Publicación:
Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar

dc.contributor.advisorRhenals Julio, Jesus David
dc.contributor.advisorRomero Luna, Carlos Manuel
dc.contributor.authorEspitia Páez, Isabela
dc.contributor.authorOrtiz Pinto, Eidi María
dc.contributor.juryArango Meneses, Juan Fernando
dc.contributor.juryMendoza Fandiño, Jorge Mario
dc.date.accessioned2025-02-07T16:31:52Z
dc.date.available2025-02-07T16:31:52Z
dc.date.issued2025-02-07
dc.description.abstractLa pirólisis catalítica de la biomasa lignocelulósica ha demostrado ser una propuesta viable para la producción de hidrocarburos líquidos y otros productos de gran utilidad. Este estudio presenta una simulación numérica del proceso de pirólisis catalítica in situ utilizando la biomasa de Bagazo de caña de azúcar y un tipo de zeolita mineral (ZSM-5) como catalizador. La simulación se llevó a cabo empleando el software DWSIM, por medio del cual fue posible analizar las propiedades del catalizador y modelar las respectivas reacciones químicas, la distribución de productos y la influencia del catalizador bajo condiciones controladas. El modelo implementado incorporó un conjunto de reacciones representativas para simular el efecto catalítico del ZSM-5. Para evaluar el rendimiento de la pirolisis se analiza la conversión de la biomasa lignocelulósica en los productos principales: gas, bio-carbón y bio-aceite. Los resultados de la simulación numérica muestran una mejora significativa en los rendimientos hacia gas y bio-aceite. Esto evidencia el potencial del ZSM-5 como catalizador en la pirólisis, dando como resultado un óptimo aprovechamiento del bagazo de caña de azúcar y mayores rendimientos en los productos finales. Esta investigación abre camino para futuros estudios de modelos numéricos avanzados con el fin de optimizar el proceso de pirolisis catalítica.spa
dc.description.degreelevelPregrado
dc.description.degreenameIngeniero(a) Mecánico(a)
dc.description.modalityArtículo
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9042
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programIngeniería Mecánica
dc.relation.referencesAfraz, M., Muhammad, F., Nisar, J., Shah, A., Munir, S., Ali, G., & Ahmad, A. (2024). Production of value added products from biomass waste by pyrolysis: An updated review. Waste Management Bulletin, 1(4), 30–40. https://doi.org/10.1016/j.wmb.2023.08.004
dc.relation.referencesAgnihotri, N., & Mondal, M. K. (2023). Comparison of non-catalytic and in-situ catalytic pyrolysis of Melia azedarach sawdust. Journal of Analytical and Applied Pyrolysis, 172, 106006. https://doi.org/10.1016/J.JAAP.2023.106006
dc.relation.referencesBagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of analytical and applied pyrolysis, 63(1), 29-41. https://www.sciencedirect.com/science/article/pii/S0165237001001395
dc.relation.referencesBakar, M. S. A., & Titiloye, J. O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Journal of analytical and applied pyrolysis, 103, 362-368. https://www.sciencedirect.com/science/article/pii/S0165237012001696
dc.relation.referencesBalasundram, V., Ibrahim, N., Kasmani, R. M., Isha, R., Abd Hamid, M. K., & Hasbullah, H. (2017). Catalytic pyrolysis of sugarcane bagasse using molybdenum modified HZSM-5 zeolite. Energy Procedia, 142, 793–800. https://doi.org/10.1016/j.egypro.2017.12.128
dc.relation.referencesBoxiong, S., Chunfei, W., Binbin, G., & Rui, W. (2007). Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Applied Catalysis B: Environmental, 73(1-2), 150-157. https://www.sciencedirect.com/science/article/pii/S0926337306003298
dc.relation.referencesBuyang, Y., Suprapto, S., Nugraha, R. E., Holilah, H., Bahruji, H., Hantoro, R., Jalil, A. A., Oetami, T. P., & Prasetyoko, D. (2023). Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. Journal of Analytical and Applied Pyrolysis, 169, 105852. https://doi.org/10.1016/J.JAAP.2022.105852
dc.relation.referencesCzajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/J.EGYPRO.2017.07.275
dc.relation.referencesDabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J. D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/J.PECS.2018.05.002
dc.relation.referencesDahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 248, 2–12. https://doi.org/10.1016/J.BIORTECH.2017.07.176
dc.relation.referencesDu, S., Gamliel, D. P., Valla, J. A., & Bollas, G. M. (2016). The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils. Journal of analytical and applied pyrolysis, 122, 7-12. https://www.sciencedirect.com/science/article/pii/S0165237016304181
dc.relation.referencesGreish, A. A., Sokolovskiy, P. V., Finashina, E. D., Kustov, L. M., Vezentsev, A. I., Chien Nguyen, D., & Chau Nguyen, H. (2022). Efficient carbon adsorbent for hydrogen sulfide produced from sugar cane bagasse. Mendeleev Communications, 32(6), 828–830. https://doi.org/10.1016/J.MENCOM.2022.11.040
dc.relation.referencesHan, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of Cleaner Production, 231, 254–267. https://doi.org/10.1016/J.JCLEPRO.2019.05.094
dc.relation.referencesHasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2022). Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Reports, 8, 429–437. https://doi.org/10.1016/J.EGYR.2022.10.323
dc.relation.referencesHu, Z., Li, P., & Liu, Y. (2022, June 13). Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence. https://scite.ai/reports/10.3390/molecules27123802
dc.relation.referencesKim, E., Gil, H., Park, S., & Park, J. (2017). Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5. Journal of Material Cycles and Waste Management, 19, 423-431. https://link.springer.com/article/10.1007/s10163-015-0438-z
dc.relation.referencesKopperi, H., & Venkata Mohan, S. (2023). Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production. Bioresource Technology, 379, 128954. https://doi.org/10.1016/J.BIORTECH.2023.128954
dc.relation.referencesKumar, J. A., Sathish, S., Prabu, D., Renita, A. A., Saravanan, A., Deivayanai, V. C., Anish, M., Jayaprabakar, J., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 331, 138680. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138680
dc.relation.referencesLiu, R., Sarker, M., Rahman, M. M., Li, C., Chai, M., Nishu, Cotillon, R., & Scott, N. R. (2020). Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review. Progress in Energy and Combustion Science, 80, 100852. https://doi.org/10.1016/J.PECS.2020.100852
dc.relation.referencesLi, P., Wang, B., Hu, J., Zhang, Y., Chen, W., Chang, C., & Pang, S. (2023). Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review. Journal of the Energy Institute, 110, 101315. https://doi.org/10.1016/J.JOEI.2023.101315
dc.relation.referencesLiu, W., Song, M., Wang, X., Wang, C., & Zhang, C. (2023). Study on the synergistic effect between Ni and Me species over Ni-Me/HZSM-5 on the in-situ catalytic pyrolysis of alkali lignin. Applied Catalysis A: General, 663, 119270. https://doi.org/10.1016/J.APCATA.2023.119270
dc.relation.referencesLiu, Y., Xue, L., Ma, J., Peng, C., Bai, F., Li, Y., & Zhao, J. (2023). Three-dimensional numerical simulation, energy efficiency and economic benefit estimation of oil shale in situ pyrolysis process. Geoenergy Science and Engineering, 227. https://doi.org/10.1016/j.geoen.2023.211804
dc.relation.referencesMaleki, F., Changizian, M., Zolfaghari, N., Rajaei, S., Noghabi, K A., & Zahiri, H S. (2021, March 11). Consolidated Bioprocessing for Bioethanol Production by Metabolically Engineered Bacillus Subtilis Strains. https://scite.ai/reports/10.21203/rs.3.rs-297375/v1
dc.relation.referencesMendes, F. L., Ximenes, V. L., de Almeida, M. B., Azevedo, D. A., Tessarolo, N. S., & de Rezende Pinho, A. (2016). Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis, 122, 395-404. https://www.sciencedirect.com/science/article/pii/S0165237016301498
dc.relation.referencesNair, L. G., Agrawal, K., & Verma, P. (2022). An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 6. https://doi.org/10.1016/j.nexus.2022.10008
dc.relation.referencesNations, U. (n.d.). Causes and Effects of Climate Change | United Nations. Retrieved September 25, 2023, from https://www.un.org/en/climatechange/science/causes-effects-climate-change
dc.relation.referencesOrdonez-Loza, J., Chejne, F., Jameel, A. G. A., Telalovic, S., Arrieta, A. A., & Sarathy, S. M. (2021). An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106144
dc.relation.referencesRamanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. A Thermo-Economic Approach to Energy From Waste, 35–71. https://doi.org/10.1016/B978-0-12-824357-2.00006-1
dc.relation.referencesRanzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22(6), 4292-4300. https://www.sciencedirect.com/science/article/pii/S0378382018300675
dc.relation.referencesShun, T. A. N., ZHANG, Z., Jianping, S. U. N., & Qingwen, W. A. N. G. (2013). Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese Journal of Catalysis, 34(4), 641-650. https://www.sciencedirect.com/science/article/pii/S1872206712605312
dc.relation.referencesSultana, R., Banik, U., Nandy, P. K., Huda, M. N., & Ismail, M. (2023). Bio-oil production from rubber seed cake via pyrolysis: Process parameter optimization and physicochemical characterization. Energy Conversion and Management: X, 20, 100429. https://doi.org/10.1016/J.ECMX.2023.100429
dc.relation.referencesSun, C., Tan, H., & Zhang, Y. (2023). Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil. Renewable Energy, 205, 851–863. https://doi.org/10.1016/J.RENENE.2023.02.015
dc.relation.referencesToscano Miranda, N., Lopes Motta, I., Maciel Filho, R., & Wolf Maciel, M. R. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. In Renewable and Sustainable Energy Reviews (Vol. 149). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111394
dc.relation.referencesVassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330-350. https://www.sciencedirect.com/science/article/pii/S0016236115005578
dc.relation.referencesVenkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/J.BIORTECH.2016.03.130
dc.relation.referencesWilliams, P. T., & Brindle, A. J. (2002). Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel, 81(18), 2425-2434. https://www.sciencedirect.com/science/article/pii/S0016236102001965
dc.relation.referencesWu, Y., Gui, Q., Zhang, H., Li, H., Li, B., Liu, M., Chen, Y., Zhang, S., Yang, H., & Chen, H. (2023). Effect of biomass components’ interaction on the pyrolysis reaction kinetics and small-molecule product release characteristics. Journal of Analytical and Applied Pyrolysis, 173. https://doi.org/10.1016/j.jaap.2023.106039
dc.relation.referencesXu, J., Guo, Y., Gao, Y., Qian, K., Wang, Y., Li, N., Wang, Y., Ran, S., Hou, X., & Zhu, Y. (2023). Catalytic pyrolysis of cellulose and hemicellulose: Investigation on furans selectivity with different zeolite structures at microporous scale. Journal of Analytical and Applied Pyrolysis, 173, 106102. https://doi.org/10.1016/J.JAAP.2023.106102
dc.relation.referencesYilmaz, S., & Selim, H. (2013). A review on the methods for biomass to energy conversion systems design. Renewable and Sustainable Energy Reviews, 25, 420–430. https://doi.org/10.1016/J.RSER.2013.05.015
dc.relation.referencesZaidi, A. A., Khan, A., AlMohamadi, H., Anjum, M. W., Ali, I., Naqvi, S. R., Kokuryo, S., Miyake, K., & Nishiyama, N. (2023). Catalytic pyrolysis of rice husk over defect-rich beta zeolites for biofuel production. Fuel, 348. https://doi.org/10.1016/j.fuel.2023.128624
dc.relation.referencesZhang, S., Zhang, H., Liu, X., Zhu, S., Hu, L., & Zhang, Q. (2018). Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology, 175, 17-25. https://www.sciencedirect.com/science/article/pii/S0378382018300675
dc.relation.referencesZhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023b). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel, 347, 128461. https://doi.org/10.1016/J.FUEL.2023.128461
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsLignocellulosic biomasseng
dc.subject.keywordsSugarcane bagasseeng
dc.subject.keywordsNumerical simulationeng
dc.subject.keywordsCatalytic pyrolysiseng
dc.subject.keywordsZSM-5 catalysteng
dc.subject.proposalBiomasa lignocelulósicaspa
dc.subject.proposalBagazo de caña de azúcarspa
dc.subject.proposalSimulación numéricaspa
dc.subject.proposalPirólisis catalíticaspa
dc.subject.proposalZSM-5 catalizadorspa
dc.titleSimulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcarspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: