Publicación:
Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes

dc.contributor.authorAraiza-Rosales, Elia Espa
dc.contributor.authorPámanes-Carrasco, Gerardo Aspa
dc.contributor.authorSánchez-Arroyo, Juan Fspa
dc.contributor.authorHerrera-Torres, Esperanzaspa
dc.contributor.authorRosales-Castro, Marthaspa
dc.contributor.authorCarrete-Carreón, Francisco Ospa
dc.date.accessioned2022-07-31 22:38:42
dc.date.accessioned2022-08-11T09:37:06Z
dc.date.available2022-07-31 22:38:42
dc.date.available2022-08-11T09:37:06Z
dc.date.issued2022-07-31
dc.description.abstractObjetivo. Evaluar la composición química, contenido de compuestos fenólicos, cinética de producción de gas y emisiones de metano in vitro de siete especies vegetales con potencial alimenticio para alimentación de rumiantes. Materiales y métodos. Siete especies fueron evaluadas: encino gris (EG), encino rojo (ER), chicalote (CHIC), mezquite (MEZ), huizache (HUI), morera (MOR) y la estevia (STE). Los análisis de las muestras fueron: extracto etéreo (EE), cenizas (Cen), proteína cruda (PC), carbohidratos no estructurales (CNE), fibra en detergente neutro (FDN), fibra en detergente ácido (FDA), hemicelulosa, celulosa, lignina detergente ácida (LDA), taninos condensados (TC) y fenoles totales (FT), digestibilidad in vitro de la materia seca (DIVMS); así como las condiciones ruminales in vitro, producción de gas (PG), producción de metano y dióxido de carbono, nitrógeno amoniacal (N-NH3) y ácidos grasos volátiles (AGV´s). Resultados. Los resultados muestran que HUI, MEZ y MOR presentaron un mayor contenido de PC, las mayores digestibilidades (DIVMS) se observaron en CHIC, HUI y STE. De lo contrario, las producciones de metano más bajas fueron generadas por MEZ, ER Y HUI. Conclusiones. De acuerdo con los resultados en la composición química, CHIC, MOR y STE presentaron la mejor calidad nutricional ya que mostraron los más altos contenidos de proteína y una digestibilidad adecuada. Estos resultados sugieren que el uso de CHIC no afectaría las características nutricionales que ofrece un forraje de buena calidad. Además, las otras especies pueden usarse como aditivos o suplementos para alimentar a los rumiantes debido a su mayor contenido de proteína y taninos condensados.spa
dc.description.abstractObjective. To evaluate the chemical composition, phenolic compounds content, and in vitro methane and gas production kinetics of seven vegetable species as potential feedstuffs for ruminants feeding. Materials and methods. Seven species were evaluated: gray oak (GO), red oak (RO), prickly poppies (PP), mesquite (MES), wattle tree (WT), white mulberry (WM) and stevia (STE). The analyses of the samples were: ether extract (EE), ash, crude protein (CP), non-structural carbohydrates (NSC), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, cellulose, acid detergent lignin (ADL), condensed tannins (CT), total phenolic compounds (TPC), in vitro dry matter true digestibility (IVDMD); as well as under in vitro ruminal conditions, gas production (GP), methane and carbon dioxide CO2 production, N-ammonia, and volatile fatty acids (VFA). Results. The results show that WT, MES and WM foliage presented the highest content in CP, the highest digestibility’s (IVDMD) were observed in PP, WM and STE. Otherwise, the lowest methane productions were generated by MES, RO and WM. Conclusions. According to the results in the chemical composition, PP, WM and STE presented the best nutritional quality since they showed the highest protein contents and an adequate digestibility. These results suggest that the use of PP would not affect the nutritional characteristics offered by good quality forage. In addition, the other species may be used as additives or supplements for feeding ruminants because of their higher protein and CT contents.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeaudio/mpegspa
dc.format.mimetypeaudio/mpegspa
dc.format.mimetypespa
dc.identifier.doi10.21897/rmvz.2142
dc.identifier.eissn1909-0544
dc.identifier.issn0122-0268
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6296
dc.identifier.urlhttps://doi.org/10.21897/rmvz.2142
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/2142/4160
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/2142/4161
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/2142/4162
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/2142/4163
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/2142/4164
dc.relation.citationeditionNúm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022spa
dc.relation.citationendpagee2142
dc.relation.citationissue2spa
dc.relation.citationstartpagee2142
dc.relation.citationvolume27spa
dc.relation.ispartofjournalRevista MVZ Córdobaspa
dc.relation.referencesSingh B, Todaria NP. Nutrients composition changes in leaves of Quercus semecarpifolia at different seasons and altitudes. Ann For Res. 2012; 55(2):189-196. http://afrjournal.org/index.php/afr/article/view/59spa
dc.relation.referencesPavarini D, Pavarini S, Niehues M, Lopes N. Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol. 2012; 176:5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002spa
dc.relation.referencesTavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. 2005; 123(124):403–419. https://doi.org/10.1016/j.anifeedsci.2005.04.037spa
dc.relation.referencesKnapp JR, Laur GL, Vadas PA, Weiss WP andTricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing. J Dairy Sci. 2014; 97:3231-3261. https://doi.org/10.3168/jds.2013-7234spa
dc.relation.referencesRocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Reynoso- Camacho R, Ramos-Gómez M, García-Gasca T. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009; 115:1320–1325. https://doi.org/10.1016/j.foodchem.2009.01.050spa
dc.relation.referencesAbdel SE, Maes L, Mahmoud SM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and chagas disease. Phytother Res. 2010; 24:1322-1328. https://doi.org/10.1002/ptr.3108spa
dc.relation.referencesSytar O, Borankulova A, Shevchenko Y, Wendt A, Smetanska I. Antioxidant activity and phenolics composition in Stevia rebaudiana plants of different origin. J Microbiol Biotechnol Food Sci. 2016; 5(3):221-224. https://doi.org/10.15414/jmbfs.2015.16.5.3.221-224spa
dc.relation.referencesMolina CM, Priego CF, de Luque CMD. Characterization of stevia leaves by LC-QTOF MS/MS analysis of polar and non-polar extracts. Food Chem. 2017; 219(6):329-338. https://doi.org/10.1016/j.foodchem.2016.09.148spa
dc.relation.referencesGonzález N, Abdalla AL, Galindo J y Santos MR. Effect of five inclusión levels of mulberry (Morus alba cv. Cubana) on methanogens and some main cellulolytic populations within rumen liquor of water buffalos (Bubalus bubalis). Cuban J Agricul Sci. 2016; 50(3):393-402. https://www.cjascience.com/index.php/CJAS/article/view/633spa
dc.relation.referencesArmijo-Nájera MG, Moreno-Reséndez A Blanco-Contreras E, Borroel-García VJ, Reyes-Carrillo JL. Vaina de mezquite (Prosopis spp.) alimento para el ganado caprino en el semidesierto. Rev Mex Cie Agric. 2019; 10(1):113-122. https://dx.doi.org/10.29312/remexca.v10i1.1728spa
dc.relation.referencesAOAC International. Association of Official Analytical Chemists. Association of Official Methods of Analysis. AOAC, Arlington, Va, USA; 2005.spa
dc.relation.referencesVan Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2spa
dc.relation.referencesMenke KH and Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res and Develop. 1988; 28(1):7-55.spa
dc.relation.referencesHeimler D, Isolani L, Vignolini P, Tombelli S, Romani A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem. 2007; 55:1724-1729. https://doi.org/10.1021/jf0628983spa
dc.relation.referencesSingleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Vitic. 1965; 16:144-158. https://www.ajevonline.org/content/16/3/144spa
dc.relation.referencesTheodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994; 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6spa
dc.relation.referencesMurillo OM, Herrera TE, Corral LA, Pámanes CG. Effect of inclusion of graded level of water hyacinth on in vitro gas production kinetics and chemical composition of alfalfa hay based beef cattle diets. Indian J Animal Res. 2018; 52(8):1298-1303. https://doi.org/10.18805/ijar.11417spa
dc.relation.referencesMills JA, Kebreab E, Yates CM, Cromton LA, Cammell SB, Dhanoa MS, Agnew RE, France J. Alternative approaches to predicting methane emissions form dairy cattle. J Anim Sci. 2003; 81:3141-3150. https://doi.org/10.2527/2003.81123141xspa
dc.relation.referencesGalyean ML. Laboratory Procedures in Animal Nutrition Research. 13th ed. Lubbock: USA; 2010. https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdfspa
dc.relation.referencesAberra M, Steingass H, Shollenberger M and Rodehutscord M. Screening of common tropical grass and megume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop Grasslands. 2017; 5(3):163-175. http://dx.doi.org/10.17138/TGFT(5)163-175spa
dc.relation.referencesFox DG, Tedeschi LO, Tylutki TP, Russell JB,Van Amburgh ME, Chase LE, Pell A N, Overton TR. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim Feed Sci Technol. 2004; 112:29–78. https://doi.org/10.1016/j.anifeedsci.2003.10.006spa
dc.relation.referencesArenas FA, Noguera RR, Restrepo LF. Efecto de diferentes tipos de grasa en dietas para rumiantes sobre la cinética de degradación y fermentación de la materia seca in vitro. Rev Col Cien Pec. 2010; 23(1):55-64. https://revistas.udea.edu.co/index.php/rccp/article/view/324530spa
dc.relation.referencesLi JT, Li DF, Zang JJ, Yan WJ, Zhang WJ and Zhang LY. Evaluation of energy digestibility and prediction of digestible and metabolizable energy from chemical composition of different cottonseed meal sources fed to growing pigs. 2012; 25(10):1430-1438. https://dx.doi.org/10.5713%2Fajas.2012.12201spa
dc.relation.referencesHurtado DI, Nocua S, Nárvaez-Solarte W y Vargas-Sánchez JE. Valor nutricional de la morera (Morus sp.), matarratón (Gliricidia sepium), pasto indio (Panicum máximum) y arboloco (Montanoa quadrangularis) en la alimentación de cuyes (Cavia porcellus). Vet Zootec. 2012; 6(1):56-65. http://vip.ucaldas.edu.co/vetzootec/downloads/v6n1a06.pdfspa
dc.relation.referencesIvan SK, Grant RJ, Weakley D, Beck J. Comparison of a corn silage hybrid with high cell wall content and digestibility with a hybrid of lower cell-wall content on performance of Holstein cows. J Dairy Sci. 2005; 88:244. https://doi.org/10.3168/jds.s0022-0302(05)72682-5spa
dc.relation.referencesHan KJ, McCormick ME. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J Anim Sci and Biotechnol. 2014; 5(1):31. https://doi.org/10.1186/2049-1891-5-31spa
dc.relation.referencesAkanmu AM, Hassen A and Adejoro FA. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. Animals. 2020; 10:146. https://doi.org/10.3390/ani10010146spa
dc.relation.referencesSarnataro Ch, Spanghero M. In vitro rumen fermentation of feed susbtrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim Nutr. 2020; 6:54-60. https://doi.org/10.1016/j.aninu.2019.11.009spa
dc.relation.referencesQin WZ, Li CY, Kim JK, Ju JG, Song MK. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australas J Anim Sci. 2012; 25(10):1381-1388. https://doi.org/10.5713/ajas.2012.1224spa
dc.relation.referencesDeutschmann K, Phatsara Ch, Sorachakula Ch,Vearasilp T, Phunphiphat W, Cherdthong A, Gerlach K, Karl-Heinz S. In vitro gas production and in vivo nutrient digestibility and growth performance of Thai indigenous cattle fed fresh and conserved pangola grass. Italian J Anim Sci. 2017; 16:1-9. https://doi.org/10.1080/1828051x.2017.1293478spa
dc.relation.referencesWang P and Zhiliang T. Ammonia assimilation in rumen bacteria: A review. Anim Biotechnol. 2013; 24(2):107-128. https://doi.org/10.1080/10495398.2012.756402spa
dc.relation.referencesCheeke PR. Applied Animal Nutrition, Feeds and Feeding. 3rd ed. new Jersey, Prentice Hall; 2004.spa
dc.relation.referencesLunsin R, Wanapat M, Rowlinson P. Effect of cassava hay and rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Asian-Australas J Anim Sci. 2012; 25:1364-1373. https://doi.org/10.5713/ajas.2012.12051spa
dc.relation.referencesPond WG, Church DC, Pond K, Schoknecht PA. Basic Animal Nutrition and Feeding. 5th ed. Wiley; 2005spa
dc.relation.referencesAbdullah N, Ho YW, Mahyuddin M, Jalaludin S. Microbial colonization and digestion of feed materials in cattle and buffaloes ll. Rice straw and palm press fibre. Asian-Aust J Anim Sci. 1992; 5:329-335. http://www.ajas.info/Editor/manuscript/upload/5-47.pdfspa
dc.relation.referencesGriswold KE, Apgar GA, Bouton J, Firkins JL. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous cultura. J Anim Sci. 2003; 81:329-336. https://doi.org/10.2527/2003.811329xspa
dc.relation.referencesWilliams BA. Cumulative gas-production techniques for forage evaluation. In: Givens D I, Owen E, Omed H M and Axford RF E (editors). Forage evaluation in ruminant nutrition. Wallingford (UK). CAB International; 2000.spa
dc.relation.referencesAlves BG, Martins CMMR, Peti APF, Moraes LAB and Santos MV. In vitro evaluation of novel crude extracts produced by actinobacteria for modulation of ruminal fermentation. R Bras Zootec. 2019; 48: e20190066. https://doi.org/10.1590/rbz4820190066spa
dc.relation.referencesAlmaraz-Buendía I, García AM, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez. Análisis bromatológico y producción de gas in vitro de forrajes utilizados en el trópico seco mexicano. Arch Zootec. 2019; 68(262):260-266. https://doi.org/10.21071/az.v68i262.4145spa
dc.rightsElia E Araiza-Rosales, Gerardo A Pámanes-Carrasco, Juan F Sánchez-Arroyo, Esperanza Herrera-Torres, Martha Rosales-Castro, Francisco O Carrete-Carreón - 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0spa
dc.sourcehttps://revistamvz.unicordoba.edu.co/article/view/2142spa
dc.subjectMethaneeng
dc.subjectchemical compositioneng
dc.subjectphenolic compoundseng
dc.subjectruminantseng
dc.subjectMetanospa
dc.subjectcomposición químicaspa
dc.subjectcompuestos fenólicosspa
dc.subjectrumiantesspa
dc.titleCaracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantesspa
dc.title.translatedNutritional characterization and gas production of vegetative species with potential as feedstuffs for ruminants feedingeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos
Colecciones