Publicación: Atrato y salud: resultados del proyecto 849-2018
dc.contributor.editor | Marrugo Negrete, José Luis | |
dc.contributor.editor | Paternina Uribe, Roberth | |
dc.contributor.editor | Salas Moreno, Manuel Haminton | |
dc.contributor.editor | Salazar Camacho, Carlos Adolfo | |
dc.contributor.editor | Palacios Torres, Yuber | |
dc.contributor.other | Durante Yánez, Elvia Valeria | |
dc.contributor.other | Martínez Macea, María Alejandra | |
dc.date.accessioned | 2022-09-29T17:04:37Z | |
dc.date.available | 2022-09-29T17:04:37Z | |
dc.date.issued | 2022-09-28 | |
dc.description.abstract | La minería es una de las actividades económicas más antigua en la humanidad, se desarrolla fundamentalmente en tres dimensiones: gran minería, mediana minería y pequeña minería. Según un informe de la Organización Internacional del Trabajo (OIT) del 2004, la minería del oro artesanal y en pequeña escala produce entre el 20 y el 30 % del oro del mundo, es decir, entre 500 y 800 toneladas anuales (Cano, 2012). | spa |
dc.description.tableofcontents | PRÓLOGO ................................................10 | spa |
dc.description.tableofcontents | CAPÍTULO 1. EXPOSICIÓN HUMANA AL MERCURIO EN UNA POBLACIÓN AL NORTE DE COLOMBIA, CUENCA DEL RÍO ATRATO María Claudia Kerguelén Sánchez; Roberth Paternina-Uribe; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete........................13 | spa |
dc.description.tableofcontents | CAPÍTULO 2. EXPOSICIÓN A ELEMENTOS POTENCIALMENTE TÓXICOS EN POBLACIÓN INFANTIL (5-14 AÑOS) PERTENECIENTE A LA CUENCA DEL RÍO ATRATO, COLOMBIA Eurípides Palacios Valoyes; Manual Salas-Moreno; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete....................................................47 | spa |
dc.description.tableofcontents | CAPÍTULO 3. EVALUACIÓN DEL RIESGO PARA LA SALUD HUMANA ASOCIADO AL CONSUMO DE ALIMENTOS CONTAMINADOS CON METALES PESADOS EN HABITANTES DE LA CUENCA DEL RÍO ATRATO, COLOMBIA Manuel Salas-Moreno; Gabriel Caicedo-Rivas; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete......................................................69 | spa |
dc.description.tableofcontents | CAPÍTULO 4. IMPLEMENTACIÓN DE PLATAFORMA TECNOLÓGICA COMO SISTEMA DE ALERTA TEMPRANA PARA LA REDUCCIÓN DEL RIESGO A LA SALUD HUMANA ORIGINADO POR EXPOSICIÓN A ELEMENTOS POTENCIALMENTE TÓXICOS EN LA CUENCA DEL RÍO ATRATO, COLOMBIA Carlos Molina Polo; Elvia Valeria Durante-Yánez; María Alejandra MartínezMacea; Javier Alonso Ruiz-Guzmán y José Luis Marrugo-Negrete.......................................................119 | spa |
dc.description.tableofcontents | CAPÍTULO 5. ESTRATEGIAS PARA REDUCIR LA INGESTA DE MERCURIO A TRAVÉS DEL CONSUMO DE PESCADO EN ZONAS CONTAMINADAS DE COLOMBIA Shirly Paola Vargas-Licona; Elvia Valeria Durante-Yánez; María Alejandra Martínez-Macea y José Luis Marrugo-Negrete..........................................................................145 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.isbn | 978-958-5104-47-1 | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6683 | |
dc.language.iso | spa | spa |
dc.publisher | Fondo Editorial - Universidad de Córdoba | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.title | Atrato y salud: resultados del proyecto 849-2018 | spa |
dc.type | Libro | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/book | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/LIB | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abbassi, A., Mahmoudi, H., Zaouali, W., M’Rabet, Y., Casabianca, H., & Hosni, K. (2018). Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J. Food Sci. Technol. 55, 3065 – 3076. | spa |
dcterms.references | Abdalla, F., Bellé, L., Bona, K., Bitencourt, P., Pigatto, A., & Moretto, M. (2010). Allium sativum L. extract prevents methyl mercury-induced cytotoxicity in peripheral blood leukocytes (LS), Food Chem. Toxicol. 48, 417– 421. https:// doi.org/10.1016 / j.fct.2009.10.033 | spa |
dcterms.references | Afonso, C., Costa, S., Cardoso, C., Bandarra, N., Batista, I., Coelho, I., Castanheira, I., & Nunes, M. (2015). Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chem. 170 : 249 – 256. https://doi.org/10.1016/j.foodchem.2014.08.044. | spa |
dcterms.references | Agarwal, R., Goel, S. K., Chandra, R., & Behari, J. R. (2010). Role of vitamin E in preventing acute mercury toxicity in rat. Environmental Toxicology and Pharmacology, 29(1), 70-78. https://doi.org/10.1016/j.etap.2009.10.003 | spa |
dcterms.references | Al-Osaimi, M., El-Ansary,A., Al-Daihan, S., Bhat,R., Ben Bacha,A. (2018). Therapeutic and protective potency of bee pollen against neurotoxic effects induced by prenatal exposure of rats to methyl mercury, J. Mol. Neurosci. 65, 327 – 335. https://doi.org/10.1007/s12031-018-1107-1 | spa |
dcterms.references | Amlund, H., Lundebye, A., Boyle, D., & Ellingsen, S. (2015). Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio). Aquatic Toxicology. 158, 211 – 217. https://doi. org/10.1016/j.aquatox.2014.11.010 | spa |
dcterms.references | Arroyo-Abad, U., Pfeifer, M., Mothes, S., Staerk, H., Piechotta, C., Mattusch, J., & Reemtsma, T. (2016). Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany). Environ. Pollut. 208, 458 - 466. https://doi.org/10.1016/j.envpol.2015.10.015 | spa |
dcterms.references | Atehortúa, A., Velásquez, C., & López, B. (2017). Caracterización de diversas especies de peces como fuente de PUFAs y omega 3 según su perfil de ácidos grasos. Perspectivas En Nutrición Humana. 19, 93 – 108. https://doi.org/10.17533/ udea.penh.v19n1a08 | spa |
dcterms.references | Atmaca, G. (2004). Antioxidant effects of sulphur-containing amino acids. Yonsei Medical Journal. 45, 776 – 788. https://doi.org/10.3349/ymj.2004.45.5.776 | spa |
dcterms.references | Bastos, W., De Almeida, R., Dórea, J., & Barbosa, A. (2007). Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon). Ecotoxicology. 16 (3), 341 – 346. https://doi.org/10.1007/s10646- 007-0138-0 | spa |
dcterms.references | Behall, K., & Reiser, S. (2009). Effects of pectin on human metabolism. In M. Fishman, & J. Jen (Eds.), Chemistry and function of pectins (pp. 248 - 265). Washington DC: American Chemical Society. ACS Symposium Series, 310. | spa |
dcterms.references | Bekhet, G., Al-kahtani, M., & Abdel-moneim, A. (2013). The protective effects of vitamin C and folic acid against methylmercury teratogenicity in chick embryo. Journal of Cell and Animal Biology. 7, 77 – 84. https://doi.org/10.5897/JCAB2013.0368 | spa |
dcterms.references | Belzile, N., Chen, Y., Yang, D., Truong, H., & Zhao, Q. (2009). Selenium bioaccumulation in freshwater organisms and antagonistic effect against mercury assimilation selenium bioaccumulation in Freshwater. Environmental Bioindicators. 4 (3) : 203 – 221. https://doi.org/10.1080/15555270903143408 | spa |
dcterms.references | Bernardi, J., Escobar, R., Ferreira, C., Silveira, P. (2012). Fetal and neonatal levels of omega-3: efects on neurodevelopment, nutrition, and growth. Sci. World J. 202473. https://doi.org/10.1100/2012/202473 | spa |
dcterms.references | Beutel, M., Dent, S., Newcombe, R., & Möller, G. (2019). Mercury removal from municipal secondary effluent with hydrous ferric oxide reactive filtration. Water Environment Research. 91 (2): 132 – 143. https://doi.org/10.1002/wer.1007 | spa |
dcterms.references | Beyhan, Ö., Elmastas, M., & Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J. Med. Plants Res. 4, 1065 – 1072. | spa |
dcterms.references | Bjørklund, G., Aaseth, J., Ajsuvakova, O., Nikonorov, A., Skalny, A., Skalnaya, M., & Tinkov, A. (2017). Molecular interaction between mercury and selenium in neurotoxicity. Coordination Chemistry Reviews. 332, 30 – 37. https://doi. org/10.1016/j.ccr.2016.10.009 | spa |
dcterms.references | Black, P., Niu, L., Sachdeva, M., Lean, D., Poon, R., Bowers, W., Chan, H., Arnason, J., & Pelletier, G. (2011). Modulation of the effects of methylmercury on rat neurodevelopment by co-exposure with Labrador tea (Rhododendron tomentosum ssp. subarcticum). Food Chem. Toxicol. 49 : 2336 – 2342. https:// doi.org/10.1016/j.fct.2011.06.035. | spa |
dcterms.references | Bourdineaud, J., Marumoto, M., Yasutake, A., & Fujimura, M. (2012). Dietary mercury exposure resulted in behavioral differences in mice contaminated with fish-associated methylmercury compared to methylmercury chloride added to diet. Journal of Biomedicine and Biotechnology. http://dx.doi. org/10.1155/2012/681016. | spa |
dcterms.references | Brandon, E., Oomen, A., Rompelberg, C., Versantvoort, C., Van-Engelen, J. & Sips, A. (2006). Consumer product in vitro digestion model: bioaccessibility of contaminants and its application in risk assessment. Regul. Toxicol. Pharmacol. 44, 161–171. https://doi.org/10.1016/j.yrtph.2005.10.002 | spa |
dcterms.references | Budtz, E.; Grandjean, P.; Jørgensen, P.; Weihe, P. & Keiding, N. Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages. Environ Res 2004, 95:3, 385–393. https://doi.org/10.1016/j. envres.2003.11.001 | spa |
dcterms.references | Canuel, R., De Grosbois, S., Lucotte, M., Atikessé, L., Larose, C., & Rheault, I. (2006). New evidence on the effects of tea on mercury metabolism in humans. Arch. Environ. Occup. Health. 61 : 232 – 238. https://doi.org/10.3200/AEOH.61.5.232-238. | spa |
dcterms.references | Cardoso, C., Bernardo, I., Bandarra, N., Martins, L., & Afonso, C. (2018). Portuguese preschool children: Benefit (EPA + DHA and Se) and risk (MeHg) assessment through the consumption of selected fi sh species. Food and Chemical Toxicology. 115, 306 – 314. https://doi.org/10.1016/j.fct.2018.03.022 | spa |
dcterms.references | Carwile, J., Butler, L., Janulewicz, P., Winter, M., & Aschengrau, A. (2016). Childhood fish consumption and learning and behavioral disorders. Int. J. Environ. Res. Publ. Health. 13, 1069. https://doi.org/10.3390/ijerph13111069 | spa |
dcterms.references | Cassidy, D.P.; Hampton, D.R. & Kohler, S.L. (2002). Development of Innovative Remedial Methods for PBT-Contaminated Sediments in the Great Lakes Drainage Basin: Report for the Michigan Department of Environmental Quality. Michigan Great Lakes Protection Fund. | spa |
dcterms.references | Chang, J., Zhou, Y., Wang, Q., Aschner, M., & Lu, R. (2019). Plant components can reduce methylmercury toxication : A mini-review. BBA - General Subjects. 0 – 1. https://doi.org/10.1016/j.bbagen.2019.01.012 | spa |
dcterms.references | Chapman, L., & Chan, H. (2000). The influence of nutrition on methylmercury intoxication. Environ. Health Perspect.108, 29 – 56. https://doi.org/10.1289/ ehp.00108s129 | spa |
dcterms.references | Chaquilla-Quilca, G., Balandrán-Quintana, R., Mendoza-Wilson, A., Mercado-Ruíz, J. (2018). Properties and application possibilities of wheat bran proteins. Biotecnología y ciencias agropecuaria. 12 (2): 137 - 147. | spa |
dcterms.references | Chen, M., Hsieh, Y., Hwang, J., Jan, H., Hsieh, S., Lin, S., Lai, C. (2015). Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2. Tumor Biology. 36 (5) : 3407 - 3415. https://doi.org/10.1007/s13277-014-2975-9 | spa |
dcterms.references | Chortek, E. (2017). Remediation Strategies for Mercury Contaminated Lakes and Reservoirs Within the State of California. [Project/Capstone: Master of Science in Environmental Management]. College of Arts and Sciences, Environmental Management, University of San Francisco. p.691. https://repository.usfca.edu/ capstone/691. | spa |
dcterms.references | Christinal, J., & Sumathi, T. (2013).Efect of Bacopa monniera extract on methylmercuryinduced behavioral and histopathological changes in rats, Biol. Trace Elem. Res. 155, 56 – 64. https://doi.org/10.1007/s12011-013-9756-y | spa |
dcterms.references | Cisneros-Montemayor, A.,Pauly,D.,Weatherdon,L., & Ota,Y. (2016). A global estimate of seafood consumption by coastal Indigenous peoples. PLoS One. 11: 0166681–16. https://doi.org/10.1371/journal.pone.0166681. | spa |
dcterms.references | Clarkson, T., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology. 36 (8): 609 – 662. https://doi. org/10.1080/10408440600845619 | spa |
dcterms.references | Costa, S., Afonso, C., Cardoso, C., Batista, I., Chaveiro, N., Nunes, M., & Bandarra, N. (2015). Fatty acids, mercury, and methylmercury bioaccessibility in salmon (Salmo salar) using an in vitro model: efect of culinary treatment. Food Chem. 185, 268 – 276. https://doi.org/10.1016/j.foodchem.2015.03.141 | spa |
dcterms.references | Crespo-López, M., Macêdo, G., Pereira, S., Arrifano, G., Picanço-Diniz, D., M. do Nascimento, J., & Herculano, H. (2009). Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms, Pharmacological Research. 60, 212 – 220. https://doi.org/10.1016/j.phrs.2009.02.011 | spa |
dcterms.references | Dórea, J. (2004). Cassava cyanogens and fishmercury are highbut safely consumed in the diet of native Amazonians, Ecotoxicology and Environmental Safety. 57, 248 – 256. https://doi.org/10.1016/j.ecoenv.2003.12.008. | spa |
dcterms.references | Eagles-Smith, C., Silbergeld, E., Basu, N., Bustamante, P., Diaz-Barriga, F., Hopkins, W., Kidd, K., Nyland, J. (2018). Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio. 47, 170 – 197. https:// doi.org/10.1007/s13280-017-1011-x | spa |
dcterms.references | European Food Safety Authority. (2012). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal. 10 (12): 29 - 85. https://doi.org/10.2903/j.efsa.2012.2985 | spa |
dcterms.references | European Parliament, & Council Of The European Union. (2008) Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Official Journal of the European Union. 354, 31.12.2008, pp. 16 - 33. | spa |
dcterms.references | Faroon, O., Ashizawa, A., Wright, S., Tucker, P., Jenkins, K., & Ingerman, L. (2012). Toxicological Profile for Cadmium. US Dep Heal Hum Serv. 487. Recuperado de: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf | spa |
dcterms.references | Food and Agriculture Organization. (2016). Resumen El estado mundial de la pesca y la acuicultura. Contribución a la seguridad alimentaria y la nutrición para todos. 34 (7): 23. https://doi.org/978-92-5-306675-9 | spa |
dcterms.references | Food and Agriculture Organization. (2017). El Estado de la Seguridad Alimentaria y la Nutrición en el mundo 2017. http://www.fao.org/3/a-I7695s.pdf | spa |
dcterms.references | Food and Agriculture Organization. (2018). The State of World Fisheries and Aquaculture-2018 FAO Statistics and Information Service of the Fisheries and Aquaculture Department. Food and Agriculture Organization of the United Nations, Rome. | spa |
dcterms.references | Food Standards Australia & New Zealand. (2014). Food Standards Code. http://www. foodstandards.gov.au | spa |
dcterms.references | Gagné, D., Lauzière, J., Blanchet, R., Vézina, C., Vaissière, E., Ayotte, P., & Turgeon, H. (2013). Consumption of tomato products is associated with lower blood mercury levels in Inuit preschool children. Food Chem Toxicol. 51, 404 - 410. https://doi.org/10.1016/j.fct.2012.10.031 | spa |
dcterms.references | Gale, C., Marriott, L., Martyn, C., Limond, J., Inskip, H., Godfrey, K., Law, C., Cooper, C., West, C., & Robinson, S., Group for Southampton Women’s survey study. (2010). Breastfeeding, the use of docosahexaenoic acid-fortified formulas in infancy and neuropsychological function in childhood. Arch. Dis. Child. 95, 174 – 179. http://dx.doi.org/10.1136/adc.2009.165050 | spa |
dcterms.references | Girard, C., Charette, T., Leclerc, M., Shapiro, B., & Amyot, M. (2018). Cooking and coingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. Science of the Total Environment. 863 – 874. https://doi.org/10.1016/j.scitotenv.2017.10.236 | spa |
dcterms.references | Gropper, S., Smith, J., & Groff, J. (2009). Advanced nutrition and human metabolism (5th ed.) Wadsworth, Cengage Learning, Belmont, CA, (Chapter 4). | spa |
dcterms.references | Gülçin, I., Huyut, Z., Elmastas¸ , M., & Aboul-Eneind, H. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry. 3, 43 - 53. https://doi.org/10.1016/j.arabjc.2009.12.008 | spa |
dcterms.references | Gusso-Choueri, P., Araújo, G., Cruz, A., Stremel, T., Campos, S., Abessa, D., & Choueri, R. (2018). Metals and arsenic in fish from a Ramsar site under past and present human pressures: Consumption risk factors to the local population. Science of the Total Environment. 628 – 629, 621 – 630. https://doi.org/10.1016/j. scitotenv.2018.02.005 | spa |
dcterms.references | Ha, E., Basu, N., Bose-O’Reilly, S., Dórea, J., McSorley, E., Sakamoto, M., & Chan, H. (2016). Current progress on understanding the impact of mercury on human health. Environ. Res. 152, 419 – 433. https://doi.org/10.1016/j. envres.2016.06.042. | spa |
dcterms.references | Hajeb, P., & Jinap, S. (2012). Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride. Journal of agricultural and food chemistry, 60(23), 6069-6076. https://doi.org/10.1021/jf300582j | spa |
dcterms.references | Håkanson, L., Andersson, P., Andersson, T., Bengtsson, Å., Grahn, P., Johansson, J., Kvarnäs, H., Lindgren, G., & Nilsson, Å. (1990). Åtgärder mot höga kvicksilverhalter i insjöfisk. Slutrapport för kvicksilverdelen av Projektet Kalkning-Kvicksilver-Cesium (Measures to reduce mercury in lake fish. Final report from the Liming-Mercury-Cesium Project). Swedish Environmental Protection Board Report. 3818, p. 189. | spa |
dcterms.references | Hanafy, S., & Soltan, M. (2004). Effects of Vitamin E pretreatment on subacute toxicity of mixture of Co , Pb , and Hg nitrate-induced nephrotoxicity in rats. Environmental Toxicology and Pharmacology. 17, 159 – 167. https://doi. org/10.1016/j.etap.2004.04.006 | spa |
dcterms.references | Harsha, S., & Anilakumar, K. (2014). In vitro free radical scavenging and DNA damage protective property of Coriandrum sativum L. leaves extract. J. Food Sci. Technol. 51, 1533 – 1539. https://doi.org/10.1007/s13197-012-0648-5 | spa |
dcterms.references | He, M., Ke, C., Wang, W. (2010). Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species. J. Agric. Food Chem. 58, 3517 –3523. https://doi.org/10.1021/jf100227n. | spa |
dcterms.references | Health Canada. (2008). Mercury in fish: Consumption Advice: Making informed Decisions about fish. Retrieved from http://www.hc-sc.gc.ca/Fn-an/securit/ chemchim/environ/mercur/cons-adv-etud-eng.php | spa |
dcterms.references | Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science and Technology. 47 (6) : 2441 - 2456. https://doi.org/10.1021/es304370g | spa |
dcterms.references | Huang, S., Strathe, A., Fadel, J., Johnson, M., Lin, P., Liu, T., & Hung, S. (2013). The interactive effects of selenomethionine and methylmercury on their absorption, disposition ,and elimination in juvenile white sturgeon. Aquatic Toxicology. 126, 274 – 282. https://doi.org/10.1016/j.aquatox.2012.09.018 | spa |
dcterms.references | Huang, S., Weng, K., Ger, L., Han, H., Liou, H., Lin, C., … Wu, M. (2017). Influence of seafood and vitamin supplementation on maternal and umbilical cord blood mercury concentration. Journal of the Chinese Medical Association. 80, 307– 312. https://doi.org/10.1016/j.jcma.2016.11.005 | spa |
dcterms.references | Jacob, S., & Sumathi, T. (2018). Fisetin impedes developmental methylmercury neurotoxicity via downregulating apoptotic signalling pathway and upregulating Rho GTPase signalling pathway in hippocampus of F generation rats, Int. J. Dev. Neurosci. 69, 88–96. https://doi.org/10.1016/j.ijdevneu.2018.07.002 | spa |
dcterms.references | Jadán-Piedra, C., Sánchez, V., Vélez, D., & Devesa, V. (2016). Reduction of mercury bioaccessibility using dietary strategies. LWT - Food Science and Technology. 71, 10–16. https://doi.org/10.1016/j.lwt.2016.03.015 | spa |
dcterms.references | Jadán-Piedra, C., Vélez, D., & Devesa, V. (2018). In vitro evaluation of dietary compounds to reduce mercury bioavailability. Food Chemistry. 248, 353 – 359. https://doi.org/10.1016/j.foodchem.2017.12.012 | spa |
dcterms.references | Janle, E., Freiser, H., Manganais, C., Chen, T., Craig, B., Santerre, C. (2015). Green tea increases the concentration of total mercury in the blood of rats following an oral fish tissue bolus. Biomed. Res. Int. 1–6. https://doi.org/10.1155/2015/320936. | spa |
dcterms.references | Joint FAO/WHO Expert Committee on Food Additives. (2006). Summary and Conclusions. Available online: http://www.fao.org/3/a-at874e.pdf | spa |
dcterms.references | Jordan, M., Stewart, R., Eagles-Smith, C., Strecker, A. (2019). Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton. Science of the Total Environment. 667 601–612. https://doi. org/10.1016/j.scitotenv.2019.02.259 | spa |
dcterms.references | Joshi, D., Mittal, D., Bhadauria, M., Nirala, S., Shrivastava, S., & Shukla, S. (2010). Role of micronutrients against dimethylmercury intoxication in male rats. Environmental Toxicology and Pharmacology. 29, 97–103. https://doi.org/10.1016/j.etap.2009.11.002 | spa |
dcterms.references | Karri, V., Kumar, V., Ramos, D., Oliveira, E., & Schuhmacher, M. (2018). Comparative in vitro toxicity evaluation of heavy metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res. 184 (1) : 226-239. https://doi.org/10.1007/s12011-017-1177-x | spa |
dcterms.references | Karunasagar, D., Krishna, M., Rao, S., & Arunachalam, J. (2005). Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum. Journal of Hazardous Materials. 118, 133–139. https://doi.org/10.1016/j.jhazmat.2004.10.021 | spa |
dcterms.references | Kaur, N., Chugh, V., Gupta A. (2012). Essential fatty acids as functional components of foods- a review. J Food Sci Technol. 51 (10), 2289-2303. https://doi.org/10.1007/ s13197-012-0677-0 | spa |
dcterms.references | Kawaguchi, T., Ueno, T., Nogata, Y., Hayakawa, M., Koga, H., & Torimura, T. (2017). Wheat-bran autolytic peptides containing a branched-chain amino acid attenuate non-alcoholic steatohepatitis via the suppression of oxidative stress and the upregulation of AMPK/ACC in high-fat diet-fed mice. International Journal of Molecular Medicine. 39(2) : 407-414. https://doi.org/10.3892/ ijmm.2016.2831 | spa |
dcterms.references | Kim, H., Kim, K., Hwang, J., Ha, E., Park, H., & Ha, M., et al. (2013). Relation between serum folate status and blood mercury concentrations in pregnant women. Nutrition. 29:514 8. https://doi.org/10.1016/j.nut.2012.08.012 | spa |
dcterms.references | Kim, J., Han, M., & Nili, M. (2011). Effects of N-acetyl-L-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation. Chemosphere. 85, 1635–1638. https://doi.org/10.1016/j.chemosphere.2011.08.029 | spa |
dcterms.references | Kim, K., Kabir, E., & Jahan, S. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials. 306, 376 – 385. https://doi.org/10.1016/j.jhazmat.2015.11.031 | spa |
dcterms.references | Laird, B., Chan, H. (2013). Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada. Food Chem. Toxicol. 1–31 https://doi.org/10.1016/j.fct.2013.04.033. | spa |
dcterms.references | Lee, C., Lim, C., Gatlin, I., Webster, C. (2015). Dietary Nutrients, Additives, and Fish Health. John Wiley & Sons,Inc., Hoboken, NJ, USA, pp.151–194. | spa |
dcterms.references | Lee, J., Kang, H., Roh, J. (1999). Protective efects of garlic juice against embryotoxicity of methylmercuric chloride administered to pregnant Fischer 344 rats, Yonsei Med. J. 40, 483–489. https://doi.org/10.3349/ymj.1999.40.5.483 | spa |
dcterms.references | Lee, J., Moniruzzaman, M., Yun, H., Lee, S., Park, Y., & Bai, S. (2016). Dietary vitamin C reduced mercury contents in the tissues of juvenile olive flounder (Paralichthys olivaceus) exposed with and without mercury. Environmental Toxicology and Pharmacology. 45, 8–14. https://doi.org/10.1016/j.etap.2016.05.009 | spa |
dcterms.references | Lino, A., Kasper, D., Guida, Y., Thomaz, J., & Malm, O. (2018). Mercury and selenium in fi shes from the Tapajós River in the Brazilian Amazon : An evaluation of human exposure. Journal of Trace Elements in Medicine and Biology. 48, 196–201. https://doi.org/10.1016/j.jtemb.2018.04.012 | spa |
dcterms.references | Liu, W., Xu, Z., Deng, Y., Xu, B., Yang, H., Wei, Y., Feng, S. (2014a). Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective efects of tea polyphenols, Environ. Toxicol. 29, 269–283. https://doi. org/10.1002 / tox.21755 | spa |
dcterms.references | Liu, W., Xu, Z.,Yang, T., Deng, Y., Xu, B., Feng, S., Li, Y. (2014b).The protective role of tea polyphenols against methylmercury-induced neurotoxic efects in rat cerebral cortex via inhibition of oxidative stress, Free Radic. Res. 48, 849–863. https:// doi.org/10.3109/10715762.2014.916039 | spa |
dcterms.references | Mahar, A., Wang,P., Ali, A., Awasthi, M., Lahori, A., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils : A review. Ecotoxicology and Environmental Safety, 126 : 111 - 21. https://doi.org/10.1016/j.ecoenv.2015.12.023 | spa |
dcterms.references | Mailman, M., Stepnuk, L., Cicek, N., & Bodaly, R. D. (2006). Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review. Science of the Total Environment,68(1), 224-235. https://doi.org/10.1016/j. scitotenv.2005.09.041 | spa |
dcterms.references | Marrugo-Negrete, J., Benitez, L., & Olivero, J. (2008). Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol. 55 (2) : 305–316. https:// doi.org/10.1007/s00244-007-9129-7. | spa |
dcterms.references | Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., PinedoHernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere. 167: 188 – 192. http://doi.org/10.1016/j.chemosphere.2016.09.130 | spa |
dcterms.references | Marrugo-Negrete, J., Vargas-Licona, S., Ruiz-Guzmán, J. A., Marrugo-Madrid, S., Bravo, A. G., & Díez, S. (2020). Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia. Environmental research, 182, 109050. https://doi.org/10.1016/j.envres.2019.109050 | spa |
dcterms.references | Matthews, D., Babcock, D., Nolan, J., Prestigiacomo, A., Effler, S., Driscoll, C., Todorova, S., & Kuhr, K. (2013). Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environmental Research. 125, 52 – 60. https://doi.org/10.1016/j.envres.2013.03.011 | spa |
dcterms.references | Mbanga, O., Ncube, S., Tutu, H., Chimuka, L., & Cukrowska, E. (2019). Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environmental monitoring and assessment, 191(3), 1-12. https://doi. org/10.1007/s10661-019-7329-z | spa |
dcterms.references | McCord, S., Beutel, M., Dent, S., & Schladow, S. (2016). Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California. Water Resources Research. 52: 7726-7743. https://doi.org/10.1002/2016WR019061 | spa |
dcterms.references | Miskimmin, B., Rudd, J., & Kelly, C. (1992). Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can J Fish Aquat Sci. 49, 17– 22. https://doi.org/10.1139/f92-002 | spa |
dcterms.references | Mok, W., Hatanaka, Y., Seoka, M., Itoh, T., Tsukamasa, Y., & Ando, M. (2014). Effects of additional cysteine in fish diet on mercury concentration. Food Chemistry. 147, 340–345. https://doi.org/10.1016/j.foodchem.2013.09.157 | spa |
dcterms.references | Molan, A., Flanagan, J., Wei, W., Moughan, P. (2009). Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem. 114: 829–835. https://doi.org/10.1016/j.foodchem.2008.10.028. | spa |
dcterms.references | Moniruzzaman, M., Lee, J., Lee, J., Won, S., Damusaru, J., & Bai, S. (2017). Interactive effect of dietary vitamin E and inorganic mercury on growth performance and bioaccumulation of mercury in juvenile olive fl ounder , Paralichthys olivaceus treated with mercuric chloride. Animal Nutrition. 3, 276–283. https://doi. org/10.1016/j.aninu.2017.07.001 | spa |
dcterms.references | Murthy, H., & Gatlin, D. (2006). Sulfur amino acid utilization: Important element of fish nutrition varies by species. Global Aquaculture Advocate. 9, 68–69. | spa |
dcterms.references | Nawab, J., Khan, S., & Xiaoping, W. (2018). Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen. Chemosphere. 202, 154–164. https://doi.org/10.1016/j. chemosphere.2018.03.082 | spa |
dcterms.references | Ngaisyah, D.,& Rohman, A. (2019). Effect of Fish Consumption as a Local Food Alternative for the Reduction of Stunting in Toddlers. Pakistan Journal of Nutrition. 18, 496-500. https://doi.org/10.3923/pjn.2019.496.500 | spa |
dcterms.references | Nogata, Y. & Nagamine, T. (2009). Production of free amino acids and γ-aminobutyric acid by autolysis reactions from wheat bran. Journal of Agricultural and Food Chemistry. 57(4): 1331-1336. https://doi.org/10.1021/jf802420w | spa |
dcterms.references | Nunes, E., Cavaco, A. & Carvalho, C. (2014). Children’s health risk and benefits of fish consumption: risk indices based on a diet diary follow-up of two weeks. J Toxicol Environ Health. 77 (1- 3): 103-114. https://doi.org/10.1080/15287394 .2014.866926 | spa |
dcterms.references | Officioso, A., Panzella, L., Tortora, F., Alfieri, M., Napolitano, A., & Manna, C. (2018). Comparative Analysis of the Effects of Olive Oil Hydroxytyrosol and Its 5-S-Lipoyl Conjugate in Protecting Human Erythrocytes from Mercury Toxicity. Oxid Med Cell Longev. 1 -9. https://doi.org/10.1155/2018/9042192 | spa |
dcterms.references | Organización Mundial de la Salud. (2010). Más salud por el dinero. La Financiación de los Sistemas de Salud. El camino hacia la cobertura universal. Informe Sobre La Salud En El Mundo. 67–88. https://doi.org/17 July 2012 | spa |
dcterms.references | Ouédraogo, O., & Amyot, M. (2011). Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environmental. Research. 111, 1064 -1069. https://doi.org/10.1016/j.envres.2011.09.018 | spa |
dcterms.references | Passos, C., Mergler, D., Gaspar, E., Morais, S., Lucotte, M., Larribe, F., … Grosbois, S. (2003). Eating tropical fruit reduces mercury exposure from fish consumption in the Brazilian Amazon. Environmental Research. 93, 123–130. https://doi. org/10.1016/S0013-9351(03)00019-7 | spa |
dcterms.references | Paulsson, K., & Lundbergh, K. (1991). Treatment of mercury contaminated fish by selenium addition. Water, Air & Pollution. 56, 833 – 841. https://doi.org/10.1007/ BF00342320 | spa |
dcterms.references | Penglase, S., Hamre, K., & Ellingsen, S. (2014). Selenium and mercury have a synergistic negative effect on fish reproduction. Aquatic Toxicology, 149, 16–24. https:// doi.org/10.1016/j.aquatox.2014.01.020 | spa |
dcterms.references | Peterson, S. A., Ralston, N. V., Whanger, P. D., Oldfield, J. E., & Mosher, W. D. (2009). Selenium and mercury interactions with emphasis on fish tissue. Environmental Bioindicators, 4(4), 318-334. https://doi.org/10.1080/15555270903358428 | spa |
dcterms.references | Pillai, A., & Gupta, S. (2005). Antioxidant enzyme activity and lipid peroxidation in liver of female rats co-exposed to lead and cadmium: effects of vitamin E and Mn. Free Radic Res. 39 : 707 12. https://doi.org/10.1080/10715760500092444 | spa |
dcterms.references | Qu, M.,Nan,X.,Gao, Z., Guo,B., Liu,B., Chen,Z. (2013). Protective efects of lycopene against methylmercury-induced neurotoxicity in cultured rat cerebellar granule neurons, Brain Res. 1540 92–102. https://doi.org/10.1016/j.brainres.2013.10.005 | spa |
dcterms.references | Rajeshwari, T., & Andallu, B. (2011). Medical benefits of coriander (Coriandrum sativum L.). Spatula. 1 (1), 51-58. | spa |
dcterms.references | Ralston, N., & Raymond, L. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology. 278, 112–123. https://doi.org/10.1016/j. tox.2010.06.004 | spa |
dcterms.references | Rice, K., Walker, E., Wu, M., Gillette, C., & Blough, E. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health. 47 (2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74 | spa |
dcterms.references | Rodrigues, K., Rodrigues, F., Cassunde, B., Oliveira, R., Bannwart, C., Gonçalves, B., Santana, A., Akio, N., & Bastos, C. (2019). Aqueous Coriandrum sativum L. extract promotes neuroprotection against motor changes and oxidative damage in rat progeny after maternal exposure to methylmercury. Food and Chemical Toxicology. 133 (2019) 110755. https://doi.org/10.1016/j.fct.2019.110755 | spa |
dcterms.references | Rosa-Sibakov, N., Poutanen, K., & Micard, V. (2015). How does wheat grain, bran and aleurone structure impact their nutritional and technological properties?. Trends in Food Science and Technology. 41(2): 118-134. https://doi.org/10.1016/j. tifs.2014.10.003 | spa |
dcterms.references | Rowland,I., Mallett, A., Flynn, J., & Hargreaves, R. (1986). The efect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice, Arch. Toxicol. 59, 94–98. https://doi.org/10.1007/BF00286730 | spa |
dcterms.references | Rudd, J., Turner, M., Townsend, B., Swick, A., & Furutani, A. (1980). Dynamics of selenium in mercury-contaminated experimental freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences. 37, 848–857. https://doi. org/10.1139/f80-113 | spa |
dcterms.references | Sarwar, N., Imran, M., Shaheen, M., Ishaque, W., Kamran, M., Matloob, A. , Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals : Modifications and future perspectives. Chemosphere. 171, 710 – 21. https://doi.org/10.1016/j.chemosphere.2016.12.116 | spa |
dcterms.references | Schmidt, L., Figueroa, J., Vecchia, P., Duarte, A., Mello, P., Caruso, J., & Flores, E. (2018). Bioavailability of Hg and Se from seafood after culinary treatments. Microchemical Journal. https://doi.org/10.1016/j.microc.2018.03.009 | spa |
dcterms.references | Siedlikowski, M., Bradley, M., Kubow, S., Goodrich, J., Franzblau, A., Basu, N. (2016). Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies. Environ Res. 149, 266-273. https://doi: 10.1016/j.envres.2016.02.013 | spa |
dcterms.references | Singh, R., Wu, J., & Fu, D. (2019). Purification of water contaminated with Hg using horizontal subsurface constructed wetlands. Environ Sci Pollut Res. 26 (10): 9697 - 9706. https://doi.org./10.1007/s11356-019-04260-9 | spa |
dcterms.references | Soupioni, M., Symeopoulos, B., Athanasiou, J., Gioulis, A., Koutsoukos, P., & TsolisKatagas, P. (1999). A preliminary study of mercury uptake by a Greek zeoliferous rock. In: Misaelides, P., Maca´sek, P., & Colella, C., editors. Natural microporous materials in environmental technology. Netherlands: Kluwer Academic Publishers. p. 365– 9. | spa |
dcterms.references | Sumathi, T., & Christinal, J. (2016). Neuroprotective effect of Portulaca oleraceae ethanolic extract ameliorates methylmercury induced cognitive dysfunction and oxidative stress in cerebellum and cortex of rat brain, Biol. Trace Elem. Res. 172 155–165. https://doi.org/10.1007/s12011-015-0546-6 | spa |
dcterms.references | Sumathi,T.,Shobana,C.,Christinal,J., Anusha,C. (2012). Protective efect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats, Cell. Mol. Neurobiol. 32, 979–987. https://doi.org/10.1007/s10571-012-9813-7 | spa |
dcterms.references | Tacon, A., & Metian, M. (2013) Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply, Reviews in Fisheries Science. 21 (1), 22-38, https://doi.org/10.1080/10641262.2012.753405 | spa |
dcterms.references | Tagliafierro, L., Officioso, A., Sorbo, S., Basile, A., & Manna, C. (2015). The protective role of olive oil hydroxytyrosol against oxidative alterations induced by mercury in human erythrocytes. Food and Chemical Toxicology. 82, 59-63. https://doi. org/10.1016/j.fct.2015.04.029 | spa |
dcterms.references | Terrazas-López, R., Arreola-mendoza, L., Galván-magaña, F., Sujitha, S., & Jonathan, M. (2019). Understanding the antagonism of Hg and Se in two shark species from Baja California South, México. Science of the Total Environment. 650, 202–209. https://doi.org/10.1016/j.scitotenv.2018.08.261 | spa |
dcterms.references | Tortora, F., Notariale, R., Maresca, V., Good, K., Sorbo, S., Basile, A., Piscopo, M., & Manna, C. (2019). Phenol-Rich Feijoa sellowiana (Pineapple Guava) Extracts Protect Human Red Blood Cells from Mercury-Induced Cellular Toxicity. Antioxidants. 8 (7), 220. https://doi.org/10.3390/antiox8070220 | spa |
dcterms.references | Turner, M., & Rudd, J. (1983). The English–Wabigoon River System: III. Selenium in Lake Enclosures: Its Geochemistry, Bioaccumulation, and Ability to Reduce Mercury Bioaccumulation. Canadian Journal of Fisheries and Aquatic Sciences. 40 (12), 2228-2240. https://doi.org/10.1139/f83-259 | spa |
dcterms.references | United States Environmental Protection Agency. (2002). Mercury Treatment Technologies for soil, waste and water. Oficce of Solid waste and Emergency Response. | spa |
dcterms.references | United States Environmental Protection Agency.(2014). Disponible en: http:// www.fda.gov/food/foodsafety/productspecificinformation/seafood/ foodbornepathogenscontaminants/methylmercury/ucm115662.htm | spa |
dcterms.references | Valenzuela, R., Tapia, G., González, M., & Valenzuela, A. (2011). Omega - 3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Rev Chil Nutr. 38, 356–367. https://doi.org/10.4067/S0717-75182011000300011. | spa |
dcterms.references | Vargas-Licona, S., & Marrugo-Negrete, J. (2019). Mercurio , metilmercurio y otros metales pesados en peces de Colombia : Riesgo por ingesta. Acta Biol. Colomb. 24 (2), 232–242. https://doi.org/10.15446/abc.v24n2.74128 | spa |
dcterms.references | Vlassopoulos, D., Kanematsu, M., Henry, E., Goin, J., Leven, A., Glaser, D., Brown, S., & O’Day, P. (2018). Manganese (iv) oxide amendments reduce methylmercury concentrations in sediment porewater. Environmental Science: Processes and Impacts. 20 (12) : 1746 -1760. https://doi.org/10.1039/C7EM00583K | spa |
dcterms.references | Von Stackelberg, K., Li, M., & Sunderland, E. (2017). Results of a national survey of high-frequency fish consumers in the United States. Environ Res. 158:126–136. https://doi.org/10.1016/j.envres.2017.05.042 | spa |
dcterms.references | Waliszewski, K., & Blasco, G. (2010). Propiedades nutraceúticas del licopeno. Salud pública Mex. 52(3): 254-265. | spa |
dcterms.references | Wang, J., Xing, Y., Xiec, Y., Meng, Y., Xia, J., & Fenga, X. (2019b). The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Science of The Total Environment. 646 (1): 1615 – 1623. https://doi.org/10.1016/j.scitotenv.2018.07.225 | spa |
dcterms.references | Wang, P., Chen, S., Chen, Z., Huo, W., Huang, R., Huang, W., … Yang, X. (2019a). Benefit – risk assessment of commonly consumed fish species from South China Sea based on methyl mercury and DHA Expert Committee on Food Additives. Environmental Geochemistry and Health. 1(160). https://doi.org/10.1007/ s10653-019-00254-1 | spa |
dcterms.references | Wang, X., & Wang, W. (2017). Selenium induces the demethylation of mercury in marine fish. Environmental Pollution. 231, 1543–1551. https://doi.org/10.1016/j. envpol.2017.09.014 | spa |
dcterms.references | Wang, X., Kim, K., Bai, S., Huh, M., Cho, B. (2003). Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture. 215, 203–211. https://doi.org/10.1016/ S0044-8486(02)00042-X | spa |
dcterms.references | Weinberg, J. (2010). Introducción a la contaminación por mercurio para las ONG. Ipen, 1–162. http://ipen.org/sites/default/files/documents/ipen_mercury_ booklet-es.pdf | spa |
dcterms.references | Weston, R. (2010). Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chem. 121, 923–926. https://doi.org/10.1016/j. foodchem.2010.01.047 | spa |
dcterms.references | Winarti, S., Pertiwi, C., Hanani, A., Mujamil, S., Putra, K., & Herlambang, K. (2018). Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish. Journal of Physics: Conference Series. 953 (1), 012237. https://doi.org/doi : 10.1088/1742-6596/953/1/012237 | spa |
dcterms.references | Winfrey, M., & Rudd, J. (1990). Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem. 9, 853 – 69. https://doi. org/10.1002/etc.5620090705 | spa |
dcterms.references | Zamora-Arellano, N., Ruelas-Inzunza, J., García-Hernández, J., Ilizaliturri-Hernández, C., & Betancourt-Lozano, M. (2017). Linking fish consumption patterns and health risk assessment of mercury exposure in a coastal community of NW Mexico. Human and Ecological Risk Assessment. 23(6), 1505–1521. https://doi. org/10.1080/10807039.2017.1329622 | spa |
dcterms.references | Zhuang, J., Walsh, T., & Lam, T. (2003). A new technology for the treatment of mercury contaminated water and soils. Environmental Technology. 24, 897 - 902. https://doi.org/10.1080/09593330309385626 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- ATRATO.pdf
- Tamaño:
- 6.78 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: