Publicación:
Microestructura y aplicaciones de aceros inoxidables martensíticos tratados por nitruración y cementación a plasma

dc.contributor.advisorEspitia Sanjuán, Luis Armandospa
dc.contributor.authorPuche Ojeda, Carlos Daniel
dc.date.accessioned2021-09-25T23:19:05Z
dc.date.available2021-09-25T23:19:05Z
dc.date.issued2021-09-24
dc.description.abstractIn this monograph, a comparative study regarding to the microstructural changes and engineering applications of martensitic stainless steels treated by nitriding and plasma carburizing reported in the literature is carried out. The changes in the microstructure and the chemical composition of the steels achieved by these thermochemical treatments are discussed by means of material characterization techniques, such as: optical microscopy, scanning electron microscopy, X-ray diffraction, optical emission spectroscopy of luminescent discharge, among others. It was found that these nitrided and carburized martensitic stainless steels are mainly used for wear resistance and corrosion resistance applications. Keywords: Microstructure, Expanded Martensite, Plasma Carburizing, Plasma Nitriding 13 INTRODUCCIeng
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Mecánico(a)spa
dc.description.modalityMonografíasspa
dc.description.resumenEn la presente monografía se realiza un estudio comparativo sobre los cambios en la microestructura y las aplicaciones en ingeniería de aceros inoxidables martensíticos tratados por nitruración y cementación a plasma reportados en la literatura. Los cambios en la microestructura y en la composición química de los aceros a partir de estos tratamientos termoquímicos son discutidos a través de técnicas de caracterización de materiales, como son: microscopia óptica, microscopía electrónica de barrido, difracción de rayos X, espectroscopía de emisión óptica de descarga luminiscente, entre otras. Se encontró que estos aceros inoxidables martensíticos nitrurados y cementados a plasma son empleados principalmente en aplicaciones de resistencia al desgaste y resistencia a corrosión.spa
dc.description.tableofcontentsRESUMEN ............................................................................................................................... 12spa
dc.description.tableofcontentsABSTRACT ............................................................................................................................. 12spa
dc.description.tableofcontentsINTRODUCCIÓN ................................................................................................................... 13spa
dc.description.tableofcontents1.TRATAMIENTOS TERMOQUÍMICOS ............................................................................. 14spa
dc.description.tableofcontents1.1 CEMENTACIÓN ........................................................................................................... 15spa
dc.description.tableofcontents1.1.1 Cementación Líquida .............................................................................................. 15spa
dc.description.tableofcontents1.1.2 Cementación al vacío .............................................................................................. 16spa
dc.description.tableofcontents1.1.3 Cementación gaseosa .............................................................................................. 16spa
dc.description.tableofcontents1.1.4 Cementación por Paquete ........................................................................................ 17spa
dc.description.tableofcontents1.1.5 Cementación a plasma ............................................................................................. 17spa
dc.description.tableofcontents1.2 NITRURACIÓN ............................................................................................................ 18spa
dc.description.tableofcontents1.2.1 Nitruración Líquida ................................................................................................. 19spa
dc.description.tableofcontents1.2.2 Nitruración gaseosa ................................................................................................. 19spa
dc.description.tableofcontents1.2.3 Nitruración a plasma ............................................................................................... 19spa
dc.description.tableofcontents2. CARACTERISTICAS DEL PROCESO DE DESCARGA LUMINISCENTE .................. 21spa
dc.description.tableofcontents2.1 CONCEPTO DEL PLASMA ......................................................................................... 21spa
dc.description.tableofcontents2.2 DESCARGA LUMINISCENTE .................................................................................... 22spa
dc.description.tableofcontents3. ACEROS INOXIDABLES .................................................................................................. 24spa
dc.description.tableofcontents4. FASES PRESENTES EN ACEROS NITRURADOS Y CEMENTADOS ........................ 28spa
dc.description.tableofcontents4.1 RESULTADOS DE NITRURACIÓN Y CEMENTACIÓN POR PLASMA PARA ACEROS INOXIDABLES MARTENSÍTICOS ................................................................. 28spa
dc.description.tableofcontents4.2 MICROESTRUCTURA, CARACTERIZACIÓN Y APLICACIONES DE ACEROS INOXIDABLES MARTENSÍTICOS NITRURADOS POR PLASMA ............................. 29spa
dc.description.tableofcontents4.3 MICROESTRUCTURA, CARACTERIZACIÓN Y APLICACIONES DE ACEROS INOXIDABLES MARTENSÍTICOS CEMENTADOS POR PLASMA ............................ 50spa
dc.description.tableofcontents5. RESUMEN DE LOS RESULTADOS ................................................................................. 62spa
dc.description.tableofcontentsCONCLUSIONES ................................................................................................................... 63spa
dc.description.tableofcontentsREFERENCIAS ....................................................................................................................... 65spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4569
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsMicrostructureeng
dc.subject.keywordsExpanded martensiteeng
dc.subject.keywordsPlasma carburizingeng
dc.subject.keywordsPlasma nitridingeng
dc.subject.proposalMicroestructuraspa
dc.subject.proposalMartensita expandidaspa
dc.subject.proposalCementación a plasmaspa
dc.subject.proposalNitruración a plasmaspa
dc.titleMicroestructura y aplicaciones de aceros inoxidables martensíticos tratados por nitruración y cementación a plasmaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbdelrahman, F., & Tatsuhiko , A. (2017). Phase Transformation Induced by High Nitrogen Content Solid Solution. Materials Transactions, 687-700.spa
dcterms.referencesAghajani, H., & Behrangi, S. (2017). Plasma Nitriding of Steels. Springer.spa
dcterms.referencesAngelini, V., Boromei, I., Martini, C., Scheuer, C. J., Cardoso, R. P., Brunatto, S. F., & Ceschini, L. (2016). Dry sliding behavior (block-on-ringtests) of AISI 420 martensitic stainless steel,surface hardened by low temperature plasma-assisted carburizing. Tribology international, 555-565.spa
dcterms.referencesAskeland, D. R., & Wright, W. J. (2016). The science and engineering of materials. Cengage Learning.spa
dcterms.referencesBelzunce, F. J. (2001). Aceros y Fundiciones: Estructuras, Transformaciones, Tratamientos Térmicos y Aplicaciones. Universidad de Oviedo.spa
dcterms.referencesBerns, H., Gavriljuk, V., & Riedner, S. (2013). High Interstitial Stainless Austenitic Steels. Springer.spa
dcterms.referencesBlaszques Martinez, V. M., Lorenzo Esteban, V., & Del rio Lopez, B. (2014). Ingeniería y ciencia de los materiales metálicos. Dextra.spa
dcterms.referencesBrunatto, S. F., Scheuer, C. J., & Cardoso, R. P. (2012). Low-temperature plasma carburizing of AISI 420 martensitic stainless steel: Influence of gas mixture and gas flow rate. Surface and Coatings Technology, 5085-5090.spa
dcterms.referencesBrunatto, S. F., Scheuer, C. J., Boromei, L., Martini, C., Ceschini, L., & Cardoso, A. P. (2018). Martensite coarsening in low-temperature plasma carburizing. Surface and Coatings Technology, 161-171.spa
dcterms.referencesBrunatto, S. F., & Cardoso, R. P. (2019). influência do tempo de pulso na cementação assistida por plasma. 10 COBEF Congresso Brasileiro de Engenharia de Fabricacao.spa
dcterms.referencesBuhagiar, J. (2010). Surface modification technologies. 25 years of S-phase. Maney on behalf of the Institute, 229-232.spa
dcterms.referencesCallister, W. D., & Rethwish, D. G. (2017). Materials Science and Engineering An Introduction, 10th Edition. Willey.spa
dcterms.referencesChapman, B. (1980). Glow discharge processes. Jhon Willey and sons.spa
dcterms.referencesCordova Valencia, S. (2003). Proceso de nitruración gaseosa en los aceros SAE 4340, SAE 4140, SAE 0-1, SAE 1045. Universidad Nacional de San Marcos.spa
dcterms.referencesCorengia, P., Walther, F., Ybarra, G., Sommadossi, S., Corbari, R., & Broitman, E. (2005). Friction and rolling–sliding wear of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel. Wear, 479-485.spa
dcterms.referencesCzerwinski, F. (2012). Heat treatment conventional and novel applications.spa
dcterms.referencesDavids, J. R. (2002). Surface Hardening of Steels understanding the basics. Asm International.spa
dcterms.referencesErkens, G., Vetter, J., Muller, J., & Brinke, T. a. (2010). Erkens. Sulzer Metaplas Gmbh.spa
dcterms.referencesEspitia Sanjuan, L. A. (2015). Cavitation erosion resistance and wea rmechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel. Universidad de São Paulo.spa
dcterms.referencesEspitia, L. A., Hanshan, D., Xiao-Ying, L., Pinedo, C. E., & Tschiptschin, A. P. (2017). Scratch test of active screen low temperature plasma nitrided AISI 410. Wear, 30-36.spa
dcterms.referencesGómez Gordo, A., & Martin piris, N. (2012). Ciencia de materiales para ingenieros. Prentice Hall.spa
dcterms.referencesGroover, M. P. (2019). Fundamentals of modern manufacturing materials, procesesses and systems. WIlley.spa
dcterms.referencesHongyu , S., & Liang , W. (2020). Mechanism and properties of plasma nitriding AISI 420 stainless steel at low. Surface and Coatings Techonology, 403-411.spa
dcterms.referencesHosmani, S. S., Kuppusami, P., & Kumar Goyal, R. (2014). An Introduction to surface Alloying of metals. Springer.spa
dcterms.referencesInsup, L. (2017). Combination of Plasma Nitriding and Nitrocarburizing Treatments of AISI 630 martensitic precipitation hardening stainless steel. Surface and Coatings Techonology.spa
dcterms.referencesKalpakijan, S., & Schmid, S. R. (2014). Manufacturing engineering and technology. Pearson.spa
dcterms.referencesKim, S. K., Yoo , J. S., Priest , J. M., & Fewell, M. P. (2003). Characteristics of Martensitic Stainless Steel Nitrided in Low-pressure RF Plasma. Surface and Coating Technology, 380-385.spa
dcterms.referencesKovacı, H., & Seçer, Y. (2020). Improved tribological performance of AISI 316L stainless steel by acombined surface treatment: Surface texturing by selective laser melting and plasma nitriding. Surface and Coatings Techonology.spa
dcterms.referencesKulka, M. (2019). Currents Trends in Boriding Techiques. Springer.spa
dcterms.referencesKumar Dwivedi, D. (2018). Surface engineering Enhancing Life of Tribological Components. Springer.spa
dcterms.referencesLeyland, A., Lewis, D. B., Stevenson, P. R., & Mat. (1993). Low temperature plasma diffusion treatment of stainless steels for improved wear resistance. Surface and Coatings Technology, 608-617.spa
dcterms.referencesLi, C. X., & Bell, T. (2006). Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corrosion Science, 2036-2049.spa
dcterms.referencesLiua, R. L., Fuyao , Y., Wei, C. Y., & Yan, M. F. (2019). Characteristics of carbon-expanded α phase layer on AISI 431 stainless steel using experimental and fist-principles calculation methods. Surface and Coatings Technology, 66-73.spa
dcterms.referencesMangonon, P. L. (2011). Ciencia de los materiales selección y diseño. Prentice Hall.spa
dcterms.referencesMaterials, A. S. (1992). ASM Handbook Vol 4 Heat Treating. Asm Internationalspa
dcterms.referencesMittemeijer, E. J., & Somers, M. A. (2015). Thermochemical surface engineering of steels. El servier.spa
dcterms.referencesPerez Patiño, J. A. (1996). Opcion al grado de maestro tratamientos termicos de los aceros. Universidad Autonoma de Leon.spa
dcterms.referencesPero-Sanz Elorz, J. A., Gonzales, D. F., & Verdeja. (2019). Structural Materials properties and selection. Springer.spa
dcterms.referencesPrabhudeva, K. H. (1988). Handbook of heat treatments of steels. MC Graw Hill.spa
dcterms.referencesPye, D. (2003). Practical nitriding and Ferritic Nitrocarburizing. Asm International.spa
dcterms.referencesRadhakanta. (2021). High-Performance Ferruos Alloys. Springer.spa
dcterms.referencesReardon, A. C. (2011). Metallurgy for the non metallurgist. Asm International.spa
dcterms.referencesRovani, A. C., Breganon, R., De Souzab, G. S., Brunatto, S. F., & Pintaúde, G. (2017). Scratch resistance of low-temperature plasma nitrided and carburized martensitic stainless steel. Wear, 70-76.spa
dcterms.referencesScheuer , C. J., Possoli , F. A., Borge, P. C., Cardoso, R. P., & Brunatto, S. F. (2019). AISI 420 martensitic stainless steel corrosion resistance enhancement by low-temperature plasma carburizing. Electrochemica Acta, 70-82.spa
dcterms.referencesScheuer, C. J., Cardoso, R. P., & Brunatto, S. F. (2021). Sequential low-temperature plasma-assisted thermochemical treatments of the AISI 420 martensitic stainless steel. Surface and Coatings Techonology.spa
dcterms.referencesShackelford, J. F. (2016). Introduction to materials science for engineers. Pearson.spa
dcterms.referencesSmitch, W. F., & Hashemi, J. (2019). Foundations of materials science and engineering. Mc Graw Hill.spa
dcterms.referencesTotten, G. E., & Dossett, J. L. (2013). ASM Handbook Volume 4ª Steel Heat Treating Fundamentals and Processes. Asm International.spa
dcterms.referencesUllah Khan, R. (2008). Vacuum Gas Carburizing-Fate of hydrocarbons. Universitatsverlag Kalsruhe.spa
dcterms.referencesUmemuraa, M. T., Varela, L. B., Pinedo, C. E., Cozza, R. C., & Tschiptschin, A. P. (2019). Assessment of tribological properties of plasma nitrided 410S ferritic-martensitic stainless steels. Wear, 49-58.spa
dcterms.referencesWarlimont, H., & Martienssen, W. (2018). Springer Handbook of Materials Data. Springer. Xu, Z., & Xiong, F. F. (2017). Plasma surface metallurgy With Double Glow Discharge Technology. Springer.spa
dcterms.referencesYang, L., Yongyong, H., JunJie , X., Wang, W., YiJie , Z., & Baoguo, H. (2017). Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding. Surface and Coatings Techonology, 184-192.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Carlos Puche.pdf
Tamaño:
2.49 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
364.69 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: