Publicación:
Atrato y salud: resultados del proyecto 849-2018

dc.contributor.editorMarrugo Negrete, José Luis
dc.contributor.editorPaternina Uribe, Roberth
dc.contributor.editorSalas Moreno, Manuel Haminton
dc.contributor.editorSalazar Camacho, Carlos Adolfo
dc.contributor.editorPalacios Torres, Yuber
dc.contributor.otherDurante Yánez, Elvia Valeria
dc.contributor.otherMartínez Macea, María Alejandra
dc.date.accessioned2022-09-29T17:04:37Z
dc.date.available2022-09-29T17:04:37Z
dc.date.issued2022-09-28
dc.description.abstractLa minería es una de las actividades económicas más antigua en la humanidad, se desarrolla fundamentalmente en tres dimensiones: gran minería, mediana minería y pequeña minería. Según un informe de la Organización Internacional del Trabajo (OIT) del 2004, la minería del oro artesanal y en pequeña escala produce entre el 20 y el 30 % del oro del mundo, es decir, entre 500 y 800 toneladas anuales (Cano, 2012).spa
dc.description.tableofcontentsPRÓLOGO ................................................10spa
dc.description.tableofcontentsCAPÍTULO 1. EXPOSICIÓN HUMANA AL MERCURIO EN UNA POBLACIÓN AL NORTE DE COLOMBIA, CUENCA DEL RÍO ATRATO María Claudia Kerguelén Sánchez; Roberth Paternina-Uribe; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete........................13spa
dc.description.tableofcontentsCAPÍTULO 2. EXPOSICIÓN A ELEMENTOS POTENCIALMENTE TÓXICOS EN POBLACIÓN INFANTIL (5-14 AÑOS) PERTENECIENTE A LA CUENCA DEL RÍO ATRATO, COLOMBIA Eurípides Palacios Valoyes; Manual Salas-Moreno; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete....................................................47spa
dc.description.tableofcontentsCAPÍTULO 3. EVALUACIÓN DEL RIESGO PARA LA SALUD HUMANA ASOCIADO AL CONSUMO DE ALIMENTOS CONTAMINADOS CON METALES PESADOS EN HABITANTES DE LA CUENCA DEL RÍO ATRATO, COLOMBIA Manuel Salas-Moreno; Gabriel Caicedo-Rivas; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete......................................................69spa
dc.description.tableofcontentsCAPÍTULO 4. IMPLEMENTACIÓN DE PLATAFORMA TECNOLÓGICA COMO SISTEMA DE ALERTA TEMPRANA PARA LA REDUCCIÓN DEL RIESGO A LA SALUD HUMANA ORIGINADO POR EXPOSICIÓN A ELEMENTOS POTENCIALMENTE TÓXICOS EN LA CUENCA DEL RÍO ATRATO, COLOMBIA Carlos Molina Polo; Elvia Valeria Durante-Yánez; María Alejandra MartínezMacea; Javier Alonso Ruiz-Guzmán y José Luis Marrugo-Negrete.......................................................119spa
dc.description.tableofcontentsCAPÍTULO 5. ESTRATEGIAS PARA REDUCIR LA INGESTA DE MERCURIO A TRAVÉS DEL CONSUMO DE PESCADO EN ZONAS CONTAMINADAS DE COLOMBIA Shirly Paola Vargas-Licona; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete..........................................................................145spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.isbn978-958-5104-47-1
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6683
dc.language.isospaspa
dc.publisherFondo Editorial - Universidad de Córdobaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleAtrato y salud: resultados del proyecto 849-2018spa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttps://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbbassi, A., Mahmoudi, H., Zaouali, W., M’Rabet, Y., Casabianca, H., & Hosni, K. (2018). Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J. Food Sci. Technol. 55, 3065 – 3076.spa
dcterms.referencesAbdalla, F., Bellé, L., Bona, K., Bitencourt, P., Pigatto, A., & Moretto, M. (2010). Allium sativum L. extract prevents methyl mercury-induced cytotoxicity in peripheral blood leukocytes (LS), Food Chem. Toxicol. 48, 417– 421. https:// doi.org/10.1016 / j.fct.2009.10.033spa
dcterms.referencesAfonso, C., Costa, S., Cardoso, C., Bandarra, N., Batista, I., Coelho, I., Castanheira, I., & Nunes, M. (2015). Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chem. 170 : 249 – 256. https://doi.org/10.1016/j.foodchem.2014.08.044.spa
dcterms.referencesAgarwal, R., Goel, S. K., Chandra, R., & Behari, J. R. (2010). Role of vitamin E in preventing acute mercury toxicity in rat. Environmental Toxicology and Pharmacology, 29(1), 70-78. https://doi.org/10.1016/j.etap.2009.10.003spa
dcterms.referencesAl-Osaimi, M., El-Ansary,A., Al-Daihan, S., Bhat,R., Ben Bacha,A. (2018). Therapeutic and protective potency of bee pollen against neurotoxic effects induced by prenatal exposure of rats to methyl mercury, J. Mol. Neurosci. 65, 327 – 335. https://doi.org/10.1007/s12031-018-1107-1spa
dcterms.referencesAmlund, H., Lundebye, A., Boyle, D., & Ellingsen, S. (2015). Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio). Aquatic Toxicology. 158, 211 – 217. https://doi. org/10.1016/j.aquatox.2014.11.010spa
dcterms.referencesArroyo-Abad, U., Pfeifer, M., Mothes, S., Staerk, H., Piechotta, C., Mattusch, J., & Reemtsma, T. (2016). Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany). Environ. Pollut. 208, 458 - 466. https://doi.org/10.1016/j.envpol.2015.10.015spa
dcterms.referencesAtehortúa, A., Velásquez, C., & López, B. (2017). Caracterización de diversas especies de peces como fuente de PUFAs y omega 3 según su perfil de ácidos grasos. Perspectivas En Nutrición Humana. 19, 93 – 108. https://doi.org/10.17533/ udea.penh.v19n1a08spa
dcterms.referencesAtmaca, G. (2004). Antioxidant effects of sulphur-containing amino acids. Yonsei Medical Journal. 45, 776 – 788. https://doi.org/10.3349/ymj.2004.45.5.776spa
dcterms.referencesBastos, W., De Almeida, R., Dórea, J., & Barbosa, A. (2007). Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon). Ecotoxicology. 16 (3), 341 – 346. https://doi.org/10.1007/s10646- 007-0138-0spa
dcterms.referencesBehall, K., & Reiser, S. (2009). Effects of pectin on human metabolism. In M. Fishman, & J. Jen (Eds.), Chemistry and function of pectins (pp. 248 - 265). Washington DC: American Chemical Society. ACS Symposium Series, 310.spa
dcterms.referencesBekhet, G., Al-kahtani, M., & Abdel-moneim, A. (2013). The protective effects of vitamin C and folic acid against methylmercury teratogenicity in chick embryo. Journal of Cell and Animal Biology. 7, 77 – 84. https://doi.org/10.5897/JCAB2013.0368spa
dcterms.referencesBelzile, N., Chen, Y., Yang, D., Truong, H., & Zhao, Q. (2009). Selenium bioaccumulation in freshwater organisms and antagonistic effect against mercury assimilation selenium bioaccumulation in Freshwater. Environmental Bioindicators. 4 (3) : 203 – 221. https://doi.org/10.1080/15555270903143408spa
dcterms.referencesBernardi, J., Escobar, R., Ferreira, C., Silveira, P. (2012). Fetal and neonatal levels of omega-3: efects on neurodevelopment, nutrition, and growth. Sci. World J. 202473. https://doi.org/10.1100/2012/202473spa
dcterms.referencesBeutel, M., Dent, S., Newcombe, R., & Möller, G. (2019). Mercury removal from municipal secondary effluent with hydrous ferric oxide reactive filtration. Water Environment Research. 91 (2): 132 – 143. https://doi.org/10.1002/wer.1007spa
dcterms.referencesBeyhan, Ö., Elmastas, M., & Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J. Med. Plants Res. 4, 1065 – 1072.spa
dcterms.referencesBjørklund, G., Aaseth, J., Ajsuvakova, O., Nikonorov, A., Skalny, A., Skalnaya, M., & Tinkov, A. (2017). Molecular interaction between mercury and selenium in neurotoxicity. Coordination Chemistry Reviews. 332, 30 – 37. https://doi. org/10.1016/j.ccr.2016.10.009spa
dcterms.referencesBlack, P., Niu, L., Sachdeva, M., Lean, D., Poon, R., Bowers, W., Chan, H., Arnason, J., & Pelletier, G. (2011). Modulation of the effects of methylmercury on rat neurodevelopment by co-exposure with Labrador tea (Rhododendron tomentosum ssp. subarcticum). Food Chem. Toxicol. 49 : 2336 – 2342. https:// doi.org/10.1016/j.fct.2011.06.035.spa
dcterms.referencesBourdineaud, J., Marumoto, M., Yasutake, A., & Fujimura, M. (2012). Dietary mercury exposure resulted in behavioral differences in mice contaminated with fish-associated methylmercury compared to methylmercury chloride added to diet. Journal of Biomedicine and Biotechnology. http://dx.doi. org/10.1155/2012/681016.spa
dcterms.referencesBrandon, E., Oomen, A., Rompelberg, C., Versantvoort, C., Van-Engelen, J. & Sips, A. (2006). Consumer product in vitro digestion model: bioaccessibility of contaminants and its application in risk assessment. Regul. Toxicol. Pharmacol. 44, 161–171. https://doi.org/10.1016/j.yrtph.2005.10.002spa
dcterms.referencesBudtz, E.; Grandjean, P.; Jørgensen, P.; Weihe, P. & Keiding, N. Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages. Environ Res 2004, 95:3, 385–393. https://doi.org/10.1016/j. envres.2003.11.001spa
dcterms.referencesCanuel, R., De Grosbois, S., Lucotte, M., Atikessé, L., Larose, C., & Rheault, I. (2006). New evidence on the effects of tea on mercury metabolism in humans. Arch. Environ. Occup. Health. 61 : 232 – 238. https://doi.org/10.3200/AEOH.61.5.232-238.spa
dcterms.referencesCardoso, C., Bernardo, I., Bandarra, N., Martins, L., & Afonso, C. (2018). Portuguese preschool children: Benefit (EPA + DHA and Se) and risk (MeHg) assessment through the consumption of selected fi sh species. Food and Chemical Toxicology. 115, 306 – 314. https://doi.org/10.1016/j.fct.2018.03.022spa
dcterms.referencesCarwile, J., Butler, L., Janulewicz, P., Winter, M., & Aschengrau, A. (2016). Childhood fish consumption and learning and behavioral disorders. Int. J. Environ. Res. Publ. Health. 13, 1069. https://doi.org/10.3390/ijerph13111069spa
dcterms.referencesCassidy, D.P.; Hampton, D.R. & Kohler, S.L. (2002). Development of Innovative Remedial Methods for PBT-Contaminated Sediments in the Great Lakes Drainage Basin: Report for the Michigan Department of Environmental Quality. Michigan Great Lakes Protection Fund.spa
dcterms.referencesChang, J., Zhou, Y., Wang, Q., Aschner, M., & Lu, R. (2019). Plant components can reduce methylmercury toxication : A mini-review. BBA - General Subjects. 0 – 1. https://doi.org/10.1016/j.bbagen.2019.01.012spa
dcterms.referencesChapman, L., & Chan, H. (2000). The influence of nutrition on methylmercury intoxication. Environ. Health Perspect.108, 29 – 56. https://doi.org/10.1289/ ehp.00108s129spa
dcterms.referencesChaquilla-Quilca, G., Balandrán-Quintana, R., Mendoza-Wilson, A., Mercado-Ruíz, J. (2018). Properties and application possibilities of wheat bran proteins. Biotecnología y ciencias agropecuaria. 12 (2): 137 - 147.spa
dcterms.referencesChen, M., Hsieh, Y., Hwang, J., Jan, H., Hsieh, S., Lin, S., Lai, C. (2015). Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2. Tumor Biology. 36 (5) : 3407 - 3415. https://doi.org/10.1007/s13277-014-2975-9spa
dcterms.referencesChortek, E. (2017). Remediation Strategies for Mercury Contaminated Lakes and Reservoirs Within the State of California. [Project/Capstone: Master of Science in Environmental Management]. College of Arts and Sciences, Environmental Management, University of San Francisco. p.691. https://repository.usfca.edu/ capstone/691.spa
dcterms.referencesChristinal, J., & Sumathi, T. (2013).Efect of Bacopa monniera extract on methylmercuryinduced behavioral and histopathological changes in rats, Biol. Trace Elem. Res. 155, 56 – 64. https://doi.org/10.1007/s12011-013-9756-yspa
dcterms.referencesCisneros-Montemayor, A.,Pauly,D.,Weatherdon,L., & Ota,Y. (2016). A global estimate of seafood consumption by coastal Indigenous peoples. PLoS One. 11: 0166681–16. https://doi.org/10.1371/journal.pone.0166681.spa
dcterms.referencesClarkson, T., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology. 36 (8): 609 – 662. https://doi. org/10.1080/10408440600845619spa
dcterms.referencesCosta, S., Afonso, C., Cardoso, C., Batista, I., Chaveiro, N., Nunes, M., & Bandarra, N. (2015). Fatty acids, mercury, and methylmercury bioaccessibility in salmon (Salmo salar) using an in vitro model: efect of culinary treatment. Food Chem. 185, 268 – 276. https://doi.org/10.1016/j.foodchem.2015.03.141spa
dcterms.referencesCrespo-López, M., Macêdo, G., Pereira, S., Arrifano, G., Picanço-Diniz, D., M. do Nascimento, J., & Herculano, H. (2009). Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms, Pharmacological Research. 60, 212 – 220. https://doi.org/10.1016/j.phrs.2009.02.011spa
dcterms.referencesDórea, J. (2004). Cassava cyanogens and fishmercury are highbut safely consumed in the diet of native Amazonians, Ecotoxicology and Environmental Safety. 57, 248 – 256. https://doi.org/10.1016/j.ecoenv.2003.12.008.spa
dcterms.referencesEagles-Smith, C., Silbergeld, E., Basu, N., Bustamante, P., Diaz-Barriga, F., Hopkins, W., Kidd, K., Nyland, J. (2018). Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio. 47, 170 – 197. https:// doi.org/10.1007/s13280-017-1011-xspa
dcterms.referencesEuropean Food Safety Authority. (2012). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal. 10 (12): 29 - 85. https://doi.org/10.2903/j.efsa.2012.2985spa
dcterms.referencesEuropean Parliament, & Council Of The European Union. (2008) Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Official Journal of the European Union. 354, 31.12.2008, pp. 16 - 33.spa
dcterms.referencesFaroon, O., Ashizawa, A., Wright, S., Tucker, P., Jenkins, K., & Ingerman, L. (2012). Toxicological Profile for Cadmium. US Dep Heal Hum Serv. 487. Recuperado de: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdfspa
dcterms.referencesFood and Agriculture Organization. (2016). Resumen El estado mundial de la pesca y la acuicultura. Contribución a la seguridad alimentaria y la nutrición para todos. 34 (7): 23. https://doi.org/978-92-5-306675-9spa
dcterms.referencesFood and Agriculture Organization. (2017). El Estado de la Seguridad Alimentaria y la Nutrición en el mundo 2017. http://www.fao.org/3/a-I7695s.pdfspa
dcterms.referencesFood and Agriculture Organization. (2018). The State of World Fisheries and Aquaculture-2018 FAO Statistics and Information Service of the Fisheries and Aquaculture Department. Food and Agriculture Organization of the United Nations, Rome.spa
dcterms.referencesFood Standards Australia & New Zealand. (2014). Food Standards Code. http://www. foodstandards.gov.auspa
dcterms.referencesGagné, D., Lauzière, J., Blanchet, R., Vézina, C., Vaissière, E., Ayotte, P., & Turgeon, H. (2013). Consumption of tomato products is associated with lower blood mercury levels in Inuit preschool children. Food Chem Toxicol. 51, 404 - 410. https://doi.org/10.1016/j.fct.2012.10.031spa
dcterms.referencesGale, C., Marriott, L., Martyn, C., Limond, J., Inskip, H., Godfrey, K., Law, C., Cooper, C., West, C., & Robinson, S., Group for Southampton Women’s survey study. (2010). Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropsychological function in childhood. Arch. Dis. Child. 95, 174 – 179. http://dx.doi.org/10.1136/adc.2009.165050spa
dcterms.referencesGirard, C., Charette, T., Leclerc, M., Shapiro, B., & Amyot, M. (2018). Cooking and coingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. Science of the Total Environment. 863 – 874. https://doi.org/10.1016/j.scitotenv.2017.10.236spa
dcterms.referencesGropper, S., Smith, J., & Groff, J. (2009). Advanced nutrition and human metabolism (5th ed.) Wadsworth, Cengage Learning, Belmont, CA, (Chapter 4).spa
dcterms.referencesGülçin, I., Huyut, Z., Elmastas¸ , M., & Aboul-Eneind, H. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry. 3, 43 - 53. https://doi.org/10.1016/j.arabjc.2009.12.008spa
dcterms.referencesGusso-Choueri, P., Araújo, G., Cruz, A., Stremel, T., Campos, S., Abessa, D., & Choueri, R. (2018). Metals and arsenic in fish from a Ramsar site under past and present human pressures: Consumption risk factors to the local population. Science of the Total Environment. 628 – 629, 621 – 630. https://doi.org/10.1016/j. scitotenv.2018.02.005spa
dcterms.referencesHa, E., Basu, N., Bose-O’Reilly, S., Dórea, J., McSorley, E., Sakamoto, M., & Chan, H. (2016). Current progress on understanding the impact of mercury on human health. Environ. Res. 152, 419 – 433. https://doi.org/10.1016/j. envres.2016.06.042.spa
dcterms.referencesHajeb, P., & Jinap, S. (2012). Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride. Journal of agricultural and food chemistry, 60(23), 6069-6076. https://doi.org/10.1021/jf300582jspa
dcterms.referencesHåkanson, L., Andersson, P., Andersson, T., Bengtsson, Å., Grahn, P., Johansson, J., Kvarnäs, H., Lindgren, G., & Nilsson, Å. (1990). Åtgärder mot höga kvicksilverhalter i insjöfisk. Slutrapport för kvicksilverdelen av Projektet Kalkning-Kvicksilver-Cesium (Measures to reduce mercury in lake fish. Final report from the Liming-Mercury-Cesium Project). Swedish Environmental Protection Board Report. 3818, p. 189.spa
dcterms.referencesHanafy, S., & Soltan, M. (2004). Effects of Vitamin E pretreatment on subacute toxicity of mixture of Co , Pb , and Hg nitrate-induced nephrotoxicity in rats. Environmental Toxicology and Pharmacology. 17, 159 – 167. https://doi. org/10.1016/j.etap.2004.04.006spa
dcterms.referencesHarsha, S., & Anilakumar, K. (2014). In vitro free radical scavenging and DNA damage protective property of Coriandrum sativum L. leaves extract. J. Food Sci. Technol. 51, 1533 – 1539. https://doi.org/10.1007/s13197-012-0648-5spa
dcterms.referencesHe, M., Ke, C., Wang, W. (2010). Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species. J. Agric. Food Chem. 58, 3517 –3523. https://doi.org/10.1021/jf100227n.spa
dcterms.referencesHealth Canada. (2008). Mercury in fish: Consumption Advice: Making informed Decisions about fish. Retrieved from http://www.hc-sc.gc.ca/Fn-an/securit/ chemchim/environ/mercur/cons-adv-etud-eng.phpspa
dcterms.referencesHsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science and Technology. 47 (6) : 2441 - 2456. https://doi.org/10.1021/es304370gspa
dcterms.referencesHuang, S., Strathe, A., Fadel, J., Johnson, M., Lin, P., Liu, T., & Hung, S. (2013). The interactive effects of selenomethionine and methylmercury on their absorption, disposition ,and elimination in juvenile white sturgeon. Aquatic Toxicology. 126, 274 – 282. https://doi.org/10.1016/j.aquatox.2012.09.018spa
dcterms.referencesHuang, S., Weng, K., Ger, L., Han, H., Liou, H., Lin, C., … Wu, M. (2017). Influence of seafood and vitamin supplementation on maternal and umbilical cord blood mercury concentration. Journal of the Chinese Medical Association. 80, 307– 312. https://doi.org/10.1016/j.jcma.2016.11.005spa
dcterms.referencesJacob, S., & Sumathi, T. (2018). Fisetin impedes developmental methylmercury neurotoxicity via downregulating apoptotic signalling pathway and upregulating Rho GTPase signalling pathway in hippocampus of F generation rats, Int. J. Dev. Neurosci. 69, 88–96. https://doi.org/10.1016/j.ijdevneu.2018.07.002spa
dcterms.referencesJadán-Piedra, C., Sánchez, V., Vélez, D., & Devesa, V. (2016). Reduction of mercury bioaccessibility using dietary strategies. LWT - Food Science and Technology. 71, 10–16. https://doi.org/10.1016/j.lwt.2016.03.015spa
dcterms.referencesJadán-Piedra, C., Vélez, D., & Devesa, V. (2018). In vitro evaluation of dietary compounds to reduce mercury bioavailability. Food Chemistry. 248, 353 – 359. https://doi.org/10.1016/j.foodchem.2017.12.012spa
dcterms.referencesJanle, E., Freiser, H., Manganais, C., Chen, T., Craig, B., Santerre, C. (2015). Green tea increases the concentration of total mercury in the blood of rats following an oral fish tissue bolus. Biomed. Res. Int. 1–6. https://doi.org/10.1155/2015/320936.spa
dcterms.referencesJoint FAO/WHO Expert Committee on Food Additives. (2006). Summary and Conclusions. Available online: http://www.fao.org/3/a-at874e.pdfspa
dcterms.referencesJordan, M., Stewart, R., Eagles-Smith, C., Strecker, A. (2019). Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton. Science of the Total Environment. 667 601–612. https://doi. org/10.1016/j.scitotenv.2019.02.259spa
dcterms.referencesJoshi, D., Mittal, D., Bhadauria, M., Nirala, S., Shrivastava, S., & Shukla, S. (2010). Role of micronutrients against dimethylmercury intoxication in male rats. Environmental Toxicology and Pharmacology. 29, 97–103. https://doi.org/10.1016/j.etap.2009.11.002spa
dcterms.referencesKarri, V., Kumar, V., Ramos, D., Oliveira, E., & Schuhmacher, M. (2018). Comparative in vitro toxicity evaluation of heavy metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res. 184 (1) : 226-239. https://doi.org/10.1007/s12011-017-1177-xspa
dcterms.referencesKarunasagar, D., Krishna, M., Rao, S., & Arunachalam, J. (2005). Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum. Journal of Hazardous Materials. 118, 133–139. https://doi.org/10.1016/j.jhazmat.2004.10.021spa
dcterms.referencesKaur, N., Chugh, V., Gupta A. (2012). Essential fatty acids as functional components of foods- a review. J Food Sci Technol. 51 (10), 2289-2303. https://doi.org/10.1007/ s13197-012-0677-0spa
dcterms.referencesKawaguchi, T., Ueno, T., Nogata, Y., Hayakawa, M., Koga, H., & Torimura, T. (2017). Wheat-bran autolytic peptides containing a branched-chain amino acid attenuate non-alcoholic steatohepatitis via the suppression of oxidative stress and the upregulation of AMPK/ACC in high-fat diet-fed mice. International Journal of Molecular Medicine. 39(2) : 407-414. https://doi.org/10.3892/ ijmm.2016.2831spa
dcterms.referencesKim, H., Kim, K., Hwang, J., Ha, E., Park, H., & Ha, M., et al. (2013). Relation between serum folate status and blood mercury concentrations in pregnant women. Nutrition. 29:514 8. https://doi.org/10.1016/j.nut.2012.08.012spa
dcterms.referencesKim, J., Han, M., & Nili, M. (2011). Effects of N-acetyl-L-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation. Chemosphere. 85, 1635–1638. https://doi.org/10.1016/j.chemosphere.2011.08.029spa
dcterms.referencesKim, K., Kabir, E., & Jahan, S. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials. 306, 376 – 385. https://doi.org/10.1016/j.jhazmat.2015.11.031spa
dcterms.referencesLaird, B., Chan, H. (2013). Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada. Food Chem. Toxicol. 1–31 https://doi.org/10.1016/j.fct.2013.04.033.spa
dcterms.referencesLee, C., Lim, C., Gatlin, I., Webster, C. (2015). Dietary Nutrients, Additives, and Fish Health. John Wiley & Sons,Inc., Hoboken, NJ, USA, pp.151–194.spa
dcterms.referencesLee, J., Kang, H., Roh, J. (1999). Protective efects of garlic juice against embryotoxicity of methylmercuric chloride administered to pregnant Fischer 344 rats, Yonsei Med. J. 40, 483–489. https://doi.org/10.3349/ymj.1999.40.5.483spa
dcterms.referencesLee, J., Moniruzzaman, M., Yun, H., Lee, S., Park, Y., & Bai, S. (2016). Dietary vitamin C reduced mercury contents in the tissues of juvenile olive flounder (Paralichthys olivaceus) exposed with and without mercury. Environmental Toxicology and Pharmacology. 45, 8–14. https://doi.org/10.1016/j.etap.2016.05.009spa
dcterms.referencesLino, A., Kasper, D., Guida, Y., Thomaz, J., & Malm, O. (2018). Mercury and selenium in fi shes from the Tapajós River in the Brazilian Amazon : An evaluation of human exposure. Journal of Trace Elements in Medicine and Biology. 48, 196–201. https://doi.org/10.1016/j.jtemb.2018.04.012spa
dcterms.referencesLiu, W., Xu, Z., Deng, Y., Xu, B., Yang, H., Wei, Y., Feng, S. (2014a). Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective efects of tea polyphenols, Environ. Toxicol. 29, 269–283. https://doi. org/10.1002 / tox.21755spa
dcterms.referencesLiu, W., Xu, Z.,Yang, T., Deng, Y., Xu, B., Feng, S., Li, Y. (2014b).The protective role of tea polyphenols against methylmercury-induced neurotoxic efects in rat cerebral cortex via inhibition of oxidative stress, Free Radic. Res. 48, 849–863. https:// doi.org/10.3109/10715762.2014.916039spa
dcterms.referencesMahar, A., Wang,P., Ali, A., Awasthi, M., Lahori, A., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils : A review. Ecotoxicology and Environmental Safety, 126 : 111 - 21. https://doi.org/10.1016/j.ecoenv.2015.12.023spa
dcterms.referencesMailman, M., Stepnuk, L., Cicek, N., & Bodaly, R. D. (2006). Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review. Science of the Total Environment,68(1), 224-235. https://doi.org/10.1016/j. scitotenv.2005.09.041spa
dcterms.referencesMarrugo-Negrete, J., Benitez, L., & Olivero, J. (2008). Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol. 55 (2) : 305–316. https:// doi.org/10.1007/s00244-007-9129-7.spa
dcterms.referencesMarrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., PinedoHernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere. 167: 188 – 192. http://doi.org/10.1016/j.chemosphere.2016.09.130spa
dcterms.referencesMarrugo-Negrete, J., Vargas-Licona, S., Ruiz-Guzmán, J. A., Marrugo-Madrid, S., Bravo, A. G., & Díez, S. (2020). Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia. Environmental research, 182, 109050. https://doi.org/10.1016/j.envres.2019.109050spa
dcterms.referencesMatthews, D., Babcock, D., Nolan, J., Prestigiacomo, A., Effler, S., Driscoll, C., Todorova, S., & Kuhr, K. (2013). Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environmental Research. 125, 52 – 60. https://doi.org/10.1016/j.envres.2013.03.011spa
dcterms.referencesMbanga, O., Ncube, S., Tutu, H., Chimuka, L., & Cukrowska, E. (2019). Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environmental monitoring and assessment, 191(3), 1-12. https://doi. org/10.1007/s10661-019-7329-zspa
dcterms.referencesMcCord, S., Beutel, M., Dent, S., & Schladow, S. (2016). Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California. Water Resources Research. 52: 7726-7743. https://doi.org/10.1002/2016WR019061spa
dcterms.referencesMiskimmin, B., Rudd, J., & Kelly, C. (1992). Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can J Fish Aquat Sci. 49, 17– 22. https://doi.org/10.1139/f92-002spa
dcterms.referencesMok, W., Hatanaka, Y., Seoka, M., Itoh, T., Tsukamasa, Y., & Ando, M. (2014). Effects of additional cysteine in fish diet on mercury concentration. Food Chemistry. 147, 340–345. https://doi.org/10.1016/j.foodchem.2013.09.157spa
dcterms.referencesMolan, A., Flanagan, J., Wei, W., Moughan, P. (2009). Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem. 114: 829–835. https://doi.org/10.1016/j.foodchem.2008.10.028.spa
dcterms.referencesMoniruzzaman, M., Lee, J., Lee, J., Won, S., Damusaru, J., & Bai, S. (2017). Interactive effect of dietary vitamin E and inorganic mercury on growth performance and bioaccumulation of mercury in juvenile olive fl ounder , Paralichthys olivaceus treated with mercuric chloride. Animal Nutrition. 3, 276–283. https://doi. org/10.1016/j.aninu.2017.07.001spa
dcterms.referencesMurthy, H., & Gatlin, D. (2006). Sulfur amino acid utilization: Important element of fish nutrition varies by species. Global Aquaculture Advocate. 9, 68–69.spa
dcterms.referencesNawab, J., Khan, S., & Xiaoping, W. (2018). Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen. Chemosphere. 202, 154–164. https://doi.org/10.1016/j. chemosphere.2018.03.082spa
dcterms.referencesNgaisyah, D.,& Rohman, A. (2019). Effect of Fish Consumption as a Local Food Alternative for the Reduction of Stunting in Toddlers. Pakistan Journal of Nutrition. 18, 496-500. https://doi.org/10.3923/pjn.2019.496.500spa
dcterms.referencesNogata, Y. & Nagamine, T. (2009). Production of free amino acids and γ-aminobutyric acid by autolysis reactions from wheat bran. Journal of Agricultural and Food Chemistry. 57(4): 1331-1336. https://doi.org/10.1021/jf802420wspa
dcterms.referencesNunes, E., Cavaco, A. & Carvalho, C. (2014). Children’s health risk and benefits of fish consumption: risk indices based on a diet diary follow-up of two weeks. J Toxicol Environ Health. 77 (1- 3): 103-114. https://doi.org/10.1080/15287394 .2014.866926spa
dcterms.referencesOfficioso, A., Panzella, L., Tortora, F., Alfieri, M., Napolitano, A., & Manna, C. (2018). Comparative Analysis of the Effects of Olive Oil Hydroxytyrosol and Its 5-S-Lipoyl Conjugate in Protecting Human Erythrocytes from Mercury Toxicity. Oxid Med Cell Longev. 1 -9. https://doi.org/10.1155/2018/9042192spa
dcterms.referencesOrganización Mundial de la Salud. (2010). Más salud por el dinero. La Financiación de los Sistemas de Salud. El camino hacia la cobertura universal. Informe Sobre La Salud En El Mundo. 67–88. https://doi.org/17 July 2012spa
dcterms.referencesOuédraogo, O., & Amyot, M. (2011). Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environmental. Research. 111, 1064 -1069. https://doi.org/10.1016/j.envres.2011.09.018spa
dcterms.referencesPassos, C., Mergler, D., Gaspar, E., Morais, S., Lucotte, M., Larribe, F., … Grosbois, S. (2003). Eating tropical fruit reduces mercury exposure from fish consumption in the Brazilian Amazon. Environmental Research. 93, 123–130. https://doi. org/10.1016/S0013-9351(03)00019-7spa
dcterms.referencesPaulsson, K., & Lundbergh, K. (1991). Treatment of mercury contaminated fish by selenium addition. Water, Air & Pollution. 56, 833 – 841. https://doi.org/10.1007/ BF00342320spa
dcterms.referencesPenglase, S., Hamre, K., & Ellingsen, S. (2014). Selenium and mercury have a synergistic negative effect on fish reproduction. Aquatic Toxicology, 149, 16–24. https:// doi.org/10.1016/j.aquatox.2014.01.020spa
dcterms.referencesPeterson, S. A., Ralston, N. V., Whanger, P. D., Oldfield, J. E., & Mosher, W. D. (2009). Selenium and mercury interactions with emphasis on fish tissue. Environmental Bioindicators, 4(4), 318-334. https://doi.org/10.1080/15555270903358428spa
dcterms.referencesPillai, A., & Gupta, S. (2005). Antioxidant enzyme activity and lipid peroxidation in liver of female rats co-exposed to lead and cadmium: effects of vitamin E and Mn. Free Radic Res. 39 : 707 12. https://doi.org/10.1080/10715760500092444spa
dcterms.referencesQu, M.,Nan,X.,Gao, Z., Guo,B., Liu,B., Chen,Z. (2013). Protective efects of lycopene against methylmercury-induced neurotoxicity in cultured rat cerebellar granule neurons, Brain Res. 1540 92–102. https://doi.org/10.1016/j.brainres.2013.10.005spa
dcterms.referencesRajeshwari, T., & Andallu, B. (2011). Medical benefits of coriander (Coriandrum sativum L.). Spatula. 1 (1), 51-58.spa
dcterms.referencesRalston, N., & Raymond, L. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology. 278, 112–123. https://doi.org/10.1016/j. tox.2010.06.004spa
dcterms.referencesRice, K., Walker, E., Wu, M., Gillette, C., & Blough, E. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health. 47 (2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74spa
dcterms.referencesRodrigues, K., Rodrigues, F., Cassunde, B., Oliveira, R., Bannwart, C., Gonçalves, B., Santana, A., Akio, N., & Bastos, C. (2019). Aqueous Coriandrum sativum L. extract promotes neuroprotection against motor changes and oxidative damage in rat progeny after maternal exposure to methylmercury. Food and Chemical Toxicology. 133 (2019) 110755. https://doi.org/10.1016/j.fct.2019.110755spa
dcterms.referencesRosa-Sibakov, N., Poutanen, K., & Micard, V. (2015). How does wheat grain, bran and aleurone structure impact their nutritional and technological properties?. Trends in Food Science and Technology. 41(2): 118-134. https://doi.org/10.1016/j. tifs.2014.10.003spa
dcterms.referencesRowland,I., Mallett, A., Flynn, J., & Hargreaves, R. (1986). The efect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice, Arch. Toxicol. 59, 94–98. https://doi.org/10.1007/BF00286730spa
dcterms.referencesRudd, J., Turner, M., Townsend, B., Swick, A., & Furutani, A. (1980). Dynamics of selenium in mercury-contaminated experimental freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences. 37, 848–857. https://doi. org/10.1139/f80-113spa
dcterms.referencesSarwar, N., Imran, M., Shaheen, M., Ishaque, W., Kamran, M., Matloob, A. , Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals : Modifications and future perspectives. Chemosphere. 171, 710 – 21. https://doi.org/10.1016/j.chemosphere.2016.12.116spa
dcterms.referencesSchmidt, L., Figueroa, J., Vecchia, P., Duarte, A., Mello, P., Caruso, J., & Flores, E. (2018). Bioavailability of Hg and Se from seafood after culinary treatments. Microchemical Journal. https://doi.org/10.1016/j.microc.2018.03.009spa
dcterms.referencesSiedlikowski, M., Bradley, M., Kubow, S., Goodrich, J., Franzblau, A., Basu, N. (2016). Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies. Environ Res. 149, 266-273. https://doi: 10.1016/j.envres.2016.02.013spa
dcterms.referencesSingh, R., Wu, J., & Fu, D. (2019). Purification of water contaminated with Hg using horizontal subsurface constructed wetlands. Environ Sci Pollut Res. 26 (10): 9697 - 9706. https://doi.org./10.1007/s11356-019-04260-9spa
dcterms.referencesSoupioni, M., Symeopoulos, B., Athanasiou, J., Gioulis, A., Koutsoukos, P., & TsolisKatagas, P. (1999). A preliminary study of mercury uptake by a Greek zeoliferous rock. In: Misaelides, P., Maca´sek, P., & Colella, C., editors. Natural microporous materials in environmental technology. Netherlands: Kluwer Academic Publishers. p. 365– 9.spa
dcterms.referencesSumathi, T., & Christinal, J. (2016). Neuroprotective effect of Portulaca oleraceae ethanolic extract ameliorates methylmercury induced cognitive dysfunction and oxidative stress in cerebellum and cortex of rat brain, Biol. Trace Elem. Res. 172 155–165. https://doi.org/10.1007/s12011-015-0546-6spa
dcterms.referencesSumathi,T.,Shobana,C.,Christinal,J., Anusha,C. (2012). Protective efect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats, Cell. Mol. Neurobiol. 32, 979–987. https://doi.org/10.1007/s10571-012-9813-7spa
dcterms.referencesTacon, A., & Metian, M. (2013) Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply, Reviews in Fisheries Science. 21 (1), 22-38, https://doi.org/10.1080/10641262.2012.753405spa
dcterms.referencesTagliafierro, L., Officioso, A., Sorbo, S., Basile, A., & Manna, C. (2015). The protective role of olive oil hydroxytyrosol against oxidative alterations induced by mercury in human erythrocytes. Food and Chemical Toxicology. 82, 59-63. https://doi. org/10.1016/j.fct.2015.04.029spa
dcterms.referencesTerrazas-López, R., Arreola-mendoza, L., Galván-magaña, F., Sujitha, S., & Jonathan, M. (2019). Understanding the antagonism of Hg and Se in two shark species from Baja California South, México. Science of the Total Environment. 650, 202–209. https://doi.org/10.1016/j.scitotenv.2018.08.261spa
dcterms.referencesTortora, F., Notariale, R., Maresca, V., Good, K., Sorbo, S., Basile, A., Piscopo, M., & Manna, C. (2019). Phenol-Rich Feijoa sellowiana (Pineapple Guava) Extracts Protect Human Red Blood Cells from Mercury-Induced Cellular Toxicity. Antioxidants. 8 (7), 220. https://doi.org/10.3390/antiox8070220spa
dcterms.referencesTurner, M., & Rudd, J. (1983). The English–Wabigoon River System: III. Selenium in Lake Enclosures: Its Geochemistry, Bioaccumulation, and Ability to Reduce Mercury Bioaccumulation. Canadian Journal of Fisheries and Aquatic Sciences. 40 (12), 2228-2240. https://doi.org/10.1139/f83-259spa
dcterms.referencesUnited States Environmental Protection Agency. (2002). Mercury Treatment Technologies for soil, waste and water. Oficce of Solid waste and Emergency Response.spa
dcterms.referencesUnited States Environmental Protection Agency.(2014). Disponible en: http:// www.fda.gov/food/foodsafety/productspecificinformation/seafood/ foodbornepathogenscontaminants/methylmercury/ucm115662.htmspa
dcterms.referencesValenzuela, R., Tapia, G., González, M., & Valenzuela, A. (2011). Omega - 3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Rev Chil Nutr. 38, 356–367. https://doi.org/10.4067/S0717-75182011000300011.spa
dcterms.referencesVargas-Licona, S., & Marrugo-Negrete, J. (2019). Mercurio , metilmercurio y otros metales pesados en peces de Colombia : Riesgo por ingesta. Acta Biol. Colomb. 24 (2), 232–242. https://doi.org/10.15446/abc.v24n2.74128spa
dcterms.referencesVlassopoulos, D., Kanematsu, M., Henry, E., Goin, J., Leven, A., Glaser, D., Brown, S., & O’Day, P. (2018). Manganese (iv) oxide amendments reduce methylmercury concentrations in sediment porewater. Environmental Science: Processes and Impacts. 20 (12) : 1746 -1760. https://doi.org/10.1039/C7EM00583Kspa
dcterms.referencesVon Stackelberg, K., Li, M., & Sunderland, E. (2017). Results of a national survey of high-frequency fish consumers in the United States. Environ Res. 158:126–136. https://doi.org/10.1016/j.envres.2017.05.042spa
dcterms.referencesWaliszewski, K., & Blasco, G. (2010). Propiedades nutraceúticas del licopeno. Salud pública Mex. 52(3): 254-265.spa
dcterms.referencesWang, J., Xing, Y., Xiec, Y., Meng, Y., Xia, J., & Fenga, X. (2019b). The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Science of The Total Environment. 646 (1): 1615 – 1623. https://doi.org/10.1016/j.scitotenv.2018.07.225spa
dcterms.referencesWang, P., Chen, S., Chen, Z., Huo, W., Huang, R., Huang, W., … Yang, X. (2019a). Benefit – risk assessment of commonly consumed fish species from South China Sea based on methyl mercury and DHA Expert Committee on Food Additives. Environmental Geochemistry and Health. 1(160). https://doi.org/10.1007/ s10653-019-00254-1spa
dcterms.referencesWang, X., & Wang, W. (2017). Selenium induces the demethylation of mercury in marine fish. Environmental Pollution. 231, 1543–1551. https://doi.org/10.1016/j. envpol.2017.09.014spa
dcterms.referencesWang, X., Kim, K., Bai, S., Huh, M., Cho, B. (2003). Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture. 215, 203–211. https://doi.org/10.1016/ S0044-8486(02)00042-Xspa
dcterms.referencesWeinberg, J. (2010). Introducción a la contaminación por mercurio para las ONG. Ipen, 1–162. http://ipen.org/sites/default/files/documents/ipen_mercury_ booklet-es.pdfspa
dcterms.referencesWeston, R. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chem. 121, 923–926. https://doi.org/10.1016/j. foodchem.2010.01.047spa
dcterms.referencesWinarti, S., Pertiwi, C., Hanani, A., Mujamil, S., Putra, K., & Herlambang, K. (2018). Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish. Journal of Physics: Conference Series. 953 (1), 012237. https://doi.org/doi : 10.1088/1742-6596/953/1/012237spa
dcterms.referencesWinfrey, M., & Rudd, J. (1990). Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem. 9, 853 – 69. https://doi. org/10.1002/etc.5620090705spa
dcterms.referencesZamora-Arellano, N., Ruelas-Inzunza, J., García-Hernández, J., Ilizaliturri-Hernández, C., & Betancourt-Lozano, M. (2017). Linking fish consumption patterns and health risk assessment of mercury exposure in a coastal community of NW Mexico. Human and Ecological Risk Assessment. 23(6), 1505–1521. https://doi. org/10.1080/10807039.2017.1329622spa
dcterms.referencesZhuang, J., Walsh, T., & Lam, T. (2003). A new technology for the treatment of mercury contaminated water and soils. Environmental Technology. 24, 897 - 902. https://doi.org/10.1080/09593330309385626spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
ATRATO.pdf
Tamaño:
6.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones