Publicación: Pronósticos del precio del ganado de primera calidad en Subastar S.A. - Montería: una comparativa entre modelos de series de tiempo clásicos, redes neuronales artificiales y modelos híbridos
dc.contributor.advisor | Treco Hernández, Manuel | |
dc.contributor.author | Miranda Urango, Yehison Elías | |
dc.contributor.author | Pérez Cuadrado, Isaac Manuel | |
dc.contributor.educationalvalidator | Treco Hernandez, Manuel | |
dc.contributor.jury | Caicedo Castro, Isaac Bernardo | |
dc.contributor.jury | Bru Cordero, Osnamir Elias | |
dc.date.accessioned | 2024-12-11T15:11:27Z | |
dc.date.available | 2024-12-11T15:11:27Z | |
dc.date.issued | 2024-12-09 | |
dc.description.abstract | Este estudio analizó y comparó modelos de series de tiempo clásicos, redes neuronales artificiales y métodos híbridos para pronosticar el precio del ganado de primera calidad en Subastar S.A., Montería. Se destacó la importancia económica del sector ganadero en Córdoba y la evolución de la comercialización a través de subastas y plataformas virtuales. Además, se exploró el impacto de la inteligencia artificial en la predicción de precios, con énfasis en la metodología de Box-Jenkins y las redes neuronales. Se encontró que los modelos de redes neuronales híbridos CNN-LSTM y el modelo Transformer fueron los que arrojaron mejores resultados. El objetivo fue identificar el modelo más adecuado para mejorar la planificación económica y reducir riesgos financieros. | spa |
dc.description.abstract | This study analyzed and compared classical time series models, artificial neural networks, and hybrid methods to forecast the price of prime cattle at Subastar S.A., Montería. The economic importance of the livestock sector in Córdoba and the evolution of commercialization through auctions and virtual platforms was highlighted. Additionally, the impact of artificial intelligence on price prediction was explored, with an emphasis on the Box-Jenkins methodology and neural networks. The study found that hybrid CNN-LSTM neural network models and the Transformer model yielded the best results. The objective was to identify the most suitable model to improve economic planning and reduce financial risks | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Estadístico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.notes | Trabajo presentado como requisito parcial para obtener el titulo de Estadístico | spa |
dc.description.tableofcontents | 1. Introducción. | spa |
dc.description.tableofcontents | 2. Objetivos. | spa |
dc.description.tableofcontents | 3. Marco Teorico. | spa |
dc.description.tableofcontents | 4. Materiales y métodos. | spa |
dc.description.tableofcontents | 5. Resultados | spa |
dc.description.tableofcontents | 6. Conclusiones | spa |
dc.description.tableofcontents | A. Anexos: Software utilizados | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8809 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Estadística | |
dc.relation.references | Anderson, O.D (1976). Time Series Analysis and forecasting( The Box-Jenkins Approach). Butterworth, londres.p.116. | |
dc.relation.references | Ballesteros, F., y Cogollo, M. (2023). Estructuras híbridas para el modelado y pron´ostico de series temporales: metodologías y aplicaciones. | |
dc.relation.references | Box, G. E. P., y Jenkins, G. M. (1976). Time series analysis. Forecasting and control. Holsen-Day series in time series analysis.p.574. | |
dc.relation.references | Blyth, C. R. (1972). ≪On Simpson’s Paraclox and the Sure-Thing Principie≫. Journal of the American Statistical Association,V. 67, 338, pp. 364-366. | |
dc.relation.references | Brockwell P. J. and Davis R. A. (2016). Introduction to time series and forecasting (3rd ed). New York, USA, Springer. | |
dc.relation.references | Brownlee, J. (2017). Long Short-Term Memory Networks With Python, Machine Learning Mastery. | |
dc.relation.references | Brownlee, J. (2019). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery. | |
dc.relation.references | Caicedo, E y López, J. (2009). Una aproximación práctica a las Redes Neuronales Artificiales. Cali: Universidad del Valle. | |
dc.relation.references | Chambi, J. y Conde, S. (2021). Modelo de predicción mensual de infección respiratoria aguda (ira) en niños menores de 5 años en la micro red el descanso–cusco, 2014-2019. | |
dc.relation.references | Cogollo, M. R., Gonz´alez-Parra, G., y Arenas, A. J. (2021). Modeling and forecasting cases of rsv using artificial neural networks. Mathematics, 9(22), 2958. | |
dc.relation.references | Dorffner, G. (1996), Neural network for time series processing. Technical report, University of Vienna and Autrian research institute for artificial intelligence. | |
dc.relation.references | Guerrero, V.(2003). An´alisis estad´ıstico de series de tiempo economicas, 2ª Edici ´on THOMSON. M´exico, 2003. p 107-175. | |
dc.relation.references | Haykin, S. S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). Prentice Hall, Englewood Cliffs, NJ. | |
dc.relation.references | Hermans, M. y Schrauwen, B. (2013). Training and analyzing deep recurrent neural networks, Technical report, Ghent University. | |
dc.relation.references | Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I. y Salakhutdinov, R. (2012), Improving neural networks by preventing co-adaptation of feature detectors, Technical report, Department of Computer Science, University of Toronto. | |
dc.relation.references | Hyndman, R. y Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.). Australia: OTexts. | |
dc.relation.references | Hochreiter, S and Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735-1780. | |
dc.relation.references | Jozefowicz, R, Zaremba, W y Sutskever, I. (2015). “An Empirical Exploration of Recurrent Network Architecture”. En: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume37. ICML’15. Lille,France: JMLR.org, 2342–2350. | |
dc.relation.references | Kazemi, S. M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J, Thakur, S., Wu, S., Smyth, C., Poupart, P. y Brubaker, M.. (2019). Time2Vec:Learning a Vector Representation of Time. arXiv:1907.05321. | |
dc.relation.references | Kelleher, J. D. (2019). Deep learning. MIT press. | |
dc.relation.references | Knief, U., y Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590. | |
dc.relation.references | Lindholm, A., Wahlstrom, N., Lindsten, F. & Schon, T. (2019). Supervised machine learning lecture notes for the statistical machine learning course. Technical report, Uppsala University. | |
dc.relation.references | Lopez, R.(2016). Series de tiempo con Python. Recuperado de https://relopezbriega.github.io/blog/2016/09/26/series-de-tiempo-con-python/ | |
dc.relation.references | Malhotra, P., Vig, L., Shroff, G. y Agarwal, P. (2015). “Long short term memory networks for anomaly detection in time series”, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. pp. 89–94. | |
dc.relation.references | Ospina, R., Gondim, J. A. M., Leiva, V., y Castro, C. (2023). An overview of forecast analysis with arima models during the covid-19 pandemic: Methodology and case study in brazil. Mathematics, 11(14). Descargado de https://www.mdpi.com 2227-7390/11/14/3069 doi: 10.3390/math11143069. | |
dc.relation.references | Peña, D. (2005). Análisis de series temporales. Alianza editorial. | |
dc.relation.references | Phi, M. (2018), ‘Illustrated guide to lstm’s and gru’s: A step by step explanation’. https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-stepby- step-explanation-44e9eb85bf21, Web; accedido el 01-07-2020. | |
dc.relation.references | Sak, H., Senior, A. y Beaufays, F. (2014). “Long short-term memory recurrent neural network architectures for large scale acoustic modeling”. INTERSPEECH pp. 338–342. | |
dc.relation.references | T´ellez, C. & Morales, M. (2016). Modelos estad´ısticos lineales. Con aplicaciones en R, Ediciones de la U, Bogot´a. | |
dc.relation.references | Trifa, A., Sbai, A. & Chaari, W. (2017). ’Enhancing assessment of personalized multi-agent system through convlstm’, Procedia Computer Science 112, 249–259. | |
dc.relation.references | Tsay, R. S., y Tiao, G. C. (1984). Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary and nonstationary arma models. Journal of the American Statistical Association, 79(385), 84-96. doi: 10.1080/01621459.1984.10477068. | |
dc.relation.references | Tomek, W. y Robinson, K. (2005). Agricultural Product Prices. Cornell University Press. | |
dc.relation.references | Valencia, M., Yañez, C. y Sanchez, L. (2006).Algoritmo blackpropagation para Redes Neuronales: conceptos y aplicaciones. M´exico. | |
dc.relation.references | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,Kaiser, L. y Polosukhin, I.. Attention Is All You Need. 2017. arXiv: 1706. 03762. | |
dc.relation.references | Wagner, R. H. (1982).“A noncooperative solution to a two-person bargaining game”. Unpublished paper. | |
dc.relation.references | Weaver, R. y W. Natcher,W. (2000). Has market reform exposed farmers to greater price volatility?. In Farm Economics, Cooperative Extension Service, US Department of Agriculture. College Station, PA:Pennsylvania State University. | |
dc.relation.references | Yang, j., Nguyen, M., San, P., Li, X. y Krishnaswamy, S. (2015). “Deep convolutional neural networks on multichannel time series for human activity recognition”, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence pp. 3995–4001. | |
dc.relation.references | Yu, G., Feng, H., Feng, S., Zhao, J., y Xu, J. (2021). Forecasting hand-footand- mouth disease cases using wavelet-based sarima–nnar hybrid model. PLoS one, 16(2), e0246673. | |
dc.relation.references | Yule, G.U. (1927). On a method of investigating the periodicities of disturbed series, with special reference to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society (A), 226, 267-298. | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.keywords | Classic time series models | eng |
dc.subject.keywords | Machine Learning | eng |
dc.subject.keywords | Neural Network | eng |
dc.subject.keywords | Hybrid models | eng |
dc.subject.proposal | Modelos de series de tiempo clasicos | spa |
dc.subject.proposal | Aprendizaje automatico | spa |
dc.subject.proposal | Redes neuronales | spa |
dc.subject.proposal | Modelos hibridos | spa |
dc.title | Pronósticos del precio del ganado de primera calidad en Subastar S.A. - Montería: una comparativa entre modelos de series de tiempo clásicos, redes neuronales artificiales y modelos híbridos | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: