Publicación: Revisión del estado del arte en el uso de la exergía como método en la industria específicamente la minimización de exergía destruida
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | spa |
dc.contributor.author | Arrieta León, Juan Aldair | spa |
dc.date.accessioned | 2022-11-18T12:49:28Z | |
dc.date.available | 2022-11-18T12:49:28Z | |
dc.date.issued | 2022-11-16 | |
dc.description.abstract | En la presente monografía se realiza un estudio comparativo sobre revisión del estado del arte en el uso de la exergía como método en la industria específicamente la minimización de exergía destruida reportados en la literatura. La exergía del sistema se define como el mayor trabajo fundamental que se puede hacer en un sistema y un entorno de referencia determinado. Se puede mencionar que la exergía es una herramienta termodinámica útil para lograr la irreversibilidad del sistema. Tratar el entorno de referencia como un estado muerto es fundamental para evaluar el sistema en diferentes condiciones ambientales con el fin de calcular su energía disponible real. Sin embargo, el análisis de exergía por sí solo puede no representar los efectos de por vida de todo el sistema. A partir de esto el análisis exergético basa su aplicación a la investigación de procesos y sistemas les permite aportar mejoras técnicas y un uso más eficiente de los recursos. Estimar las pérdidas de exergía puede identificar posibles ganancias de eficiencia que pueden mejorar el rendimiento del proceso y reducir el impacto ambiental además de esto se discuten técnicas o métodos exergéticos. Se encontró que estos métodos como exergía extendida, el método de exergía acumulada y la evaluación del ciclo de vida exergético permite establecer los efectos de las configuraciones planteadas, en la disminución de los costos exergéticos del sistema en la industria, y de esta forma comprobar que la minimización de la exergía destruida conlleva a una disminución en los costos exergéticos. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.tableofcontents | RESUMEN .............................................................................................................................9 | spa |
dc.description.tableofcontents | ABSTRACT .........................................................................................................................10 | spa |
dc.description.tableofcontents | INTRODUCCIÓN................................................................................................................11 | spa |
dc.description.tableofcontents | OBJETIVOS.........................................................................................................................13 | spa |
dc.description.tableofcontents | 1.1 OBJETIVO GENERAL.........................................................................................13 | spa |
dc.description.tableofcontents | 1.2 OBJETIVOS ESPECIFICOS ................................................................................13 | spa |
dc.description.tableofcontents | 2 DESARROLLO DEL TEMA .......................................................................................14 | spa |
dc.description.tableofcontents | 2.1 La energía ..............................................................................................................14 | spa |
dc.description.tableofcontents | 2.2 El análisis de exergía .............................................................................................16 | spa |
dc.description.tableofcontents | 2.3 Características de exergía ......................................................................................16 | spa |
dc.description.tableofcontents | 2.4 Exergía destruida ...................................................................................................17 | spa |
dc.description.tableofcontents | 2.5 Aplicaciones de la exergía en la industria .............................................................18 | spa |
dc.description.tableofcontents | 2.6 Métodos exegéticos aplicados a la industria..........................................................21 | spa |
dc.description.tableofcontents | CONCLUSIONES................................................................................................................30 | spa |
dc.description.tableofcontents | BIBLIOGRAFÍA..................................................................................................................31 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6823 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Exergetic analysis | eng |
dc.subject.keywords | Exergetic methods | eng |
dc.subject.keywords | Energy | eng |
dc.subject.proposal | Análisis exergético | spa |
dc.subject.proposal | Métodos exergéticos | spa |
dc.subject.proposal | Energía | spa |
dc.title | Revisión del estado del arte en el uso de la exergía como método en la industria específicamente la minimización de exergía destruida | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Açıkkalp, E., Caliskan, H., Hong, H., Piao, H., & Seung, D. (2022). Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings. Applied Energy, 323, 119581. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.119581 | spa |
dcterms.references | Alvarez, J. C., Hatakeyama, K., Carvalho, M., Marçal, R. C., Inche, J., & de Melo, N. (2022). A model for renewable energy-based product innovation based on TRIZ methodology, exergy analysis and knowledge management: Case study. Energy Reports, 8, 1107–1114. https://doi.org/https://doi.org/10.1016/j.egyr.2022.07.110 | spa |
dcterms.references | Cao, Y., Dhahad, H. A., Togun, H., Hussen, H. M., Anqi, A. E., Farouk, N., & Issakhov, A. (2021). Feasibility investigation of a novel geothermal-based integrated energy conversion system: Modified specific exergy costing (M-SPECO) method and optimization. Renewable Energy, 180, 1124–1147. https://doi.org/https://doi.org/10.1016/j.renene.2021.08.075 | spa |
dcterms.references | Cengel, Y. A., & Boles, M. A. (2015). CENGEL EDISI 8. In McGraw-Hill. | spa |
dcterms.references | Cornelissen, R. L., & Hirs, G. G. (2002). The value of the exergetic life cycle assessment besides the LCA. Energy Conversion and Management, 43(9), 1417–1424. https://doi.org/https://doi.org/10.1016/S0196-8904(02)00025-0 | spa |
dcterms.references | Curran, M. A. (2012). Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products. https://doi.org/10.1002/9781118528372 | spa |
dcterms.references | Dewulf, J., Van Langenhove, H., Muys, B., Bruers, S., Bakshi, B. R., Grubb, G. F., Paulus, D. M., & Sciubba, E. (2008). Exergy: Its Potential and Limitations in Environmental Science and Technology. Environmental Science & Technology, 42(7), 2221–2232. https://doi.org/10.1021/es071719a | spa |
dcterms.references | Dincer, I., & Rosen, M. A. (2013). Exergy: Energy, Environment And Sustainable Development (2nd ed.). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/C2010-0- 68369-6 | spa |
dcterms.references | Dincer, I., & Rosen, M. A. (2020). Exergy: Energy, Environment and Sustainable Development. In Exergy: Energy, Environment and Sustainable Development. https://doi.org/10.1016/B978-0-12-824372-5.09986-3 | spa |
dcterms.references | Ehyaei, M. A., Ahmadi, A., & Rosen, M. A. (2019). Energy, exergy, economic and advanced and extended exergy analyses of a wind turbine. Energy Conversion and Management, 183, 369–381. https://doi.org/https://doi.org/10.1016/j.enconman.2019.01.008 | spa |
dcterms.references | Faizollahzadeh Ardabili, S., Najafi, B., Ghaebi, H., Shamshirband, S., & Mostafaeipour, A. (2017). A novel enhanced exergy method in analyzing HVAC system using soft computing approaches: A case study on mushroom growing hall. Journal of Building Engineering, 13, 309–318. https://doi.org/https://doi.org/10.1016/j.jobe.2017.08.008 | spa |
dcterms.references | Hançer Güleryüz, E., & Özen, D. N. (2022). Advanced exergy and exergo-economic analyses of an advanced adiabatic compressed air energy storage system. Journal of Energy Storage, 55, 105845. https://doi.org/https://doi.org/10.1016/j.est.2022.105845 | spa |
dcterms.references | Kumar, R. (2017). A critical review on energy, exergy, exergoeconomic and economic (4- E) analysis of thermal power plants. In Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2016.08.018 | spa |
dcterms.references | Liu, W., Liu, P., Wang, J. B., Zheng, N. B., & Liu, Z. C. (2018). Exergy destruction minimization: A principle to convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 122, 11–21. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.048 | spa |
dcterms.references | Lv, J. Y., Liu, Z. C., & Liu, W. (2020). Active design for the tube insert of centerconnected deflectors based on the principle of exergy destruction minimization. International Journal of Heat and Mass Transfer, 150, 119260. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2019.119260 | spa |
dcterms.references | Mojaver, P., Jafarmadar, S., Khalilarya, S., & Chitsaz, A. (2019). Study of synthesis gas composition, exergy assessment, and multi-criteria decision-making analysis of fluidized bed gasifier. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.08.240 | spa |
dcterms.references | Moran, M. J., & Shapiro, H. N. (2006). Fundamentals of Engineering Thermodynamics, 5th Edition. In Nature. | spa |
dcterms.references | Niembro García, I. J., & González Benítez, M. (2012). Energía y Exergía: Enfoques hacia la Sostenibilidad mediante el Análisis de Ciclo de Vida. | spa |
dcterms.references | Niloufar Salehi, Morteza Mahmoudi, Alireza Bazargan, A., & McKay, G. (2018). Exergy and Life Cycle-Based Analysis. In: Hussain C. (eds) Handbook of Environmental Materials Management. Springer, Cham. In Handbook of Environmental Materials Management. https://doi.org/https://doi.org/10.1007/978-3-319-58538-3_84-2 | spa |
dcterms.references | Park, S. R., Pandey, A. K., Tyagi, V. V., & Tyagi, S. K. (2014). Energy and exergy analysis of typical renewable energy systems. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2013.09.011 | spa |
dcterms.references | Rhenals Julio, J., & Torres Montes, M. (2016). Análisis exergoeconómico de la gasificación de tusa de maíz empleando vapor de agua como agente gasificante, integrado a un sistema de generación de potencia. universidad de cordoba. | spa |
dcterms.references | Sayadi, S., Tsatsaronis, G., Morosuk, T., Baranski, M., Sangi, R., & Müller, D. (2019). Exergy-based control strategies for the efficient operation of building energy systems. Journal of Cleaner Production, 241, 118277. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118277 | spa |
dcterms.references | Silva-Llanca, L., & Inostroza-Lagos, S. (2021). Optimum power generation assessment in an H-Darrieus vertical axis wind turbine via Exergy Destruction Minimization. Energy Conversion and Management, 243, 114312. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114312 | spa |
dcterms.references | Yang, Q., Zhang, Z., Fan, Y., Chu, G., Zhang, D., & Yu, J. (2022). Advanced exergy analysis and optimization of a CO2 to methanol process based on rigorous modeling and simulation. Fuel, 325, 124944. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124944 | spa |
dcterms.references | Yang, Y., Wang, L., Dong, C., Xu, G., Morosuk, T., & Tsatsaronis, G. (2013). Comprehensive exergy-based evaluation and parametric study of a coal-fired ultrasupercritical power plant. Applied Energy, 112, 1087–1099. https://doi.org/https://doi.org/10.1016/j.apenergy.2012.12.063 | spa |
dcterms.references | Ye, X. (2008). “Asignación de Costos en Cogeneración con Método de Exergía Reducida y Método Simplificado de Exergía Reducida”. Actas del Congreso y Exposición Internacional de Ingeniería Mecánica ASME 2003 . Sistemas Energéticos Avanzados. https://doi.org/https://doi.org/10.1115/IMECE2003-41699 | spa |
dcterms.references | Zhang, H., Liu, X., Liu, Y., Duan, C., Dou, Z., & Qin, J. (2021). Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant. Energy, 229, 120641. https://doi.org/https://doi.org/10.1016/j.energy.2021.120641 | spa |
dcterms.references | Zhang, Y., Yao, E., Tian, Z., Gao, W., & Yang, K. (2021). Exergy destruction analysis of a low-temperature Compressed Carbon dioxide Energy Storage system based on conventional and advanced exergy methods. Applied Thermal Engineering, 185, 116421. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116421 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: