Publicación:
Pronósticos del precio del ganado de primera calidad en Subastar S.A. - Montería: una comparativa entre modelos de series de tiempo clásicos, redes neuronales artificiales y modelos híbridos

dc.contributor.advisorTreco Hernández, Manuel
dc.contributor.authorMiranda Urango, Yehison Elías
dc.contributor.authorPérez Cuadrado, Isaac Manuel
dc.contributor.educationalvalidatorTreco Hernandez, Manuel
dc.contributor.juryCaicedo Castro, Isaac Bernardo
dc.contributor.juryBru Cordero, Osnamir Elias
dc.date.accessioned2024-12-11T15:11:27Z
dc.date.available2024-12-11T15:11:27Z
dc.date.issued2024-12-09
dc.description.abstractEste estudio analizó y comparó modelos de series de tiempo clásicos, redes neuronales artificiales y métodos híbridos para pronosticar el precio del ganado de primera calidad en Subastar S.A., Montería. Se destacó la importancia económica del sector ganadero en Córdoba y la evolución de la comercialización a través de subastas y plataformas virtuales. Además, se exploró el impacto de la inteligencia artificial en la predicción de precios, con énfasis en la metodología de Box-Jenkins y las redes neuronales. Se encontró que los modelos de redes neuronales híbridos CNN-LSTM y el modelo Transformer fueron los que arrojaron mejores resultados. El objetivo fue identificar el modelo más adecuado para mejorar la planificación económica y reducir riesgos financieros.spa
dc.description.abstractThis study analyzed and compared classical time series models, artificial neural networks, and hybrid methods to forecast the price of prime cattle at Subastar S.A., Montería. The economic importance of the livestock sector in Córdoba and the evolution of commercialization through auctions and virtual platforms was highlighted. Additionally, the impact of artificial intelligence on price prediction was explored, with an emphasis on the Box-Jenkins methodology and neural networks. The study found that hybrid CNN-LSTM neural network models and the Transformer model yielded the best results. The objective was to identify the most suitable model to improve economic planning and reduce financial riskseng
dc.description.degreelevelPregrado
dc.description.degreenameEstadístico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.notesTrabajo presentado como requisito parcial para obtener el titulo de Estadísticospa
dc.description.tableofcontents1. Introducción.spa
dc.description.tableofcontents2. Objetivos.spa
dc.description.tableofcontents3. Marco Teorico.spa
dc.description.tableofcontents4. Materiales y métodos.spa
dc.description.tableofcontents5. Resultadosspa
dc.description.tableofcontents6. Conclusionesspa
dc.description.tableofcontentsA. Anexos: Software utilizadosspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8809
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programEstadística
dc.relation.referencesAnderson, O.D (1976). Time Series Analysis and forecasting( The Box-Jenkins Approach). Butterworth, londres.p.116.
dc.relation.referencesBallesteros, F., y Cogollo, M. (2023). Estructuras híbridas para el modelado y pron´ostico de series temporales: metodologías y aplicaciones.
dc.relation.referencesBox, G. E. P., y Jenkins, G. M. (1976). Time series analysis. Forecasting and control. Holsen-Day series in time series analysis.p.574.
dc.relation.referencesBlyth, C. R. (1972). ≪On Simpson’s Paraclox and the Sure-Thing Principie≫. Journal of the American Statistical Association,V. 67, 338, pp. 364-366.
dc.relation.referencesBrockwell P. J. and Davis R. A. (2016). Introduction to time series and forecasting (3rd ed). New York, USA, Springer.
dc.relation.referencesBrownlee, J. (2017). Long Short-Term Memory Networks With Python, Machine Learning Mastery.
dc.relation.referencesBrownlee, J. (2019). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery.
dc.relation.referencesCaicedo, E y López, J. (2009). Una aproximación práctica a las Redes Neuronales Artificiales. Cali: Universidad del Valle.
dc.relation.referencesChambi, J. y Conde, S. (2021). Modelo de predicción mensual de infección respiratoria aguda (ira) en niños menores de 5 años en la micro red el descanso–cusco, 2014-2019.
dc.relation.referencesCogollo, M. R., Gonz´alez-Parra, G., y Arenas, A. J. (2021). Modeling and forecasting cases of rsv using artificial neural networks. Mathematics, 9(22), 2958.
dc.relation.referencesDorffner, G. (1996), Neural network for time series processing. Technical report, University of Vienna and Autrian research institute for artificial intelligence.
dc.relation.referencesGuerrero, V.(2003). An´alisis estad´ıstico de series de tiempo economicas, 2ª Edici ´on THOMSON. M´exico, 2003. p 107-175.
dc.relation.referencesHaykin, S. S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). Prentice Hall, Englewood Cliffs, NJ.
dc.relation.referencesHermans, M. y Schrauwen, B. (2013). Training and analyzing deep recurrent neural networks, Technical report, Ghent University.
dc.relation.referencesHinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I. y Salakhutdinov, R. (2012), Improving neural networks by preventing co-adaptation of feature detectors, Technical report, Department of Computer Science, University of Toronto.
dc.relation.referencesHyndman, R. y Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.). Australia: OTexts.
dc.relation.referencesHochreiter, S and Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735-1780.
dc.relation.referencesJozefowicz, R, Zaremba, W y Sutskever, I. (2015). “An Empirical Exploration of Recurrent Network Architecture”. En: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume37. ICML’15. Lille,France: JMLR.org, 2342–2350.
dc.relation.referencesKazemi, S. M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J, Thakur, S., Wu, S., Smyth, C., Poupart, P. y Brubaker, M.. (2019). Time2Vec:Learning a Vector Representation of Time. arXiv:1907.05321.
dc.relation.referencesKelleher, J. D. (2019). Deep learning. MIT press.
dc.relation.referencesKnief, U., y Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590.
dc.relation.referencesLindholm, A., Wahlstrom, N., Lindsten, F. & Schon, T. (2019). Supervised machine learning lecture notes for the statistical machine learning course. Technical report, Uppsala University.
dc.relation.referencesLopez, R.(2016). Series de tiempo con Python. Recuperado de https://relopezbriega.github.io/blog/2016/09/26/series-de-tiempo-con-python/
dc.relation.referencesMalhotra, P., Vig, L., Shroff, G. y Agarwal, P. (2015). “Long short term memory networks for anomaly detection in time series”, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 89–94.
dc.relation.referencesOspina, R., Gondim, J. A. M., Leiva, V., y Castro, C. (2023). An overview of forecast analysis with arima models during the covid-19 pandemic: Methodology and case study in brazil. Mathematics, 11(14). Descargado de https://www.mdpi.com 2227-7390/11/14/3069 doi: 10.3390/math11143069.
dc.relation.referencesPeña, D. (2005). Análisis de series temporales. Alianza editorial.
dc.relation.referencesPhi, M. (2018), ‘Illustrated guide to lstm’s and gru’s: A step by step explanation’. https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-stepby- step-explanation-44e9eb85bf21, Web; accedido el 01-07-2020.
dc.relation.referencesSak, H., Senior, A. y Beaufays, F. (2014). “Long short-term memory recurrent neural network architectures for large scale acoustic modeling”. INTERSPEECH pp. 338–342.
dc.relation.referencesT´ellez, C. & Morales, M. (2016). Modelos estad´ısticos lineales. Con aplicaciones en R, Ediciones de la U, Bogot´a.
dc.relation.referencesTrifa, A., Sbai, A. & Chaari, W. (2017). ’Enhancing assessment of personalized multi-agent system through convlstm’, Procedia Computer Science 112, 249–259.
dc.relation.referencesTsay, R. S., y Tiao, G. C. (1984). Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary and nonstationary arma models. Journal of the American Statistical Association, 79(385), 84-96. doi: 10.1080/01621459.1984.10477068.
dc.relation.referencesTomek, W. y Robinson, K. (2005). Agricultural Product Prices. Cornell University Press.
dc.relation.referencesValencia, M., Yañez, C. y Sanchez, L. (2006).Algoritmo blackpropagation para Redes Neuronales: conceptos y aplicaciones. M´exico.
dc.relation.referencesVaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,Kaiser, L. y Polosukhin, I.. Attention Is All You Need. 2017. arXiv: 1706. 03762.
dc.relation.referencesWagner, R. H. (1982).“A noncooperative solution to a two-person bargaining game”. Unpublished paper.
dc.relation.referencesWeaver, R. y W. Natcher,W. (2000). Has market reform exposed farmers to greater price volatility?. In Farm Economics, Cooperative Extension Service, US Department of Agriculture. College Station, PA:Pennsylvania State University.
dc.relation.referencesYang, j., Nguyen, M., San, P., Li, X. y Krishnaswamy, S. (2015). “Deep convolutional neural networks on multichannel time series for human activity recognition”, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence pp. 3995–4001.
dc.relation.referencesYu, G., Feng, H., Feng, S., Zhao, J., y Xu, J. (2021). Forecasting hand-footand- mouth disease cases using wavelet-based sarima–nnar hybrid model. PLoS one, 16(2), e0246673.
dc.relation.referencesYule, G.U. (1927). On a method of investigating the periodicities of disturbed series, with special reference to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society (A), 226, 267-298.
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.keywordsClassic time series modelseng
dc.subject.keywordsMachine Learningeng
dc.subject.keywordsNeural Networkeng
dc.subject.keywordsHybrid modelseng
dc.subject.proposalModelos de series de tiempo clasicosspa
dc.subject.proposalAprendizaje automaticospa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalModelos hibridosspa
dc.titlePronósticos del precio del ganado de primera calidad en Subastar S.A. - Montería: una comparativa entre modelos de series de tiempo clásicos, redes neuronales artificiales y modelos híbridosspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
YEHISON MIRANDA_ISAAC PÉREZ.pdf
Tamaño:
5.12 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FROMATO DE AUTORIZACIÓN.pdf
Tamaño:
351.1 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: