Publicación:
Perfil de los factores fibrinolíticos en malaria por Plasmodium falciparum y Plasmodium vivax

dc.contributor.advisorCantero Guevara, Miriam Elena
dc.contributor.advisorGarcía del Castillo, Yuranis Andrea
dc.contributor.authorHernández Galarza, Nataly
dc.contributor.juryCastro Cavadia, Carlos Javier
dc.contributor.juryYasnot Acosta, María Fernanda
dc.date.accessioned2025-07-25T16:48:52Z
dc.date.available2025-07-25T16:48:52Z
dc.date.issued2025-07-25
dc.description.abstractLa malaria es una enfermedad infecciosa de gran impacto en salud pública, especialmente en regiones tropicales y subtropicales donde circulan especies del género Plasmodium, principalmente P. falciparum y P. vivax. Esta infección, además de afectar múltiples órganos y sistemas, produce alteraciones significativas en el sistema hemostático, incluyendo activación del endotelio, consumo de factores de coagulación, trombocitopenia y disfunción fibrinolítica. En esta monografía se realizó una revisión bibliográfica sobre la epidemiología, fisiopatología y diagnóstico de la malaria, así como de los mecanismos de la hemostasia y su relación con marcadores como el dímero D, el activador tisular del plasminógeno (t-PA) y su inhibidor PAI-1, entre otros. Se identificaron estudios que respaldan el uso de estos marcadores como posibles predictores de gravedad o complicación. Esta revisión pretende servir como base para futuras investigaciones clínicas y para la comprensión integral de la malaria desde un enfoque hematológico.spa
dc.description.abstractMalaria is an infectious disease with significant public health impact, particularly in tropical and subtropical regions where species of the Plasmodium genus, mainly P. falciparum and P. vivax, are endemic. This infection, in addition to affecting multiple organs and systems, causes notable alterations in the hemostatic system, including endothelial activation, consumption of coagulation factors, thrombocytopenia, and fibrinolytic dysfunction. This monograph presents a literature review on the epidemiology, pathophysiology, and diagnosis of malaria, as well as the mechanisms of hemostasis and their relationship with markers such as D-dimer, tissue plasminogen activator (t-PA), and its inhibitor PAI-1, among others. Several studies support the use of these markers as potential predictors of disease severity or complications. This review aims to serve as a foundation for future clinical research and for a comprehensive understanding of malaria from a hematological perspective.eng
dc.description.degreelevelPregrado
dc.description.degreenameBacteriólogo(a)
dc.description.modalityMonografías
dc.description.tableofcontentsPRESENTACIÓN
dc.description.tableofcontentsRESUMEN
dc.description.tableofcontentsABSTRACT
dc.description.tableofcontentsINTRODUCCIÓN
dc.description.tableofcontentsMETODOLOGÍA
dc.description.tableofcontentsCAPÍTULO 1: MALARIA
dc.description.tableofcontentsCAPÍTULO 2: HEMOSTASIA
dc.description.tableofcontentsCAPÍTULO 3: FACTORES FIBRINOLÍTICOS
dc.description.tableofcontentsCAPÍTULO 4: ALTERACIONES FIBRINOLÍTICAS EN MALARIA: ANÁLISIS COMPARATIVO
dc.description.tableofcontentsREFERENCIAS BIBLIOGRÁFICAS
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9485
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias de la Salud
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBacteriología
dc.relation.referencesCowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and disease. Cell, 167(3), 610–624. https://doi.org/10.1016/j.cell.2016.07.055
dc.relation.referencesRosenthal, P. J. (2022). Malaria in 2022: Challenges and progress. The American Journal of Tropical Medicine and Hygiene, 106(1), 1–4. https://doi.org/10.4269/ajtmh.21-1084
dc.relation.referencesLi, Q., Liu, T., Lv, K., Liao, F., Wang, J., Tu, Y., & Chen, Q. (2025). Malaria: Past, present, and future. Signal Transduction and Targeted Therapy, 10(188). https://doi.org/10.1038/s41392-025-02246-3
dc.relation.referencesWorld Health Organization. (2024). World malaria report 2024: Addressing inequity in the global malaria response. Ginebra: OMS.
dc.relation.referencesPan American Health Organization (PAHO). (2025). PAHO urges expanded access to malaria diagnosis and treatment to accelerate elimination. Recuperado de https://www.paho.org/en/news/25-4-2025-paho-urges-expanded-access-malaria- diagnosis-and-treatment
dc.relation.referencesAtlas Visual de la Malaria. (2025). Malaria en Colombia: 123 740 casos en 2024. Recuperado de https://atlasvisualdelamalaria.org/malaria-en-colombia-123-740-casos-en- 2024/
dc.relation.referencesAtlas Visual de la Malaria. (2024). Malaria en Colombia: 110 343 casos y 16 muertes (SE44). Recuperado de https://atlasvisualdelamalaria.org/malaria-en-colombia-81- %E2%AC%86-se44-110343-casos-y-16-muertes/
dc.relation.referencesInstituto Nacional de Salud (INS). (2025). Boletín Epidemiológico Semana 15 - 2025. Recuperado de https://www.ins.gov.co
dc.relation.referencesMilner, D. A. Jr. (2018). Malaria pathogenesis. Cold Spring Harbor Perspectives in Medicine, 8(1), a025569. https://doi.org/10.1101/cshperspect.a025569
dc.relation.referencesTizifa, T. A., Kabaghe, A. N., McCann, R. S., van den Berg, H., Van Vugt, M., & Phiri, K. S. (2018). Prevention efforts for malaria. Current Tropical Medicine Reports, 5(1), 41– 50. https://doi.org/10.1007/s40475-018-0133-y
dc.relation.referencesZimmerman, P. A., & Howes, R. E. (2015). Malaria diagnosis for malaria elimination. Current Opinion in Infectious Diseases, 28(5), 446–454. https://doi.org/10.1097/QCO.0000000000000191
dc.relation.referencesPortugal, S., Epiphanio, S., Akinc, A., Hadwiger, P., Jahn-Hofmann, K., et al. (2014). Malaria Biology and Disease. Cell Host & Microbe.
dc.relation.referencesKojom Foko, L., & Singh, V. (2023). Malaria in pregnancy in India: A public health concern. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2023.1150466
dc.relation.referencesHendriksen, I. C. E., et al. (2013). Pathophysiology of severe malaria: insights from clinical studies. Malaria Journal, 12(1), 67. https://doi.org/10.1186/1475-2875-12-67
dc.relation.referencesCunnington, A. J., Riley, E. M., & Walther, M. (2013). Microvascular dysfunction in severe Plasmodium falciparum malaria. Journal of Infectious Diseases, 207(3), 369–370. https://doi.org/10.1093/infdis/jis728
dc.relation.referencesHanson, J., Lee, S. J., Hossain, M. A., Anstey, N. M., Charunwatthana, P., Maude, R. J., ... & White, N. J. (2015). Endothelial activation in adults with severe falciparum malaria characterized by increased levels of circulating soluble ICAM-1 and von Willebrand factor. Clinical Infectious Diseases, 60(6), 845–852. https://doi.org/10.1093/cid/ciu954
dc.relation.referencesHunt, N. H., Ball, H. J., & Hansen, A. M. (2014). Cerebral malaria: γ-Interferon redux. Frontiers in Cellular and Infection Microbiology, 4, 113. https://doi.org/10.3389/fcimb.2014.00113
dc.relation.referencesCibulskis, R. E., Aregawi, M., Williams, R., Otten, M., Dye, C., & Snow, R. W. (2016). Malaria: Global progress 2000–2015. Infectious Diseases of Poverty, 5(1), 61. https://doi.org/10.1186/s40249-016-0151-8
dc.relation.referencesThanh, P. V., Hong, N. V., Van, N. N., Malaria Control Programme of Vietnam, et al. (2015). Epidemiology of forest malaria in Central Vietnam: the hidden parasite reservoir. Malaria Journal, 14, 86. https://doi.org/10.1186/s12936-015-0581-7
dc.relation.referencesMbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., ... & Haldar, K. (2015). A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 520(7549), 683–687. https://doi.org/10.1038/nature14412
dc.relation.referencesVallejo, A. F., Chaparro, P. E., Benavides, Y., Álvarez, Á. M., Quintero, J. P., & Herrera, S. (2015). High prevalence of sub-microscopic infections in Colombia. Malaria Journal, 14, 201. https://doi.org/10.1186/s12936-015-0702-3
dc.relation.referencesHopkins, H., Gonzalez, I. J., Polley, S. D., et al. (2013). Performance of a new LAMP kit in a remote clinic in Uganda. Journal of Infectious Diseases, 208(4), 645–652. https://doi.org/10.1093/infdis/jit184
dc.relation.referencesCheng, Z., Wang, D., Tian, X., et al. (2015). Capture and ligation probe-PCR (CLIP-PCR) for molecular screening. Clinical Chemistry, 61(6), 821–828. https://doi.org/10.1373/clinchem.2014.234070
dc.relation.referencesTaylor, B. J., Howell, A., Martin, K. A., et al. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13, 179. https://doi.org/10.1186/1475-2875-13-179
dc.relation.referencesArya, A., Kojom Foko, L. P., Chaudhry, S., Sharma, A., & Singh, V. (2021). Artemisinin- based combination therapy and drug resistance molecular markers: A systematic review. International Journal for Parasitology: Drugs and Drug Resistance, 15, 43–56. https://doi.org/10.1016/j.ijpddr.2020.11.006
dc.relation.referencesAnvikar, A. R., Sahu, P., Pradhan, M. M., Sharma, S., Ahmed, N., Yadav, C. P., et al. (2022). Active pharmacovigilance for primaquine radical cure of Plasmodium vivax malaria in Odisha, India. The American Journal of Tropical Medicine and Hygiene, 106(3), 831–840. https://doi.org/10.4269/ajtmh.21-0816
dc.relation.referencesMcCarthy, J. S., et al. (2021). Safety and antimalarial activity of M5717: A first-in-human study. The Lancet Infectious Diseases, 21(12), 1713–1724. https://doi.org/10.1016/S1473- 3099(21)00187-7
dc.relation.referencesMarongiu, F., Grandone, E., Scano, A., et al. (2021). Infectious agents including COVID- 19 and the involvement of blood coagulation and fibrinolysis: A narrative review. European Review for Medical and Pharmacological Sciences, 25(9), 3886–3897. https://doi.org/10.26355/eurrev_202105_25882
dc.relation.referencesFollenzi, A., Boscolo, E., Bertero, T., et al. (2023). Hemostasis and endothelial functionality: the double face of coagulation factors. Blood Reviews, 57, 100999. https://doi.org/10.1016/j.blre.2022.100999
dc.relation.referencesMostafa, A. G., Bilal, N. E., Abass, A. E., et al. (2015). Coagulation and Fibrinolysis Indicators and Placental Malaria Infection in Central Sudan. Malaria Research and Treatment, 2015, Article ID 369237. https://doi.org/10.1155/2015/369237
dc.relation.referencesPala, Z. R., Ernest, M., Sweeney, B., et al. (2022). Beyond cuts and scrapes: Plasmin in malaria and other vector-borne diseases. Trends in Parasitology, 38(2), 147–159. https://doi.org/10.1016/j.pt.2021.09.008
dc.relation.referencesAlves e Silva, T. L., Radtke, A., Balaban, A., et al. (2021). The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. Science Advances, 7, eabe3362. https://doi.org/10.1126/sciadv.abe3362
dc.relation.referencesKuijpers, M. J. E., Heemskerk, J. W. M., & Nagy, M. (2022). Molecular mechanisms of hemostasis, thrombosis and thrombo-inflammation. Cardiovascular Research, 118(5), 1130–1153. https://doi.org/10.1093/cvr/cvab365
dc.relation.referencesMandel, J., Subramaniam, S., & Schattner, M. (2022). Beyond hemostasis: platelet innate immune interactions and thromboinflammation. International Journal of Molecular Sciences, 23(14), 7911. https://doi.org/10.3390/ijms23147911
dc.relation.referencesHvas, C. L., & Larsen, J. B. (2023). The fibrinolytic system and its measurement: History, current uses and future directions for diagnosis and treatment. International Journal of Molecular Sciences, 24(18), 14179. https://doi.org/10.3390/ijms241814179
dc.relation.referencesObeagu, E. I., Obeagu, G. U., Chukwueze, C. M., et al. (2022). Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri Metropolis. Madonna University Journal of Medicine and Health Sciences, 2(2), 1–9. http://madonnauniversity.edu.ng/journals
dc.relation.referencesGhosh, S., Singh, N. M., & Mukherjee, A. (2023). Beyond cuts and scrapes: Plasmin in malaria and other vector-borne diseases. Current Topics in Medicinal Chemistry, 23(1), 3–17
dc.relation.referencesSantos-Ciminera, P., Branch, O. H., & Udhayakumar, V. (2021). Elevations in D-dimer levels in patients with Plasmodium infections: A systematic review and meta-analysis. PLOS ONE, 16(5), e0251344.
dc.relation.referencesBranch, O. H., Udhayakumar, V., & Santos-Ciminera, P. (2021). Elevations in D-dimer levels in patients with Plasmodium infections: A systematic review and meta-analysis. PLOS ONE, 16(5), e0251344. https://doi.org/10.1371/journal.pone.0251344
dc.relation.referencesBarcus, M. J., Basri, H., Picarima, H., Manyakori, C., Sekartuti, Elyazar, I., & Baird, J. K. (2007). Demonstration of hypnozoite activation in Plasmodium vivax malaria. The American Journal of Tropical Medicine and Hygiene, 77(4), 727–732. https://doi.org/10.4269/ajtmh.2007.77.727
dc.relation.referencesRahimi, B. A., Thakkinstian, A., White, N. J., & Dondorp, A. M. (2014). Severe vivax malaria: A systematic review and meta-analysis of clinical studies since 1900. PLOS Neglected Tropical Diseases, 8(12), e3076. https://doi.org/10.1371/journal.pntd.0003076
dc.relation.referencesLong, H., Tang, L., Xu, S., et al. (2021). Infectious agents including COVID-19 and the involvement of blood coagulation and fibrinolysis. Journal of Infection and Public Health, 14(9), 1171–1180.
dc.relation.referencesMorioka, T., et al. (2022). The Fibrinolytic System and Its Measurement: History, Current Uses and Future Directions. Frontiers in Medicine, 9, 1052168. https://doi.org/10.3389/fmed.2022.1052168
dc.relation.referencesKell, D. B., & Pretorius, E. (2017). Proteins behaving badly. PLOS ONE, 12(3), e0173677. https://doi.org/10.1371/journal.pone.0173677
dc.relation.referencesMonteiro, R. Q., et al. (2020). The fibrinolytic system in inflammation and infection. Thrombosis Research, 191, S117–S122.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsMalariaeng
dc.subject.keywordsPlasmodium falciparumeng
dc.subject.keywordsPlasmodium vivaxeng
dc.subject.keywordsHemostasiseng
dc.subject.keywordsFibrinolysiseng
dc.subject.proposalMalariaspa
dc.subject.proposalPlasmodium falciparumspa
dc.subject.proposalPlasmodium vivaxspa
dc.subject.proposalHemostasiaspa
dc.subject.proposalFibrinólisisspa
dc.titlePerfil de los factores fibrinolíticos en malaria por Plasmodium falciparum y Plasmodium vivaxspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
HernandezGalarzaNataly.pdf
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
390.09 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: