Publicación: Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
dc.contributor.advisor | Rhenals Julio, Jesus David | |
dc.contributor.advisor | Romero Luna, Carlos Manuel | |
dc.contributor.author | Espitia Páez, Isabela | |
dc.contributor.author | Ortiz Pinto, Eidi María | |
dc.contributor.jury | Arango Meneses, Juan Fernando | |
dc.contributor.jury | Mendoza Fandiño, Jorge Mario | |
dc.date.accessioned | 2025-02-07T16:31:52Z | |
dc.date.available | 2025-02-07T16:31:52Z | |
dc.date.issued | 2025-02-07 | |
dc.description.abstract | La pirólisis catalítica de la biomasa lignocelulósica ha demostrado ser una propuesta viable para la producción de hidrocarburos líquidos y otros productos de gran utilidad. Este estudio presenta una simulación numérica del proceso de pirólisis catalítica in situ utilizando la biomasa de Bagazo de caña de azúcar y un tipo de zeolita mineral (ZSM-5) como catalizador. La simulación se llevó a cabo empleando el software DWSIM, por medio del cual fue posible analizar las propiedades del catalizador y modelar las respectivas reacciones químicas, la distribución de productos y la influencia del catalizador bajo condiciones controladas. El modelo implementado incorporó un conjunto de reacciones representativas para simular el efecto catalítico del ZSM-5. Para evaluar el rendimiento de la pirolisis se analiza la conversión de la biomasa lignocelulósica en los productos principales: gas, bio-carbón y bio-aceite. Los resultados de la simulación numérica muestran una mejora significativa en los rendimientos hacia gas y bio-aceite. Esto evidencia el potencial del ZSM-5 como catalizador en la pirólisis, dando como resultado un óptimo aprovechamiento del bagazo de caña de azúcar y mayores rendimientos en los productos finales. Esta investigación abre camino para futuros estudios de modelos numéricos avanzados con el fin de optimizar el proceso de pirolisis catalítica. | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Ingeniero(a) Mecánico(a) | |
dc.description.modality | Artículo | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9042 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Ingeniería Mecánica | |
dc.relation.references | Afraz, M., Muhammad, F., Nisar, J., Shah, A., Munir, S., Ali, G., & Ahmad, A. (2024). Production of value added products from biomass waste by pyrolysis: An updated review. Waste Management Bulletin, 1(4), 30–40. https://doi.org/10.1016/j.wmb.2023.08.004 | |
dc.relation.references | Agnihotri, N., & Mondal, M. K. (2023). Comparison of non-catalytic and in-situ catalytic pyrolysis of Melia azedarach sawdust. Journal of Analytical and Applied Pyrolysis, 172, 106006. https://doi.org/10.1016/J.JAAP.2023.106006 | |
dc.relation.references | Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of analytical and applied pyrolysis, 63(1), 29-41. https://www.sciencedirect.com/science/article/pii/S0165237001001395 | |
dc.relation.references | Bakar, M. S. A., & Titiloye, J. O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Journal of analytical and applied pyrolysis, 103, 362-368. https://www.sciencedirect.com/science/article/pii/S0165237012001696 | |
dc.relation.references | Balasundram, V., Ibrahim, N., Kasmani, R. M., Isha, R., Abd Hamid, M. K., & Hasbullah, H. (2017). Catalytic pyrolysis of sugarcane bagasse using molybdenum modified HZSM-5 zeolite. Energy Procedia, 142, 793–800. https://doi.org/10.1016/j.egypro.2017.12.128 | |
dc.relation.references | Boxiong, S., Chunfei, W., Binbin, G., & Rui, W. (2007). Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Applied Catalysis B: Environmental, 73(1-2), 150-157. https://www.sciencedirect.com/science/article/pii/S0926337306003298 | |
dc.relation.references | Buyang, Y., Suprapto, S., Nugraha, R. E., Holilah, H., Bahruji, H., Hantoro, R., Jalil, A. A., Oetami, T. P., & Prasetyoko, D. (2023). Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. Journal of Analytical and Applied Pyrolysis, 169, 105852. https://doi.org/10.1016/J.JAAP.2022.105852 | |
dc.relation.references | Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/J.EGYPRO.2017.07.275 | |
dc.relation.references | Dabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J. D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/J.PECS.2018.05.002 | |
dc.relation.references | Dahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 248, 2–12. https://doi.org/10.1016/J.BIORTECH.2017.07.176 | |
dc.relation.references | Du, S., Gamliel, D. P., Valla, J. A., & Bollas, G. M. (2016). The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils. Journal of analytical and applied pyrolysis, 122, 7-12. https://www.sciencedirect.com/science/article/pii/S0165237016304181 | |
dc.relation.references | Greish, A. A., Sokolovskiy, P. V., Finashina, E. D., Kustov, L. M., Vezentsev, A. I., Chien Nguyen, D., & Chau Nguyen, H. (2022). Efficient carbon adsorbent for hydrogen sulfide produced from sugar cane bagasse. Mendeleev Communications, 32(6), 828–830. https://doi.org/10.1016/J.MENCOM.2022.11.040 | |
dc.relation.references | Han, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of Cleaner Production, 231, 254–267. https://doi.org/10.1016/J.JCLEPRO.2019.05.094 | |
dc.relation.references | Hasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2022). Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Reports, 8, 429–437. https://doi.org/10.1016/J.EGYR.2022.10.323 | |
dc.relation.references | Hu, Z., Li, P., & Liu, Y. (2022, June 13). Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence. https://scite.ai/reports/10.3390/molecules27123802 | |
dc.relation.references | Kim, E., Gil, H., Park, S., & Park, J. (2017). Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5. Journal of Material Cycles and Waste Management, 19, 423-431. https://link.springer.com/article/10.1007/s10163-015-0438-z | |
dc.relation.references | Kopperi, H., & Venkata Mohan, S. (2023). Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production. Bioresource Technology, 379, 128954. https://doi.org/10.1016/J.BIORTECH.2023.128954 | |
dc.relation.references | Kumar, J. A., Sathish, S., Prabu, D., Renita, A. A., Saravanan, A., Deivayanai, V. C., Anish, M., Jayaprabakar, J., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 331, 138680. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138680 | |
dc.relation.references | Liu, R., Sarker, M., Rahman, M. M., Li, C., Chai, M., Nishu, Cotillon, R., & Scott, N. R. (2020). Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review. Progress in Energy and Combustion Science, 80, 100852. https://doi.org/10.1016/J.PECS.2020.100852 | |
dc.relation.references | Li, P., Wang, B., Hu, J., Zhang, Y., Chen, W., Chang, C., & Pang, S. (2023). Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review. Journal of the Energy Institute, 110, 101315. https://doi.org/10.1016/J.JOEI.2023.101315 | |
dc.relation.references | Liu, W., Song, M., Wang, X., Wang, C., & Zhang, C. (2023). Study on the synergistic effect between Ni and Me species over Ni-Me/HZSM-5 on the in-situ catalytic pyrolysis of alkali lignin. Applied Catalysis A: General, 663, 119270. https://doi.org/10.1016/J.APCATA.2023.119270 | |
dc.relation.references | Liu, Y., Xue, L., Ma, J., Peng, C., Bai, F., Li, Y., & Zhao, J. (2023). Three-dimensional numerical simulation, energy efficiency and economic benefit estimation of oil shale in situ pyrolysis process. Geoenergy Science and Engineering, 227. https://doi.org/10.1016/j.geoen.2023.211804 | |
dc.relation.references | Maleki, F., Changizian, M., Zolfaghari, N., Rajaei, S., Noghabi, K A., & Zahiri, H S. (2021, March 11). Consolidated Bioprocessing for Bioethanol Production by Metabolically Engineered Bacillus Subtilis Strains. https://scite.ai/reports/10.21203/rs.3.rs-297375/v1 | |
dc.relation.references | Mendes, F. L., Ximenes, V. L., de Almeida, M. B., Azevedo, D. A., Tessarolo, N. S., & de Rezende Pinho, A. (2016). Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis, 122, 395-404. https://www.sciencedirect.com/science/article/pii/S0165237016301498 | |
dc.relation.references | Nair, L. G., Agrawal, K., & Verma, P. (2022). An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 6. https://doi.org/10.1016/j.nexus.2022.10008 | |
dc.relation.references | Nations, U. (n.d.). Causes and Effects of Climate Change | United Nations. Retrieved September 25, 2023, from https://www.un.org/en/climatechange/science/causes-effects-climate-change | |
dc.relation.references | Ordonez-Loza, J., Chejne, F., Jameel, A. G. A., Telalovic, S., Arrieta, A. A., & Sarathy, S. M. (2021). An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106144 | |
dc.relation.references | Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. A Thermo-Economic Approach to Energy From Waste, 35–71. https://doi.org/10.1016/B978-0-12-824357-2.00006-1 | |
dc.relation.references | Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22(6), 4292-4300. https://www.sciencedirect.com/science/article/pii/S0378382018300675 | |
dc.relation.references | Shun, T. A. N., ZHANG, Z., Jianping, S. U. N., & Qingwen, W. A. N. G. (2013). Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese Journal of Catalysis, 34(4), 641-650. https://www.sciencedirect.com/science/article/pii/S1872206712605312 | |
dc.relation.references | Sultana, R., Banik, U., Nandy, P. K., Huda, M. N., & Ismail, M. (2023). Bio-oil production from rubber seed cake via pyrolysis: Process parameter optimization and physicochemical characterization. Energy Conversion and Management: X, 20, 100429. https://doi.org/10.1016/J.ECMX.2023.100429 | |
dc.relation.references | Sun, C., Tan, H., & Zhang, Y. (2023). Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil. Renewable Energy, 205, 851–863. https://doi.org/10.1016/J.RENENE.2023.02.015 | |
dc.relation.references | Toscano Miranda, N., Lopes Motta, I., Maciel Filho, R., & Wolf Maciel, M. R. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. In Renewable and Sustainable Energy Reviews (Vol. 149). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111394 | |
dc.relation.references | Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330-350. https://www.sciencedirect.com/science/article/pii/S0016236115005578 | |
dc.relation.references | Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/J.BIORTECH.2016.03.130 | |
dc.relation.references | Williams, P. T., & Brindle, A. J. (2002). Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel, 81(18), 2425-2434. https://www.sciencedirect.com/science/article/pii/S0016236102001965 | |
dc.relation.references | Wu, Y., Gui, Q., Zhang, H., Li, H., Li, B., Liu, M., Chen, Y., Zhang, S., Yang, H., & Chen, H. (2023). Effect of biomass components’ interaction on the pyrolysis reaction kinetics and small-molecule product release characteristics. Journal of Analytical and Applied Pyrolysis, 173. https://doi.org/10.1016/j.jaap.2023.106039 | |
dc.relation.references | Xu, J., Guo, Y., Gao, Y., Qian, K., Wang, Y., Li, N., Wang, Y., Ran, S., Hou, X., & Zhu, Y. (2023). Catalytic pyrolysis of cellulose and hemicellulose: Investigation on furans selectivity with different zeolite structures at microporous scale. Journal of Analytical and Applied Pyrolysis, 173, 106102. https://doi.org/10.1016/J.JAAP.2023.106102 | |
dc.relation.references | Yilmaz, S., & Selim, H. (2013). A review on the methods for biomass to energy conversion systems design. Renewable and Sustainable Energy Reviews, 25, 420–430. https://doi.org/10.1016/J.RSER.2013.05.015 | |
dc.relation.references | Zaidi, A. A., Khan, A., AlMohamadi, H., Anjum, M. W., Ali, I., Naqvi, S. R., Kokuryo, S., Miyake, K., & Nishiyama, N. (2023). Catalytic pyrolysis of rice husk over defect-rich beta zeolites for biofuel production. Fuel, 348. https://doi.org/10.1016/j.fuel.2023.128624 | |
dc.relation.references | Zhang, S., Zhang, H., Liu, X., Zhu, S., Hu, L., & Zhang, Q. (2018). Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology, 175, 17-25. https://www.sciencedirect.com/science/article/pii/S0378382018300675 | |
dc.relation.references | Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023b). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel, 347, 128461. https://doi.org/10.1016/J.FUEL.2023.128461 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Lignocellulosic biomass | eng |
dc.subject.keywords | Sugarcane bagasse | eng |
dc.subject.keywords | Numerical simulation | eng |
dc.subject.keywords | Catalytic pyrolysis | eng |
dc.subject.keywords | ZSM-5 catalyst | eng |
dc.subject.proposal | Biomasa lignocelulósica | spa |
dc.subject.proposal | Bagazo de caña de azúcar | spa |
dc.subject.proposal | Simulación numérica | spa |
dc.subject.proposal | Pirólisis catalítica | spa |
dc.subject.proposal | ZSM-5 catalizador | spa |
dc.title | Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: