Publicación: Perfil de los factores fibrinolíticos en malaria por Plasmodium falciparum y Plasmodium vivax
dc.contributor.advisor | Cantero Guevara, Miriam Elena | |
dc.contributor.advisor | García del Castillo, Yuranis Andrea | |
dc.contributor.author | Hernández Galarza, Nataly | |
dc.contributor.jury | Castro Cavadia, Carlos Javier | |
dc.contributor.jury | Yasnot Acosta, María Fernanda | |
dc.date.accessioned | 2025-07-25T16:48:52Z | |
dc.date.available | 2025-07-25T16:48:52Z | |
dc.date.issued | 2025-07-25 | |
dc.description.abstract | La malaria es una enfermedad infecciosa de gran impacto en salud pública, especialmente en regiones tropicales y subtropicales donde circulan especies del género Plasmodium, principalmente P. falciparum y P. vivax. Esta infección, además de afectar múltiples órganos y sistemas, produce alteraciones significativas en el sistema hemostático, incluyendo activación del endotelio, consumo de factores de coagulación, trombocitopenia y disfunción fibrinolítica. En esta monografía se realizó una revisión bibliográfica sobre la epidemiología, fisiopatología y diagnóstico de la malaria, así como de los mecanismos de la hemostasia y su relación con marcadores como el dímero D, el activador tisular del plasminógeno (t-PA) y su inhibidor PAI-1, entre otros. Se identificaron estudios que respaldan el uso de estos marcadores como posibles predictores de gravedad o complicación. Esta revisión pretende servir como base para futuras investigaciones clínicas y para la comprensión integral de la malaria desde un enfoque hematológico. | spa |
dc.description.abstract | Malaria is an infectious disease with significant public health impact, particularly in tropical and subtropical regions where species of the Plasmodium genus, mainly P. falciparum and P. vivax, are endemic. This infection, in addition to affecting multiple organs and systems, causes notable alterations in the hemostatic system, including endothelial activation, consumption of coagulation factors, thrombocytopenia, and fibrinolytic dysfunction. This monograph presents a literature review on the epidemiology, pathophysiology, and diagnosis of malaria, as well as the mechanisms of hemostasis and their relationship with markers such as D-dimer, tissue plasminogen activator (t-PA), and its inhibitor PAI-1, among others. Several studies support the use of these markers as potential predictors of disease severity or complications. This review aims to serve as a foundation for future clinical research and for a comprehensive understanding of malaria from a hematological perspective. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Bacteriólogo(a) | |
dc.description.modality | Monografías | |
dc.description.tableofcontents | PRESENTACIÓN | |
dc.description.tableofcontents | RESUMEN | |
dc.description.tableofcontents | ABSTRACT | |
dc.description.tableofcontents | INTRODUCCIÓN | |
dc.description.tableofcontents | METODOLOGÍA | |
dc.description.tableofcontents | CAPÍTULO 1: MALARIA | |
dc.description.tableofcontents | CAPÍTULO 2: HEMOSTASIA | |
dc.description.tableofcontents | CAPÍTULO 3: FACTORES FIBRINOLÍTICOS | |
dc.description.tableofcontents | CAPÍTULO 4: ALTERACIONES FIBRINOLÍTICAS EN MALARIA: ANÁLISIS COMPARATIVO | |
dc.description.tableofcontents | REFERENCIAS BIBLIOGRÁFICAS | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9485 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Bacteriología | |
dc.relation.references | Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and disease. Cell, 167(3), 610–624. https://doi.org/10.1016/j.cell.2016.07.055 | |
dc.relation.references | Rosenthal, P. J. (2022). Malaria in 2022: Challenges and progress. The American Journal of Tropical Medicine and Hygiene, 106(1), 1–4. https://doi.org/10.4269/ajtmh.21-1084 | |
dc.relation.references | Li, Q., Liu, T., Lv, K., Liao, F., Wang, J., Tu, Y., & Chen, Q. (2025). Malaria: Past, present, and future. Signal Transduction and Targeted Therapy, 10(188). https://doi.org/10.1038/s41392-025-02246-3 | |
dc.relation.references | World Health Organization. (2024). World malaria report 2024: Addressing inequity in the global malaria response. Ginebra: OMS. | |
dc.relation.references | Pan American Health Organization (PAHO). (2025). PAHO urges expanded access to malaria diagnosis and treatment to accelerate elimination. Recuperado de https://www.paho.org/en/news/25-4-2025-paho-urges-expanded-access-malaria- diagnosis-and-treatment | |
dc.relation.references | Atlas Visual de la Malaria. (2025). Malaria en Colombia: 123 740 casos en 2024. Recuperado de https://atlasvisualdelamalaria.org/malaria-en-colombia-123-740-casos-en- 2024/ | |
dc.relation.references | Atlas Visual de la Malaria. (2024). Malaria en Colombia: 110 343 casos y 16 muertes (SE44). Recuperado de https://atlasvisualdelamalaria.org/malaria-en-colombia-81- %E2%AC%86-se44-110343-casos-y-16-muertes/ | |
dc.relation.references | Instituto Nacional de Salud (INS). (2025). Boletín Epidemiológico Semana 15 - 2025. Recuperado de https://www.ins.gov.co | |
dc.relation.references | Milner, D. A. Jr. (2018). Malaria pathogenesis. Cold Spring Harbor Perspectives in Medicine, 8(1), a025569. https://doi.org/10.1101/cshperspect.a025569 | |
dc.relation.references | Tizifa, T. A., Kabaghe, A. N., McCann, R. S., van den Berg, H., Van Vugt, M., & Phiri, K. S. (2018). Prevention efforts for malaria. Current Tropical Medicine Reports, 5(1), 41– 50. https://doi.org/10.1007/s40475-018-0133-y | |
dc.relation.references | Zimmerman, P. A., & Howes, R. E. (2015). Malaria diagnosis for malaria elimination. Current Opinion in Infectious Diseases, 28(5), 446–454. https://doi.org/10.1097/QCO.0000000000000191 | |
dc.relation.references | Portugal, S., Epiphanio, S., Akinc, A., Hadwiger, P., Jahn-Hofmann, K., et al. (2014). Malaria Biology and Disease. Cell Host & Microbe. | |
dc.relation.references | Kojom Foko, L., & Singh, V. (2023). Malaria in pregnancy in India: A public health concern. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2023.1150466 | |
dc.relation.references | Hendriksen, I. C. E., et al. (2013). Pathophysiology of severe malaria: insights from clinical studies. Malaria Journal, 12(1), 67. https://doi.org/10.1186/1475-2875-12-67 | |
dc.relation.references | Cunnington, A. J., Riley, E. M., & Walther, M. (2013). Microvascular dysfunction in severe Plasmodium falciparum malaria. Journal of Infectious Diseases, 207(3), 369–370. https://doi.org/10.1093/infdis/jis728 | |
dc.relation.references | Hanson, J., Lee, S. J., Hossain, M. A., Anstey, N. M., Charunwatthana, P., Maude, R. J., ... & White, N. J. (2015). Endothelial activation in adults with severe falciparum malaria characterized by increased levels of circulating soluble ICAM-1 and von Willebrand factor. Clinical Infectious Diseases, 60(6), 845–852. https://doi.org/10.1093/cid/ciu954 | |
dc.relation.references | Hunt, N. H., Ball, H. J., & Hansen, A. M. (2014). Cerebral malaria: γ-Interferon redux. Frontiers in Cellular and Infection Microbiology, 4, 113. https://doi.org/10.3389/fcimb.2014.00113 | |
dc.relation.references | Cibulskis, R. E., Aregawi, M., Williams, R., Otten, M., Dye, C., & Snow, R. W. (2016). Malaria: Global progress 2000–2015. Infectious Diseases of Poverty, 5(1), 61. https://doi.org/10.1186/s40249-016-0151-8 | |
dc.relation.references | Thanh, P. V., Hong, N. V., Van, N. N., Malaria Control Programme of Vietnam, et al. (2015). Epidemiology of forest malaria in Central Vietnam: the hidden parasite reservoir. Malaria Journal, 14, 86. https://doi.org/10.1186/s12936-015-0581-7 | |
dc.relation.references | Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., ... & Haldar, K. (2015). A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 520(7549), 683–687. https://doi.org/10.1038/nature14412 | |
dc.relation.references | Vallejo, A. F., Chaparro, P. E., Benavides, Y., Álvarez, Á. M., Quintero, J. P., & Herrera, S. (2015). High prevalence of sub-microscopic infections in Colombia. Malaria Journal, 14, 201. https://doi.org/10.1186/s12936-015-0702-3 | |
dc.relation.references | Hopkins, H., Gonzalez, I. J., Polley, S. D., et al. (2013). Performance of a new LAMP kit in a remote clinic in Uganda. Journal of Infectious Diseases, 208(4), 645–652. https://doi.org/10.1093/infdis/jit184 | |
dc.relation.references | Cheng, Z., Wang, D., Tian, X., et al. (2015). Capture and ligation probe-PCR (CLIP-PCR) for molecular screening. Clinical Chemistry, 61(6), 821–828. https://doi.org/10.1373/clinchem.2014.234070 | |
dc.relation.references | Taylor, B. J., Howell, A., Martin, K. A., et al. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13, 179. https://doi.org/10.1186/1475-2875-13-179 | |
dc.relation.references | Arya, A., Kojom Foko, L. P., Chaudhry, S., Sharma, A., & Singh, V. (2021). Artemisinin- based combination therapy and drug resistance molecular markers: A systematic review. International Journal for Parasitology: Drugs and Drug Resistance, 15, 43–56. https://doi.org/10.1016/j.ijpddr.2020.11.006 | |
dc.relation.references | Anvikar, A. R., Sahu, P., Pradhan, M. M., Sharma, S., Ahmed, N., Yadav, C. P., et al. (2022). Active pharmacovigilance for primaquine radical cure of Plasmodium vivax malaria in Odisha, India. The American Journal of Tropical Medicine and Hygiene, 106(3), 831–840. https://doi.org/10.4269/ajtmh.21-0816 | |
dc.relation.references | McCarthy, J. S., et al. (2021). Safety and antimalarial activity of M5717: A first-in-human study. The Lancet Infectious Diseases, 21(12), 1713–1724. https://doi.org/10.1016/S1473- 3099(21)00187-7 | |
dc.relation.references | Marongiu, F., Grandone, E., Scano, A., et al. (2021). Infectious agents including COVID- 19 and the involvement of blood coagulation and fibrinolysis: A narrative review. European Review for Medical and Pharmacological Sciences, 25(9), 3886–3897. https://doi.org/10.26355/eurrev_202105_25882 | |
dc.relation.references | Follenzi, A., Boscolo, E., Bertero, T., et al. (2023). Hemostasis and endothelial functionality: the double face of coagulation factors. Blood Reviews, 57, 100999. https://doi.org/10.1016/j.blre.2022.100999 | |
dc.relation.references | Mostafa, A. G., Bilal, N. E., Abass, A. E., et al. (2015). Coagulation and Fibrinolysis Indicators and Placental Malaria Infection in Central Sudan. Malaria Research and Treatment, 2015, Article ID 369237. https://doi.org/10.1155/2015/369237 | |
dc.relation.references | Pala, Z. R., Ernest, M., Sweeney, B., et al. (2022). Beyond cuts and scrapes: Plasmin in malaria and other vector-borne diseases. Trends in Parasitology, 38(2), 147–159. https://doi.org/10.1016/j.pt.2021.09.008 | |
dc.relation.references | Alves e Silva, T. L., Radtke, A., Balaban, A., et al. (2021). The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. Science Advances, 7, eabe3362. https://doi.org/10.1126/sciadv.abe3362 | |
dc.relation.references | Kuijpers, M. J. E., Heemskerk, J. W. M., & Nagy, M. (2022). Molecular mechanisms of hemostasis, thrombosis and thrombo-inflammation. Cardiovascular Research, 118(5), 1130–1153. https://doi.org/10.1093/cvr/cvab365 | |
dc.relation.references | Mandel, J., Subramaniam, S., & Schattner, M. (2022). Beyond hemostasis: platelet innate immune interactions and thromboinflammation. International Journal of Molecular Sciences, 23(14), 7911. https://doi.org/10.3390/ijms23147911 | |
dc.relation.references | Hvas, C. L., & Larsen, J. B. (2023). The fibrinolytic system and its measurement: History, current uses and future directions for diagnosis and treatment. International Journal of Molecular Sciences, 24(18), 14179. https://doi.org/10.3390/ijms241814179 | |
dc.relation.references | Obeagu, E. I., Obeagu, G. U., Chukwueze, C. M., et al. (2022). Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri Metropolis. Madonna University Journal of Medicine and Health Sciences, 2(2), 1–9. http://madonnauniversity.edu.ng/journals | |
dc.relation.references | Ghosh, S., Singh, N. M., & Mukherjee, A. (2023). Beyond cuts and scrapes: Plasmin in malaria and other vector-borne diseases. Current Topics in Medicinal Chemistry, 23(1), 3–17 | |
dc.relation.references | Santos-Ciminera, P., Branch, O. H., & Udhayakumar, V. (2021). Elevations in D-dimer levels in patients with Plasmodium infections: A systematic review and meta-analysis. PLOS ONE, 16(5), e0251344. | |
dc.relation.references | Branch, O. H., Udhayakumar, V., & Santos-Ciminera, P. (2021). Elevations in D-dimer levels in patients with Plasmodium infections: A systematic review and meta-analysis. PLOS ONE, 16(5), e0251344. https://doi.org/10.1371/journal.pone.0251344 | |
dc.relation.references | Barcus, M. J., Basri, H., Picarima, H., Manyakori, C., Sekartuti, Elyazar, I., & Baird, J. K. (2007). Demonstration of hypnozoite activation in Plasmodium vivax malaria. The American Journal of Tropical Medicine and Hygiene, 77(4), 727–732. https://doi.org/10.4269/ajtmh.2007.77.727 | |
dc.relation.references | Rahimi, B. A., Thakkinstian, A., White, N. J., & Dondorp, A. M. (2014). Severe vivax malaria: A systematic review and meta-analysis of clinical studies since 1900. PLOS Neglected Tropical Diseases, 8(12), e3076. https://doi.org/10.1371/journal.pntd.0003076 | |
dc.relation.references | Long, H., Tang, L., Xu, S., et al. (2021). Infectious agents including COVID-19 and the involvement of blood coagulation and fibrinolysis. Journal of Infection and Public Health, 14(9), 1171–1180. | |
dc.relation.references | Morioka, T., et al. (2022). The Fibrinolytic System and Its Measurement: History, Current Uses and Future Directions. Frontiers in Medicine, 9, 1052168. https://doi.org/10.3389/fmed.2022.1052168 | |
dc.relation.references | Kell, D. B., & Pretorius, E. (2017). Proteins behaving badly. PLOS ONE, 12(3), e0173677. https://doi.org/10.1371/journal.pone.0173677 | |
dc.relation.references | Monteiro, R. Q., et al. (2020). The fibrinolytic system in inflammation and infection. Thrombosis Research, 191, S117–S122. | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Malaria | eng |
dc.subject.keywords | Plasmodium falciparum | eng |
dc.subject.keywords | Plasmodium vivax | eng |
dc.subject.keywords | Hemostasis | eng |
dc.subject.keywords | Fibrinolysis | eng |
dc.subject.proposal | Malaria | spa |
dc.subject.proposal | Plasmodium falciparum | spa |
dc.subject.proposal | Plasmodium vivax | spa |
dc.subject.proposal | Hemostasia | spa |
dc.subject.proposal | Fibrinólisis | spa |
dc.title | Perfil de los factores fibrinolíticos en malaria por Plasmodium falciparum y Plasmodium vivax | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: