Publicación: Dinámica clínica, sociodemográfica y espacial de la infección por SARS-COV-2 en el departamento de Córdoba
dc.contributor.advisor | Serrano Coll, Héctor Alejandro | |
dc.contributor.author | Garay, Evelin Montalvo | |
dc.contributor.referee | Guzmán Terán, Camilo | |
dc.contributor.referee | Andrés Felipe Diaz Delgadillo | |
dc.date.accessioned | 2021-07-08T22:33:15Z | |
dc.date.available | 2022-09-03 | |
dc.date.available | 2021-07-08T22:33:15Z | |
dc.date.issued | 2021-07-07 | |
dc.description.abstract | The serological evaluation of SARS-CoV-2 is an alternative that allows knowing the prevalence and dynamics of this infection in populations. Aim. To determine the clinical and socio-demographic dynamics of SARS-CoV-2 infection in a region of the Colombian Caribbean. Methods. Between July and November 2020, a cross-sectional observational study was carried out. The work was carried out in Córdoba, located in the northeast of Colombia in the Caribbean area. Eight municipalities with the largest population were chosen, and 2,564 blood samples were taken. The commercial ELISA was used with the recombinant protein antigen N of SARS-CoV-2. The people included in the study were asked for sociodemographic and clinical data related to pulmonary and extra-pulmonary manifestation of this disease, which were analyzed by statistical methods. Results. A seroposivity of 40.8% was obtained for SARS-CoV-2 in the Cordoba region of the Colombian Caribbean. In the bivariate analysis, no differences were observed in seropositivity against SARS-CoV-2 about gender or age range (P> 0.05). Higher seropositivity was found in low socioeconomic status and symptomatic patients (P <0.0001). 30.7% of the asymptomatic patients were seropositive for SARS-CoV-2, which would be linked to the spread of this infection. In the multivariate analysis, seroconversion was related to poverty and clinical manifestations such as anosmia and ageusia (P <0.05). Conclusions. The high seropositivity in the department of Córdoba would be related to a possible community immunity. Seropositivity would be related to clinical manifestations such as anosmia and ageusia. In addition, the association between seropositivity and socioeconomic level suggests an appropriate context for the transmission of the virus, this being determined by informal economic activities in low-income groups. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología Tropical | spa |
dc.description.modality | Trabajo de Investigación y/o Extensión | spa |
dc.description.resumen | La evaluación serológica del SARS-CoV-2 es una alternativa que permite conocer la prevalencia y dinámica de esta infección en poblaciones. Objetivo. Determinar la dinámica clínica y sociodemográfica de la infección por SARS-CoV-2 en una región del Caribe colombiano. Métodos. Entre julio y noviembre de 2020 se realizó un estudio observacional transversal. La investigación se llevó a cabo en Córdoba, ubicada en el noreste de Colombia en la zona del Caribe. Se eligieron ocho municipios con mayor población y se tomaron 2.564 muestras de sangre. El ELISA comercial se utilizó con el antígeno de proteína recombinante N de SARS-CoV-2. A las personas incluidas en el estudio se les solicitó datos sociodemográficos y clínicos relacionados a manifestaciones pulmonares y extrapulmonares de esta enfermedad, que fueron analizados por métodos estadísticos. Resultados. Se obtuvo una seropositividad del 40.8% para SARS-CoV-2 en la región de Córdoba del Caribe colombiano. En el análisis bivariado, no se observaron diferencias en la seropositividad frente al SARS-CoV-2 sobre el sexo o el rango de edad (P> 0,05). Se encontró una mayor seropositividad en el nivel socioeconómico bajo y en los pacientes sintomáticos (P <0,0001). El 30,7% de los pacientes asintomáticos fueron seropositivos para SARS-CoV-2, lo que estaría relacionado con la propagación de esta infección. En el análisis multivariado, la seroconversión se relacionó con la pobreza y manifestaciones clínicas como anosmia y ageusia (P <0,05). Conclusiones. La alta seropositividad en el departamento de Córdoba estaría relacionada con una posible inmunidad comunitaria. La seropositividad estaría relacionada con manifestaciones clínicas como anosmia y ageusia. Además, la asociación entre la seropositividad y el nivel socioeconómico permiten sugerir un contexto apropiado para la transmisión del virus, siendo este determinado por las actividades económicas informales en los grupos de bajos ingresos. | spa |
dc.description.tableofcontents | 1. RESUMEN ................................................................................................................................. 8 | spa |
dc.description.tableofcontents | 2. ABSTRACT ............................................................................................................................... 9 | spa |
dc.description.tableofcontents | 3. PLANTEAMIENTO DEL PROBLEMA .............................................................................. 10 | spa |
dc.description.tableofcontents | 4. JUSTIFICACIÓN ................................................................................................................... 11 | spa |
dc.description.tableofcontents | 5. PREGUNTA DE INVESTIGACIÓN .................................................................................... 12 | spa |
dc.description.tableofcontents | 6. HIPÓTESIS. ............................................................................................................................ 12 | spa |
dc.description.tableofcontents | 7. OBJETIVOS ............................................................................................................................ 12 | spa |
dc.description.tableofcontents | 7.1 OBJETIVO GENERAL ................................................................................................. 12 | spa |
dc.description.tableofcontents | 7.2 OBJETIVOS ESPECIFICOS: ............................................................................................. 12 | spa |
dc.description.tableofcontents | 8. MARCO TEORICO ............................................................................................................... 13 | spa |
dc.description.tableofcontents | 8.1 SÍNDROME RESPIRATORIO AGUDO GRAVE DE TIPO 2 (SARS-CoV-2) ................ 13 | spa |
dc.description.tableofcontents | 8.2 ESTRUCTURA DE LOS CORONAVIRUS ....................................................................... 14 | spa |
dc.description.tableofcontents | 8.3 EPIDEMIOLOGIA ............................................................................................................... 16 | spa |
dc.description.tableofcontents | 8.3.1 Factor Ro del SARS – CoV-2 ........................................................................................ 16 | spa |
dc.description.tableofcontents | 8.3.2 Distribución de casos por edades .................................................................................. 17 | spa |
dc.description.tableofcontents | 8.3.3 MECANISMOS DE TRANSMISIÓN .......................................................................... 18 | spa |
dc.description.tableofcontents | 8.4 RESPUESTA INMUNE DE LA INFECCIÓN POR SARS-CoV-2 .................................. 18 | spa |
dc.description.tableofcontents | 8.5 MANIFESTACIONES Y DATOS CLÍNICOS .................................................................. 20 | spa |
dc.description.tableofcontents | 8.6 PRUEBAS DIAGNOSTICAS PARA LA INFECCIÓN POR SARS-COV 2 .................. 21 | spa |
dc.description.tableofcontents | 8.7 VARIANTES GÉNETICAS DEL SARS-CoV-2 ................................................................ 22 | spa |
dc.description.tableofcontents | 8.8 TRATAMIENTOS CONTRA EL SARS-CoV-2 ................................................................ 23 | spa |
dc.description.tableofcontents | 9. MÉTODOS. ............................................................................................................................. 25 | spa |
dc.description.tableofcontents | 9.1 Tipo de estudio ................................................................................................................. 25 | spa |
dc.description.tableofcontents | 9.2 Cálculo del tamaño de la muestra y distribución. ........................................................ 25 | spa |
dc.description.tableofcontents | 9.3 Criterios de inclusión y exclusión .................................................................................. 25 | spa |
dc.description.tableofcontents | 9.4 Recolección de muestras. ................................................................................................ 26 | spa |
dc.description.tableofcontents | 9.5 Descripción de las variables ................................................................................................. 26 | spa |
dc.description.tableofcontents | 9.5.1 Diagrama de las variables .............................................................................................. 27 | spa |
dc.description.tableofcontents | 9.6 Técnicas y procedimientos. .................................................................................................. 28 | spa |
dc.description.tableofcontents | 9.6.1 Recolección de la información. ..................................................................................... 28 | spa |
dc.description.tableofcontents | 9.7 Fuentes de información. ....................................................................................................... 29 | spa |
dc.description.tableofcontents | 9.8 Actividades. ............................................................................................................................ 29 | spa |
dc.description.tableofcontents | 9.8.1 Actividades desarrolladas para dar cumplimiento al objetivo 1: .............................. 29 | spa |
dc.description.tableofcontents | 9.8.2 Actividades desarrolladas para dar cumplimiento al objetivo 2: .............................. 30 | spa |
dc.description.tableofcontents | 9.8.3 Actividades desarrolladas para dar cumplimiento al objetivo 3: .............................. 31 | spa |
dc.description.tableofcontents | 9.8.4 Actividades desarrolladas para dar cumplimiento al objetivo 4: ............................. 31 | spa |
dc.description.tableofcontents | 9.8.5 Actividades desarrolladas para dar cumplimiento al objetivo 5: .............................. 32 | spa |
dc.description.tableofcontents | 9.9 Análisis de los datos............................................................................................................... 32 | spa |
dc.description.tableofcontents | 9.10 Consideraciones éticas ........................................................................................................ 32 | spa |
dc.description.tableofcontents | 10. RESULTADOS .................................................................................................................... 33 | spa |
dc.description.tableofcontents | 10.1 Características socio-demográficas y clínicas de la población muestreada. .............. 33 | spa |
dc.description.tableofcontents | 10.2 Dinámica espacial de la infección por SARS-CoV-2 en los municipios evaluados. ... 34 | spa |
dc.description.tableofcontents | 10.3 Relación las características sociodemográficas (rango etario, género, estrato socioeconómico) con la frecuencia de infección por SARS-CoV-2. ........................................ 38 | spa |
dc.description.tableofcontents | 10.3 Dinámica clínica y su relación con la seropositividad por SARS-CoV-2. .................. 40 | spa |
dc.description.tableofcontents | 10.4 Modelo explicativo para la dinámica en la infección por SARS-CoV-2 en los municipios evaluados en el departamento de Córdoba. .......................................................... 41 | spa |
dc.description.tableofcontents | 11. DISCUSIÓN ......................................................................................................................... 43 | spa |
dc.description.tableofcontents | 11.1 Dinámica espacial de la infección por SARS-CoV-2 en los municipios evaluados ........ 43 | spa |
dc.description.tableofcontents | 11.2 Relación de las características sociodemográficas (rango etario, género, estrato socioeconómico) con la frecuencia de infección por SARS-CoV-2. ........................................ 45 | spa |
dc.description.tableofcontents | 11.3 Dinámica clínica y su relación con la seropositividad por SARS-CoV-2. ...................... 47 | spa |
dc.description.tableofcontents | 11.4 Modelo explicativo para la dinámica en la infección por SARS-CoV-2 en los municipios evaluados en el departamento de Córdoba. .............................................................................. 47 | spa |
dc.description.tableofcontents | 12. CONCLUSIONES Y RECOMENDACIONES ................................................................ 48 | spa |
dc.description.tableofcontents | 13. LIMITACIONES ................................................................................................................ 49 | spa |
dc.description.tableofcontents | 14. BIBLIOGRÁFIA ................................................................................................................. 50 | spa |
dc.description.tableofcontents | 15. ANEXOS .............................................................................................................................. 63 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4257 | |
dc.language.iso | spa | spa |
dc.publisher | Instituto de Investigaciones Biológicas del Trópico (Unicordoba) - Minciencias | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Microbiología Tropical | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Public health | eng |
dc.subject.keywords | Asymptomatic | eng |
dc.subject.keywords | Seroepidemiologic studies | eng |
dc.subject.keywords | Social conditions | eng |
dc.subject.keywords | Economic conditions | eng |
dc.subject.keywords | Informal social controls | eng |
dc.subject.proposal | Salud pública | spa |
dc.subject.proposal | Asintomáticos | spa |
dc.subject.proposal | Estudios seroepidemiológico | spa |
dc.subject.proposal | Condiciones sociales | spa |
dc.subject.proposal | Controles sociales informales | spa |
dc.title | Dinámica clínica, sociodemográfica y espacial de la infección por SARS-COV-2 en el departamento de Córdoba | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | 1. Reina J. El SARS-CoV-2, una nueva zoonosis pandémica que amenaza al mundo. Vacunas. 2020; | spa |
dcterms.references | 2. Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res [Internet]. 2020/06/27. 2020 Sep;159:105051. Available from: https://pubmed.ncbi.nlm.nih.gov/32603772 | spa |
dcterms.references | 3. Deng G, Yin M, Chen X, Zeng F. Clinical determinants for fatality of 44,672 patients with COVID-19. Crit Care [Internet]. 2020;24(1):179. Available from: https://doi.org/10.1186/s13054-020-02902-w | spa |
dcterms.references | 4. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care [Internet]. 2020;24(1):108. Available from: https://doi.org/10.1186/s13054-020-2833-7 | spa |
dcterms.references | 5. Peters A, Vetter P, Guitart C, Lotfinejad N, Pittet D. Understanding the emerging coronavirus: what it means for health security and infection prevention. J Hosp Infect [Internet]. 2020/03/05. 2020 Apr;104(4):440–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32145323 | spa |
dcterms.references | 6. DEAGO DE LEÓN EM, ROZO GARCÉS ND, RODRÍGUEZ MIRANDA JP. SARS-CoV2 en países tropicales: interacción epidemiológica, ambiental y económica, estudio de caso Colombia (Sudamérica). Rev Espac ISSN. 798:1015. | spa |
dcterms.references | 7. Neilan AM, Losina E, Bangs AC, Flanagan C, Panella C, Eskibozkurt GE, et al. Clinical Impact, Costs, and Cost-Effectiveness of Expanded SARS-CoV-2 Testing in Massachusetts. medRxiv Prepr Serv Heal Sci [Internet]. 2020 Jul 24;2020.07.23.20160820. Available from: https://pubmed.ncbi.nlm.nih.gov/32743604 | spa |
dcterms.references | 8. Ena J, Wenzel RP. A Novel Coronavirus Emerges TT - Un nuevo coronavirus emerge. Rev Clin Esp [Internet]. 2020 Mar;220(2):115–6. Available from: https://pubmed.ncbi.nlm.nih.gov/32063263 | spa |
dcterms.references | 9. Cheng MP, Yansouni CP, Basta NE, Desjardins M, Kanjilal S, Paquette K, et al. Serodiagnostics for Severe Acute Respiratory Syndrome–Related Coronavirus 2. Ann Intern Med [Internet]. 2020 Jun 4;173(6):450–60. Available from: https://doi.org/10.7326/M20-2854 | spa |
dcterms.references | 10. Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science (80- ) [Internet]. 2020 Jul 10;369(6500):208 LP – 211. Available from: http://science.sciencemag.org/content/369/6500/208.abstract | spa |
dcterms.references | 11. Greenaway C, Dongier P, Boivin J-F, Tapiero B, Miller M, Schwartzman K. Susceptibility to Measles, Mumps, and Rubella in Newly Arrived Adult Immigrants and Refugees. Ann Intern Med [Internet]. 2007 Jan 2;146(1):20–4. Available from: https://www.acpjournals.org/doi/abs/10.7326/0003-4819-146-1-200701020-00005 | spa |
dcterms.references | 12. Eiros Bouzaa José M., Oteo Revueltab JA. Enfermedades infecciosas zoonóticas. Enferm Infecc Microbiol Clin [Internet]. 2011;29(Supl 3):51–4. Available from: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-pdf-S0213005X11700283 | spa |
dcterms.references | 13. Lu H, Stratton CW, Tang Y-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol [Internet]. 2020;92(4):401–2. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25678 | spa |
dcterms.references | 14. Ye Z-W, Yuan S, Yuen K-S, Fung S-Y, Chan C-P, Jin D-Y. Zoonotic origins of human coronaviruses. Int J Biol Sci [Internet]. 2020 Mar 15;16(10):1686–97. Available from: https://pubmed.ncbi.nlm.nih.gov/32226286 | spa |
dcterms.references | 15. Martínez Chamorro E, Díez Tascón A, Ibáñez Sanz L, Ossaba Vélez S, Borruel Nacenta S. Diagnóstico radiológico del paciente con COVID-19. Radiologia [Internet]. 2021;63(1):56–73. Available from: https://www.sciencedirect.com/science/article/pii/S003383382030165X | spa |
dcterms.references | 16. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A. Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging [Internet]. 2020;66:35–41. Available from: http://www.sciencedirect.com/science/article/pii/S0899707120301674 | spa |
dcterms.references | 17. Fehr AR, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier HJ, Bickerton E, Britton P, editors. Coronaviruses: Methods and Protocols [Internet]. New York, NY: Springer New York; 2015. p. 1–23. Available from: https://doi.org/10.1007/978-1-4939-2438-7_1 | spa |
dcterms.references | 18. Centro para el control y prevención de enfermedades CDC. Micrositio sobre el COVID-19 [Internet]. 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/communication/index-sp.html | spa |
dcterms.references | 19. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85–164. | spa |
dcterms.references | 20. Chen YL. Q., Guo, D.(2020) Emerging coronaviruses: Genome structure, replication, parthenogenesis. J Virol. 92:418423. | spa |
dcterms.references | 21. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol [Internet]. 2003 Aug;77(16):8801–11. Available from: https://pubmed.ncbi.nlm.nih.gov/12885899 | spa |
dcterms.references | 22. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020; | spa |
dcterms.references | 23. Salud OP de la. La OMS caracteriza a COVID-19 como una pandemia [Internet]. [cited 2021 Jan 19]. Available from: https://www.paho.org/es/noticias/11-3-2020-oms-caracteriza-covid-19-como-pandemia#:~:text=Ginebra%2C 11 de marzo de,puede caracterizarse como una pandemia. | spa |
dcterms.references | 24. Organization WH. Coronavirus Disease (COVID-19) Dashboard [Internet]. 2020 [cited 2021 Mar 3]. Available from: https://covid19.who.int/ | spa |
dcterms.references | 25. Salzberger B, Buder F, Lampl B, Ehrenstein B, Hitzenbichler F, Holzmann T, et al. Epidemiology of SARS-CoV-2. Infection [Internet]. 2020; Available from: https://doi.org/10.1007/s15010-020-01531-3 | spa |
dcterms.references | 26. Ridenhour B, Kowalik JM, Shay DK. El número reproductivo básico (R0): consideraciones para su aplicación en la salud pública. Rev Panam Salud Pública. 2015;38:167–76. | spa |
dcterms.references | 27. Rocklöv J, Sjödin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. J Travel Med [Internet]. 2020 May 18;27(3). Available from: https://doi.org/10.1093/jtm/taaa030 | spa |
dcterms.references | 28. Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More Than Just the Common Cold. JAMA [Internet]. 2020 Feb 25;323(8):707–8. Available from: https://doi.org/10.1001/jama.2020.0757 | spa |
dcterms.references | 29. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med [Internet]. 2020;172(9):577–82. Available from: https://doi.org/10.7326/M20-0504 | spa |
dcterms.references | 30. Immunologie R und I für die, Molekularbiologie Z und. SARS-CoV-2 (Covid-19): Diagnosis by IgG/IgM Rapid Test [Internet]. [cited 2021 Apr 14]. Available from: https://www.biotrend.com/lesen/newsletter-26/sars-cov-2-covid-19-diagnosis-by-2264.html | spa |
dcterms.references | 31. Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi. 2020;41(2):145. | spa |
dcterms.references | 32. Poletti P, Tirani M, Cereda D, Trentini F, Guzzetta G, Marziano V, et al. Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Eurosurveillance. 2020;25(31):2001383. | spa |
dcterms.references | 33. Institute RK. Coronavirus Disease 2019 (COVID-19) Daily Situation Report of the Robert Koch Institute [Internet]. GERMANY; Available from: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Maerz_2021/2021-03-02-en.pdf?__blob=publicationFile | spa |
dcterms.references | 34. zur Coronavirus RKIT des RKI. Krankheit-2019 (COVID-19) 25.08. 2020–AKTUALISIERTER STAND FÜR DEUTSCHLAND. Berlin: Robert-Koch-Institut2020. 2020;25. | spa |
dcterms.references | 35. Probable Evidence of Fecal Aerosol Transmission of SARS-CoV-2 in a High-Rise Building. Ann Intern Med [Internet]. 2020;173(12):974–80. Available from: https://doi.org/10.7326/M20-0928 | spa |
dcterms.references | 36. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int [Internet]. 2020/04/10. 2020 Jun;139:105730. Available from: https://pubmed.ncbi.nlm.nih.gov/32294574 | spa |
dcterms.references | 37. van Doorn AS, Meijer B, Frampton CMA, Barclay ML, de Boer NKH. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther [Internet]. 2020 Oct 1;52(8):1276–88. Available from: https://doi.org/10.1111/apt.16036 | spa |
dcterms.references | 38. Mattar S, Martinez-Bravo C, Rivero R, Contreras H, Faccini-Martínez ÁA, Guzman-Teran C, et al. Epidemiological and viral features of a cohort of SARS-CoV-2 symptomatic and asymptomatic individuals in an area of the Colombian Caribbean. Ann Clin Microbiol Antimicrob. 2020;19(1):1–6. | spa |
dcterms.references | 39. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Nature Publishing Group; 2020. | spa |
dcterms.references | 40. Lozada-Requena I, Núñez Ponce C. COVID-19: respuesta inmune y perspectivas terapéuticas. Rev Peru Med Exp Salud Publica. 2020;37:312–9. | spa |
dcterms.references | 41. Leo O, Cunningham A, Stern PL. Vaccine immunology. Perspect Vaccinol. 2011;1(1):25–59. | spa |
dcterms.references | 42. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4. | spa |
dcterms.references | 43. Bwire GM. Coronavirus: why men are more vulnerable to Covid-19 than women? SN Compr Clin Med. 2020;2(7):874–6. | spa |
dcterms.references | 44. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020;75(7):1730–41. | spa |
dcterms.references | 45. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med [Internet]. 2020;8(5):475–81. Available from: http://www.sciencedirect.com/science/article/pii/S2213260020300795 | spa |
dcterms.references | 46. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current State of the Science. Immunity [Internet]. 2020;52(6):910–41. Available from: http://www.sciencedirect.com/science/article/pii/S1074761320301837 | spa |
dcterms.references | 47. Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol [Internet]. 2020;31(5):454–70. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/pai.13271 | spa |
dcterms.references | 48. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell [Internet]. 2021; Available from: https://www.sciencedirect.com/science/article/pii/S0092867421000076 | spa |
dcterms.references | 49. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet [Internet]. 2020 Feb 15;395(10223):497–506. Available from: https://doi.org/10.1016/S0140-6736(20)30183-5 | spa |
dcterms.references | 50. Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol [Internet]. 2020 Sep 1;10(9):1103–4. Available from: https://doi.org/10.1002/alr.22593 | spa |
dcterms.references | 51. Nikolai LA, Meyer CG, Kremsner PG, Velavan TP. Asymptomatic SARS Coronavirus 2 infection: Invisible yet invincible. Int J Infect Dis. 2020; | spa |
dcterms.references | 52. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med [Internet]. 2020 Apr 17;382(24):2372–4. Available from: https://doi.org/10.1056/NEJMc2010419 | spa |
dcterms.references | 53. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA [Internet]. 2020 Apr 21;323(15):1488–94. Available from: https://doi.org/10.1001/jama.2020.3204 | spa |
dcterms.references | 54. Zhu J, Ji P, Pang J, Zhong Z, Li H, He C, et al. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol [Internet]. 2020 Oct 1;92(10):1902–14. Available from: https://doi.org/10.1002/jmv.25884 | spa |
dcterms.references | 55. Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One [Internet]. 2020 Jul 9;15(7):e0235458. Available from: https://doi.org/10.1371/journal.pone.0235458 | spa |
dcterms.references | 56. Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol. 2020;1–13. | spa |
dcterms.references | 57. Caruana G, Croxatto A, Coste AT, Opota O, Lamoth F, Jaton K, et al. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin Microbiol Infect [Internet]. 2020;26(9):1178–82. Available from: https://www.sciencedirect.com/science/article/pii/S1198743X20303633 | spa |
dcterms.references | 58. Swedish Public Health Agency. Initial results from ongoing investigation of antibodies to covid-19 virus. [Internet]. 2020. Available from: https://www.folkhalsomyndigheten.se/nyheter-och-press/nyhetsarkiv/2020/maj/forsta-resultaten-fran-pagaende-undersokning-av-antikroppar-for-covid-19-virus/ | spa |
dcterms.references | 59. Caini S, Bellerba F, Corso F, Díaz-Basabe A, Natoli G, Paget J, et al. Meta-analysis of diagnostic performance of serological tests for SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. Eurosurveillance [Internet]. 2020;25(23). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.23.2000980 | spa |
dcterms.references | 60. Van Elslande J, Houben E, Depypere M, Brackenier A, Desmet S, André E, et al. Diagnostic performance of seven rapid IgG/IgM antibody tests and the Euroimmun IgA/IgG ELISA in COVID-19 patients. Clin Microbiol Infect [Internet]. 2020;26(8):1082–7. Available from: https://www.sciencedirect.com/science/article/pii/S1198743X20303001 | spa |
dcterms.references | 61. Tan W, Lu Y, Zhang J, Wang J, Dan Y, Tan Z, et al. Viral Kinetics and Antibody Responses in Patients with COVID-19. medRxiv [Internet]. 2020 Jan 1;2020.03.24.20042382. Available from: http://medrxiv.org/content/early/2020/03/26/2020.03.24.20042382.abstract | spa |
dcterms.references | 62. OMS. Directrices de Laboratorio para la Detección y el Diagnóstico de la Infección con el Virus COVID-19, 30 de marzo de 2020 [Internet]. 2020. Available from: https://iris.paho.org/bitstream/handle/10665.2/52370/OPSPHEIMSCOVID-19200003_spa.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | 63. Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis. 2020;115094. | spa |
dcterms.references | 64. US Centers for Disease Control and Prevention (CDC). SARS-CoV-2 Variant Classifications and Definitions [Internet]. Mar. 16, 2021; Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html | spa |
dcterms.references | 65. Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J, et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines. bioRxiv [Internet]. 2021 Jan 1;2021.01.27.428516. Available from: http://biorxiv.org/content/early/2021/01/29/2021.01.27.428516.abstract | spa |
dcterms.references | 66. Wang P, Wang M, Yu J, Cerutti G, Nair MS, Huang Y, et al. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. bioRxiv [Internet]. 2021 Jan 1;2021.03.01.433466. Available from: http://biorxiv.org/content/early/2021/03/02/2021.03.01.433466.abstract | spa |
dcterms.references | 67. Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care [Internet]. 2020;24(1):91. Available from: https://doi.org/10.1186/s13054-020-2818-6 | spa |
dcterms.references | 68. García-Salido A. Revisión narrativa sobre la respuesta inmunitaria frente a coronavirus: descripción general, aplicabilidad para SARS-COV-2 e implicaciones terapéuticas. An Pediatría [Internet]. 2020;93(1):60.e1-60.e7. Available from: https://www.sciencedirect.com/science/article/pii/S1695403320301727 | spa |
dcterms.references | 69. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med [Internet]. 2020 Mar 18;382(19):1787–99. Available from: https://doi.org/10.1056/NEJMoa2001282 | spa |
dcterms.references | 70. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax [Internet]. 2004 Mar 1;59(3):252 LP – 256. Available from: http://thorax.bmj.com/content/59/3/252.abstract | spa |
dcterms.references | 71. Ko W-C, Rolain J-M, Lee N-Y, Chen P-L, Huang C-T, Lee P-I, et al. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents [Internet]. 2020/03/06. 2020 Apr;55(4):105933. Available from: https://pubmed.ncbi.nlm.nih.gov/32147516 | spa |
dcterms.references | 72. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res [Internet]. 2020;30(3):269–71. Available from: https://doi.org/10.1038/s41422-020-0282-0 | spa |
dcterms.references | 73. Cedeño KSM. Mecanismos propuestos de los macrólidos. Efectos inmunomoduladores y anti-inflamatorios en enfermedades respiratorias. Vitae. 2019;(77). | spa |
dcterms.references | 74. China Seeks Plasma From Recovered Patients to Treat Virus | Time [Internet]. [cited 2021 Mar 3]. Available from: https://time.com/5784286/covid-19-china-plasma-treatment/ | spa |
dcterms.references | 75. World Health Organization Coronavirus disease. Protocolo para estudios seroepidemiológicos poblacionales sobre la COVID-19, con estratificación por edades [Internet]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations | spa |
dcterms.references | 76. Franco R, Hopenhayn M, León A. The growing and changing middle class in Latin America: an update. Cepal Rev. 2011; | spa |
dcterms.references | 77. Adhikari SP, Meng S, Wu Y-J, Mao Y-P, Ye R-X, Wang Q-Z, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty [Internet]. 2020;9(1):29. Available from: https://doi.org/10.1186/s40249-020-00646-x | spa |
dcterms.references | 78. Eurofins Technologies. INgezim COVID 19 DR [Internet]. 2020. Available from: https://ingenasa.eurofins-technologies.com/home-es/productos/covid19/ensayo-elisa/ingezim-covid-19-dr/ | spa |
dcterms.references | 79. Rubin D, Huang J, Fisher BT, Gasparrini A, Tam V, Song L, et al. Association of Social Distancing, Population Density, and Temperature With the Instantaneous Reproduction Number of SARS-CoV-2 in Counties Across the United States. JAMA Netw Open [Internet]. 2020 Jul 23;3(7):e2016099–e2016099. Available from: https://doi.org/10.1001/jamanetworkopen.2020.16099 | spa |
dcterms.references | 80. Ramírez JD, Florez C, Muñoz M, Hernández C, Castillo A, Gomez S, et al. The arrival and spread of SARS-CoV-2 in Colombia. J Med Virol [Internet]. 2021;93(2):1158–63. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.26393 | spa |
dcterms.references | 81. Ariza B, Torres X, Salgado D, Cepeda M, Restrepo CG, Castellanos JC, et al. Seroprevalence and seroconversion rates to SARS-CoV-2 in interns, residents, and medical doctors in a University Hospital in Bogotá, Colombia. Infectio. 2021;25(3):145–52. | spa |
dcterms.references | 82. Idrovo ÁJ, Moreno-Montoya J, Pinzón-Flórez CE. Desempeño de las pruebas combinadas de IgM e IgG rápidas en la vigilancia ocupacional de COVID-19 en empresas colombianas. Biomédica. 2020;40:139–47. | spa |
dcterms.references | 83. Malagón-Rojas JN, Rubio V, Parra-Barrera E. Seroprevalence and seroconversions for SARS-CoV-2 infections in workers at Bogota Airport, Colombia, 2020. J Travel Med [Internet]. 2021 Jan 22; Available from: https://doi.org/10.1093/jtm/taab006 | spa |
dcterms.references | 84. Buss LF, Prete Jr CA, Abrahim CMM, Mendrone Jr A, Salomon T, de Almeida-Neto C, et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science [Internet]. 2020/12/08. 2021 Jan 15;371(6526):288–92. Available from: https://pubmed.ncbi.nlm.nih.gov/33293339 | spa |
dcterms.references | 85. Slute M della. Covid-19, illustrati i risultati dell’indagine di sieroprevalenza [Internet]. Italy; Available from: http://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=dalministero&id=4998 | spa |
dcterms.references | 86. Zyskind I, Rosenberg AZ, Zimmerman J, Naiditch H, Glatt AE, Pinter A, et al. SARS-CoV-2 Seroprevalence and Symptom Onset in Culturally Linked Orthodox Jewish Communities Across Multiple Regions in the United States. JAMA Netw Open [Internet]. 2021 Mar 10;4(3):e212816–e212816. Available from: https://doi.org/10.1001/jamanetworkopen.2021.2816 | spa |
dcterms.references | 87. Wu X, Fu B, Chen L, Feng Y. Serological tests facilitate identification of asymptomatic SARS-CoV-2 infection in Wuhan, China. J Med Virol [Internet]. 2020;92(10):1795–6. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25904 | spa |
dcterms.references | 88. Song S-K, Lee D-H, Nam J-H, Kim K-T, Do J-S, Kang D-W, et al. IgG Seroprevalence of COVID-19 among Individuals without a History of the Coronavirus Disease Infection in Daegu, Korea. J Korean Med Sci [Internet]. 2020 Jul;35(29). Available from: https://doi.org/10.3346/jkms.2020.35.e269 | spa |
dcterms.references | 89. Faccini-Mart\’\inez ÁA, Rivero R, Garay E, Garc\’\ia A, Mattar S, Botero Y, et al. Serological cross-reactivity using a {SARS}-{CoV}-2 {ELISA} test in acute Zika virus infection, Colombia. Int J Infect Dis [Internet]. 2020;101:191–3. Available from: https://doi.org/10.1016%2Fj.ijid.2020.09.1451 | spa |
dcterms.references | 90. Reyes-Vega MF, Soto-Cabezas MG, Cárdenas F, Martel KS, Valle A, Valverde J, et al. SARS-CoV-2 prevalence associated to low socioeconomic status and overcrowding in an LMIC megacity: A population-based seroepidemiological survey in Lima, Peru. EClinicalMedicine. 2021;34:100801. | spa |
dcterms.references | 91. Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet (London, England) [Internet]. 2020/06/11. 2020 Aug 1;396(10247):313–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32534626 | spa |
dcterms.references | 92. Xu X, Sun J, Nie S, Li H, Kong Y, Liang M, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med. 2020;1–3. | spa |
dcterms.references | 93. Bunders MJ, Altfeld M. Implications of sex differences in immunity for SARS-CoV-2 pathogenesis and design of therapeutic interventions. Immunity. 2020; | spa |
dcterms.references | 94. Figar S, Pagotto V, Luna L, Salto J, Manslau MW, Mistchenko A, et al. Community-level SARS-CoV-2 Seroprevalence Survey in urban slum dwellers of Buenos Aires City, Argentina: a participatory research. medRxiv. 2020; | spa |
dcterms.references | 95. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Oto-Rhino-Laryngology. 2020;1–11. | spa |
dcterms.references | 96. Bampoe S, Lucas DN, Neall G, Sceales P, Aggarwal R, Caulfield K, et al. A cross‐sectional study of immune seroconversion to SARS‐CoV‐2 in frontline maternity health professionals. Anaesthesia. 2020;75(12):1614–9. | spa |
dcterms.references | 97. Paolo C, Carmelo S, Marcello M. Ageusia, gastrointestinal symptoms and marked asthenia in late December. A single case report with positive SARS-Cov2 IgG in Italy. Int J Infect Dis. 2020;97:352–3. | spa |
dcterms.references | 98. Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope [Internet]. 2020 Jul 1;130(7):1787. Available from: https://doi.org/10.1002/lary.28692 | spa |
dcterms.references | 99. Lechner M, Chandrasekharan D, Jumani K, Liu J, Gane S, Lund VJ, Philpott C JS. Anosmia as a presenting symptom of SARS-CoV-2 infection in healthcare workers - A systematic review of the literature, case series, and recommendations for clinical assessment and management. Natl Libr Med Pubmed [Internet]. :58(4):394-399. Available from: https://pubmed.ncbi.nlm.nih.gov/32386285/ | spa |
dcterms.references | 100. Vargas-Gandica J, Winter D, Schnippe R, Rodriguez-Morales AG, Mondragon J, Escalera-Antezana JP, et al. Ageusia and anosmia, a common sign of COVID-19? A case series from four countries. J Neurovirol [Internet]. 2020;26(5):785–9. Available from: https://doi.org/10.1007/s13365-020-00875-8 | spa |
dcterms.references | 101. National Statistical Office of England. Coronavirus (COVID-19) Infection Survey: characteristics of people testing positive for COVID-19 in England [Internet]. 27 January 2021; Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19infectionsinthecommunityinengland/characteristicsofpeopletestingpositiveforcovid19inengland27january2021#symptoms-profile-by-cases-com | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: