………….24 | spa |
dc.description.tableofcontents | 7. Referencias…………………………………………………………………………...…25 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6766 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Física | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | T-MnO2/graphene interface | eng |
dc.subject.keywords | Adhesion work | eng |
dc.subject.keywords | Interfacial energy | eng |
dc.subject.keywords | Formation energy | eng |
dc.subject.keywords | Binding energy | eng |
dc.subject.keywords | DFT | eng |
dc.subject.proposal | Interfaz T-MnO2/grafeno | spa |
dc.subject.proposal | Trabajo de adhesión | spa |
dc.subject.proposal | Energía interfacial | spa |
dc.subject.proposal | Energía de formación | spa |
dc.subject.proposal | Energía de enlace | spa |
dc.subject.proposal | DFT | spa |
dc.title | Energéticos en la Interfaz T-MnO2/grafeno: un estudio de primeros principios | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] Omomo, Y., Sasaki, T., Wang, L., & Watanabe, M. (2003). Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. Journal of the American Chemical Society, 125(12), 3568-3575. | spa |
dcterms.references | [2] Shinde, P. A., Lokhande, V. C., Patil, A. M., Yadav, A. A., & Lokhande, C. D. (2017). Hydrothermal synthesis of manganese oxide thin films using different oxidizing agents for supercapacitor application. Int. J. Eng. Res. Technol, 10(1), 532-537. | spa |
dcterms.references | [3] Xia, H., Lai, M. O., & Lu, L. (2011). Nanostructured manganese oxide thin films as electrode material for supercapacitors. Jom, 63(1), 54-59. | spa |
dcterms.references | [4] Shuo Deng, Lu Wang, Tingjun Hou and Youyong Li, Two-dimensional MnO2 as A Better Cathode Material for Lithium-Ion Batteries. J. Phys. Chem. C, 2015. | spa |
dcterms.references | [5] Song, M. K., Cheng, S., Chen, H., Qin, W., Nam, K. W., Xu, S., ... & Liu, M. (2012). Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano letters, 12(7), 3483-3490. | spa |
dcterms.references | [6] Wu, M., Hou, P., Dong, L., Cai, L., Chen, Z., Zhao, M., & Li, J. (2019). Manganese dioxide nanosheets: from preparation to biomedical applications. International journal of nanomedicine, 14, 4781. | spa |
dcterms.references | [7] Ataca, C., Sahin, H., & Ciraci, S. (2012). Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 116(16), 8983-8999. | spa |
dcterms.references | [8] Kan, M., Zhou, J., Sun, Q., Kawazoe, Y., & Jena, P. (2013). The intrinsic ferromagnetism in a MnO2 monolayer. The journal of physical chemistry letters, 4(20), 3382-3386. | spa |
dcterms.references | [9] Xi, Y., & Ren, J. C. (2016). Design of a CO oxidation catalyst based on two-dimensional MnO2. The Journal of Physical Chemistry C, 120(42), 24302-24306. | spa |
dcterms.references | [10] Singu, B. S., & Yoon, K. R. (2017). Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochimica Acta, 231, 749-758. | spa |
dcterms.references | [11] Peng, L., Peng, X., Liu, B., Wu, C., Xie, Y., & Yu, G. (2013). Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 13(5), 2151-2157. | spa |
dcterms.references | [12] Li, Z., An, Y., Hu, Z., An, N., Zhang, Y., Guo, B., ... & Wu, H. (2016). Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. Journal of Materials Chemistry A, 4(27), 10618-10626. | spa |
dcterms.references | [13] Li, J., Zhao, Y., Wang, N., Ding, Y., & Guan, L. (2012). Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. Journal of Materials Chemistry, 22(26), 13002-13004. | spa |
dcterms.references | [14] Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107-131. | spa |
dcterms.references | [15] Liu, Y., Zhang, X., He, D., Ma, F., Fu, Q., & Hu, Y. (2016). An amperometric glucose biosensor based on a MnO2/graphene composite modified electrode. RSC advances, 6(22), 18654-18661. | spa |
dcterms.references | [16] Muhammad, R., Shuai, Y., Irfan, A., & He-Ping, T. (2018). First-principles investigations of manganese oxide (MnOx) complex-sandwiched bilayer graphene systems. RSC advances, 8(42), 23688-23697. | spa |
dcterms.references | [17] Wu, S., Fan, K., Wu, M., & Yin, G. (2016). Two-dimensional MnO2/graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 30(27), 1650208. | spa |
dcterms.references | [18] Humanez, A. (2020). Nuevas aleaciones ternarias 2D basadas en dióxidos de metales de transición (Tesis de maestría). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia. | spa |
dcterms.references | [19] Burke, K. (2007). The abc of dft. Department of Chemistry, University of California, 40. | spa |
dcterms.references | [20] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. | spa |
dcterms.references | [21] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. | spa |
dcterms.references | [22] Gómez Fuentes, C. J. (2022). Efectos del sustrato grafeno sobre la monocapa 1H-MgF2 en la juntura 1H-MgF2/grafeno (Tesis de pregrado). Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Física y Electrónica. Montería, Colombia. | spa |
dcterms.references | [23] Burke, K. (2012). Perspective on density functional theory. The Journal of chemical physics, 136(15), 150901. | spa |
dcterms.references | [24] Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. | spa |
dcterms.references | [25] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. | spa |
dcterms.references | [26] Hamann, D. R., Schlüter, M., & Chiang, C. (1979). Norm-conserving pseudopotentials. Physical Review Letters, 43(20), 1494. | spa |
dcterms.references | [27] Bachelet, G. B., Hamann, D. R., & Schluter, M. (1982). Pseudopotentials that ¨ work: From H to Pu. Physical Review B, 26(8), 4199 | spa |
dcterms.references | [28] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892. | spa |
dcterms.references | [29] Laasonen, K., Car, R., Lee, C., & Vanderbilt, D. (1991). Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Physical Review B, 43(8), 6796. | spa |
dcterms.references | [30] Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). CarParrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142. | spa |
dcterms.references | [31] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresol, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502 | spa |
dcterms.references | [32] Ortega López, C. (2009). Adsorción de átomos de Ru sobre la superficie (0001) GaN y superredes hexagonales (0001) GaN/RuN (Tesis doctoral). Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Física, Sede Bogotá. | spa |
dcterms.references | [33] Peng, Q., Wang, Z., Sa, B., Wu, B., & Sun, Z. (2016). Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific reports, 6(1), 1-10. | spa |
dcterms.references | [34] Zhao, X., Yuan, X., Liu, S., Zhao, C., Wang, C., Zhou, Y., & Yang, Q. (2017). Investigation on WC/LaAlO3 heterogeneous nucleation interface by first-principles. Journal of Alloys and Compounds, 695, 1753-1762. | spa |
dcterms.references | [35] Wang, M., Zhang, G., Xu, H., & Fu, Y. (2020). Investigation on Mg3Sb2/Mg2Si Heterogeneous Nucleation Interface Using Density Functional Theory. Materials, 13(7), 1681. | spa |
dcterms.references | [36] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. | spa |
dcterms.references | [37] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. | spa |
dcterms.references | [38] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. | spa |
dcterms.references | [39] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188. | spa |
dcterms.references | [40] Van Troeye, B., Torrent, M., & Gonze, X. (2016). Interatomic force constants including the DFT-D dispersion contribution. Physical Review B, 93(14), 144304. | spa |
dcterms.references | [41] Morinson Negrete, J. (2022-08-18.). Adsorción de especies de mercurio sobre las superficies 1t-mno2 y 1t-mno2/grafeno. Facultad de Ciencias Básicas. | spa |
dcterms.references | [42] Bendavid, L. I., & Carter, E. A. (2013). First principles study of bonding, adhesion, and electronic structure at the Cu2O (111)/ZnO101 0 interface. Surface science, 618, 62-71. | spa |
dcterms.references | [43] Zhao, X., Yuan, X., Liu, S., Zhao, C., Wang, C., Zhou, Y., & Yang, Q. (2017). Investigation on WC/LaAlO3 heterogeneous nucleation interface by first-principles. Journal of Alloys and Compounds, 695, 1753-1762. | spa |
dcterms.references | [44] Wang, M., Zhang, G., Xu, H., & Fu, Y. (2020). Investigation on Mg3Sb2/Mg2Si Heterogeneous Nucleation Interface Using Density Functional Theory. Materials, 13(7), 1681. | spa |
dcterms.references | [45] Oxford, G. A., & Chaka, A. M. (2011). First-principles calculations of clean, oxidized, and reduced β-MnO2 surfaces. The Journal of Physical Chemistry C, 115(34), 16992-17008. | spa |
dcterms.references | [46] Shi, Z., Shao, W., Hu, T., Zhao, C., Xing, X., Zhou, Y., & Yang, Q. (2019). Adhesive sliding and interfacial property of YAlO3/TiC interface: A first principles investigation. Journal of Alloys and Compounds, 805, 1052-1059. | spa |
dcterms.references | [47] Wang, C., & Wang, C. Y. (2009). Ni/Ni3Al interface: A density functional theory study. Applied Surface Science, 255(6), 3669-3675. | spa |
dcterms.references | 3675. [48] Liao, J., Sa, B., Zhou, J., Ahuja, R., & Sun, Z. (2014). Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructures. The Journal of Physical Chemistry C, 118(31), 17594-17599. | spa |
dcterms.references | [49] Linghu, Y., Wu, X., Wang, R., Li, W., & Liu, Q. (2016). The adhesive properties of coherent and semicoherent nial/v interfaces within the peierls-nabarro model. Crystals, 6(4), 32. | spa |
dcterms.references | [50] Ferdous, N., Islam, M. S., Park, J., & Hashimoto, A. (2019). Tunable electronic properties in stanene and two dimensional silicon-carbide heterobilayer: A first principles investigation. AIP Advances, 9(2), 025120. | spa |
dcterms.references | [51] Peng, E. structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep, (6), 31994. | spa |
dcterms.references | [52] Wang, et al. 2013: adhesion work of the Mg/Al2CO interface. | spa |
dcterms.references | [53] Fan, et al. 2018: formation energy of the InSe/GaTe interface. | spa |
dcterms.references | [54] Wang, et al. 2020: Interface energy of the Mg2Si (111)/Mg3Sb2 (0001) system | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: