Publicación: Estudio químico y evaluación de las actividades antioxidantes, antibacteriana y antifúngica de los invertebrados marinos Saturnospongilla Carvalhoi y Atrina Seminuda recolectados en la Bahía de Cispatá-Córdoba
dc.contributor.advisor | Santafé Patiño, Gilmar | spa |
dc.contributor.author | Ossa Teherán, José Alfredo de la | |
dc.date.accessioned | 2022-06-08T17:14:03Z | |
dc.date.available | 2022-06-08T17:14:03Z | |
dc.date.issued | 2022-06-06 | |
dc.description.abstract | En el presente estudio, se logró realizar la caracterización de 33 compuestos del molusco bivalvo Atrina seminuda empleando la metodología de cromatografía de gases acoplada a espectrometría de masas por impacto electrónico. De los 33 compuestos aislados 4 corresponden a núcleos esteroidales derivados de colastano, incluyendo colesterol y los 29 restantes fueron ácidos grasos saturados e insaturados. Para la especie Saturnospongilla carvalhoi se identificaron 51 compuestos, de los cuales 33 corresponden a ácidos grasos saturados y 18 esteroles derivados de colesterol, colestanol y sitosterol, algunos de estos compuestos no están reportados en la literatura como Formiato de 5-beta-colestan-3-alfa-ol, Octanoato de 5-beta-cholestan-3-alfa-ol, Propanoato de Estigmastinol, Benzoato de 7-oxo-5-colestén-3-beta-ilo y Butirato de 7-oxo-colesterol. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Químicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN......11 | spa |
dc.description.tableofcontents | 2. OBJETIVOS..... 14 | spa |
dc.description.tableofcontents | 2.1 OBJETIVO GENERAL..... 14 | spa |
dc.description.tableofcontents | 2.2 OBJETIVOS ESPECÍFICOS..... 14 | spa |
dc.description.tableofcontents | 3. MARCO TEÓRICO 15 | spa |
dc.description.tableofcontents | 3.1 LOS INVERTEBRADOS MARINOS. 15 | spa |
dc.description.tableofcontents | 3.1.2 PHYLUM PORÍFERA 16 | spa |
dc.description.tableofcontents | 3.1.3 Clasificación taxonómica y descripción general de la especie Saturnospongilla carvalhoi. 17 | spa |
dc.description.tableofcontents | 3.1.4 COMPONENTES QUIMICOS DEL PHYLUM PORIFERA 18 | spa |
dc.description.tableofcontents | 3.2 Phylum Mollusca: 26 | spa |
dc.description.tableofcontents | 3.2.1 Familia Pinnidae. 26 | spa |
dc.description.tableofcontents | 3.2.2 Clasificación taxonómica y descripción general de la especie Atrina (Servatrina) seminuda 27 | spa |
dc.description.tableofcontents | 3.2.3 Fitoquimica del Phylum Mollusca. 28 | spa |
dc.description.tableofcontents | 3.3 ESTRÉS OXIDATIVO 31 | spa |
dc.description.tableofcontents | 3.4 RESISTENCIA ANTIMICROBIANA 33 | spa |
dc.description.tableofcontents | 4. MATERIALES Y MÉTODO 36 | spa |
dc.description.tableofcontents | 4.1 MATERIALES Y EQUIPOS 36 | spa |
dc.description.tableofcontents | 4.2 RECOLECCIÓN DEL MATERIAL BIOLÓGICO 37 | spa |
dc.description.tableofcontents | 4.3 PREPARACIÓN DEL MATERIAL BIOLÓGICO 37 | spa |
dc.description.tableofcontents | 4.4 FRACCIONAMIENTO DE LOS EXTRACTOS PRIMARIOS 37 | spa |
dc.description.tableofcontents | 4.5 FRACCIONAMIENTO CROMATOGRÁFICO 38 | spa |
dc.description.tableofcontents | 4.6 DERIVATIZACIÓN Y PURIFICACIÓN DE ÁCIDOS GRASOS 38 | spa |
dc.description.tableofcontents | 4.7 IDENTIFICACIÓN DE LOS COMPUESTOS AISLADOS 39 | spa |
dc.description.tableofcontents | 4.8 DETERMINACIÓN DE LA ACTIVIDAD ANTIOXIDANTE 39 | spa |
dc.description.tableofcontents | 4.8.1 PROTOCOLO DEL ENSAYO ABTS+•. 39 | spa |
dc.description.tableofcontents | 4.8.2 PROTOCOLO DEL ENSAYO DPPH●. 41 | spa |
dc.description.tableofcontents | 4.8.3 ENSAYO POTENCIAL DE REDUCCIÓN FÉRRICA (FRAP). 42 | spa |
dc.description.tableofcontents | 4.8 EVALUACIÓN DE LA ACTIVIDAD ANTIFÚNGICA Y ANTIBACTERIANA 43 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y ANÁLISIS 45 | spa |
dc.description.tableofcontents | 5.1 DETERMINACIÓN DE LOS COMPUESTOS AISLADOS 45 | spa |
dc.description.tableofcontents | 5.1.2 Compuestos aislados de Atrina seminuda 45 | spa |
dc.description.tableofcontents | 5.1.2.1 Compuesto AS4 46 | spa |
dc.description.tableofcontents | 5.1.2.2 Compuesto AS9 48 | spa |
dc.description.tableofcontents | 5.1.2.3 Compuesto SA33 51 | spa |
dc.description.tableofcontents | 5.1.3 Compuestos aislados de la especie Saturnospongilla carvalhoi 56 | spa |
dc.description.tableofcontents | 5.1.3.2 Compuesto SS9 57 | spa |
dc.description.tableofcontents | 5.1.2.3 Compuesto SS32 60 | spa |
dc.description.tableofcontents | 5.1.2.4 Compuesto SS51 62 | spa |
dc.description.tableofcontents | 5.2 ENSAYO DE LA ACTIVIDAD ANTIOXIDANTE 70 | spa |
dc.description.tableofcontents | 5.2.1 Actividad antioxidante Saturnospongilla carvalhoi para DPPH• 71 | spa |
dc.description.tableofcontents | 5.2.1.2 Actividad antioxidante del extracto metanólico Saturnospongilla carvalhoi frente al radical DPPH• 71 | spa |
dc.description.tableofcontents | 5.2.1.2 Actividad antioxidante del extracto de bencina Saturnospongilla carvalhoi frente al radical DPPH• 72 | spa |
dc.description.tableofcontents | 5.2.1.3 Actividad antioxidante del extracto de diclorometano Saturnospongilla carvalhoi frente al radical DPPH• 74 | spa |
dc.description.tableofcontents | 5.2.1.4 Actividad antioxidante Saturnospongilla carvalhoi para ABTS+. del extracto de bencina. 75 | spa |
dc.description.tableofcontents | 5.2.1.5 Actividad antioxidante Saturnospongilla carvalhoi para ABTS+. del extracto metanólico. 77 | spa |
dc.description.tableofcontents | 5.2.1.6 Actividad antioxidante Saturnospongilla carvalhoi para ABTS+. del extracto de diclorometano. 78 | spa |
dc.description.tableofcontents | 5.2.2.1 Actividad antioxidante Atrina seminuda para DPPH• 80 | spa |
dc.description.tableofcontents | 5.2.2.2 Actividad antioxidante del extracto metanólico Atrina seminuda frente al radical DPPH• 80 | spa |
dc.description.tableofcontents | 5.2.2.3 Actividad antioxidante del extracto de bencina Atrina seminuda frente al radical DPPH• 81 | spa |
dc.description.tableofcontents | 5.2.2.4 Actividad antioxidante Atrina seminuda para ABTS+• 83 | spa |
dc.description.tableofcontents | 5.2.2.5 Actividad antioxidante del extracto metanólico Atrina seminuda frente al radical ABTS+• 83 | spa |
dc.description.tableofcontents | 5.2.2.6 Actividad antioxidante del extracto de bencina Atrina seminuda frente al radical ABTS+• 84 | spa |
dc.description.tableofcontents | 5.2.3 Actividad antioxidante por el Potencial de Reducción Férrica 88 | spa |
dc.description.tableofcontents | 5.3 EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA 91 | spa |
dc.description.tableofcontents | 5.3.1. Resultados Actividad antifúngica 91 | spa |
dc.description.tableofcontents | 5.3.2. Resultados Actividad antibacteriana 95 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES 98 | spa |
dc.description.tableofcontents | 7. BIBLIOGRAFÍA 100 | spa |
dc.description.tableofcontents | ANEXOS 110 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/5195 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Químicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Marine organisms | spa |
dc.subject.keywords | Antioxidant activities | eng |
dc.subject.keywords | Atrina seminuda | eng |
dc.subject.keywords | Saturnospongilla carvalhoi | eng |
dc.subject.keywords | Antifungal activity | eng |
dc.subject.keywords | Antibacterial activity | eng |
dc.subject.proposal | Organismos marinos | spa |
dc.subject.proposal | Actividad antioxidantes | spa |
dc.subject.proposal | Atrina seminuda | spa |
dc.subject.proposal | Saturnospongilla carvalhoi | spa |
dc.subject.proposal | Actividad antifúngica | spa |
dc.subject.proposal | Actividad antibacteriana | spa |
dc.title | Estudio químico y evaluación de las actividades antioxidantes, antibacteriana y antifúngica de los invertebrados marinos Saturnospongilla Carvalhoi y Atrina Seminuda recolectados en la Bahía de Cispatá-Córdoba | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abdel, A., Alarif, W., Asfour, H., Ayyad, S., Khedr, A., Badria, F., & Al-lihaibi, S. (2014). Cytotoxic effects of three new metabolites from Red Sea marine sponge, Petrosia sp. Environmental Toxicology and Pharmacology, 37(3), 928–935. https://doi.org/10.1016/j.etap.2014.03.005. | spa |
dcterms.references | Ahumada-Sempoal, M.A., Serrano-Guzmán, S.J. & Ruiz-García, N. 2002. Abundancia, estructura poblacional y crecimiento de Atrina maura (Bivalvia: Pinnidae) en una laguna costera tropical del Pacífico mexicano. Rev. Biol. Trop. 50 (3-4):1091-1100. | spa |
dcterms.references | Andrianasolo, E., Haramaty, L., McPhail, K., White, E., Vetriani, C., Falkowski, P., & Lutz, R. (2011). Bathymodiolamides A and B, Ceramide Derivatives from a Deep-Sea Hydrothermal Vent Invertebrate Mussel, Bathymodiolus thermophilus. Journal of Natural Products, 74(4), 842–846. https://doi.org/10.1021/np100601w. | spa |
dcterms.references | Ángel, C. 2000. Ciclo reproductivo de Atrina maura (Sowerby 1835) (Bivalvia: Pinnidae) en el sistema lagunar Corralero-Alotengo, Oaxaca, México. Tesis de Licenciatura en Biología Marina, Universidad del Mar, Puerto Angel, Oaxaca, México. 56 p. | spa |
dcterms.references | Beesoo, R., Bhagooli, R., Neergheen, V., Li, W., Kagansky, A., & Bahorun, T. (2017). Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 196, 81–90. https://doi.org/10.1016/j.cbpc.2017.04.001. | spa |
dcterms.references | Benkendorff, K., Davis, A., Rogers, C., & Bremner, J. (2005). Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology, 316(1), 29–44. https://doi.org/10.1016/j.jembe.2004.10.001. | spa |
dcterms.references | Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2017). Marine natural products. Natural Product Reports, 34(3), 235-294. https://doi.org/10.1039/c6np00124f. | spa |
dcterms.references | Campos, P.-E., Pichon, E., Moriou, C., Clerc, P., Trépos, R., Frederich, M., … Al-Mourabit, A. (2019). New Antimalarial and Antimicrobial Tryptamine Derivatives from the Marine Sponge Fascaplysinopsis reticulata. Marine Drugs, 17(3), 167. https://doi.org/10.3390/md17030167. | spa |
dcterms.references | Cardoso, S. (2019). Special Issue: The Antioxidant Capacities of Natural Products. Molecules, 24(3), 492. https://doi.org/10.3390/molecules24030492. | spa |
dcterms.references | Carreón, L., ÖZdemir, N., Parrish, C., & Parzanini, C. (2020). Sterol Composition of Sponges, Cnidarians, Arthropods, Mollusks, and Echinoderms from the Deep Northwest Atlantic: A Comparison with Shallow Coastal Gulf of Mexico. Marine Drugs, 18(12), 598. https://doi.org/10.3390/md18120598. | spa |
dcterms.references | Carroll, A., Copp, B., Davis, R., Keyzers, R., & Prinsep, M. (2021). Marine natural products. Natural Product Reports, 38(2), 362–413. https://doi.org/10.1039/d0np00089b. | spa |
dcterms.references | Casas, S., & Muriel, P. (2017). The Liver, Oxidative Stress, and Antioxidants. Liver Pathophysiology, 583–604. https://doi.org/10.1016/b978-0-12-804274-8.00043-6. | spa |
dcterms.references | Chakraborty, K., & Joy, M. (2018). Characterization and bioactive potentials of secondary metabolites from mollusks Crassostrea madrasensis and Amphioctopus marginatus. Natural Product Research, 33(22), 3190–3202. https://doi.org/10.1080/14786419.2018.1466131. | spa |
dcterms.references | Chakraborty, K., & Joy, M. (2020). High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Research International, 137, 109637. https://doi.org/10.1016/j.foodres.2020.109637. | spa |
dcterms.references | Chakraborty, K., Joy, M., & Chakkalakal, S. J. (2018). Antioxidant and antiinflammatory secondary metabolites from the Asian green mussel Perna viridis. Journal of Food Biochemistry, 43(3), e12736. https://doi.org/10.1111/jfbc.12736. | spa |
dcterms.references | Chen, B., Li, W., Gu, Y., Zhang, H., Luo, H., Wang, C., & Guo, Y. (2021). New sterols from the South China Sea sponges Halichondria sp. Fitoterapia, 152, 104918. https://doi.org/10.1016/j.fitote.2021.104918. | spa |
dcterms.references | Cho, M., Lee, Y., Lee, J., Shin, H., & Lee, H. (2020). Antioxidant Properties of the Manzamenones from the Tropical Marine Sponge Plakortis sp. Natural Product Communications, 15(1), 1–6. https://doi.org/10.1177/1934578x19896694. | spa |
dcterms.references | Cichoż-Lach, H., & Michalak, A. (2014). Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology, 20(25), 8082. https://doi.org/10.3748/wjg.v20.i25.8082. | spa |
dcterms.references | De los Reyes, J., Henao, D. & Mendoza, M. 2003. Estudio de mercado para establecer la comercialización internacional de moluscos Bivalvos en Santa Marta D.T.C.H. Tesis programa de economía, Universidad del Magdalena, 28-29 p. | spa |
dcterms.references | Dogan, E., Demir, O., Sertdemir, M., Saracli, M., Konuklugil, B. (2018). Screening of the selected marine sponges from the coasts of Turkey for antimicrobial activity. Indian J Geo-Marine Sci. 2018; 47:1193-98. | spa |
dcterms.references | Dolashka, P., Dolashki, A., van Beeumen, J., Floetenmeyer, M., Velkova, L., Stevanovic, S., & Voelter, W. (2016). Antimicrobial Activity of Molluscan Hemocyanins from Helix and Rapana Snails. Current Pharmaceutical Biotechnology, 17(3), 263–270. https://doi.org/10.2174/1389201016666150907113435. | spa |
dcterms.references | Ebada, S., De Voogd, N., Kalscheuer, R., Müller, W., Chaidir, & Proksch, P. (2017). Cytotoxic drimane meroterpenoids from the Indonesian marine sponge Dactylospongia elegans. Phytochemistry Letters, 22, 154–158. https://doi.org/10.1016/j.phytol.2017.09.026. | spa |
dcterms.references | El-Shitany, N., Shaala, L., Abbas, A., Abdel-dayem, U., Azhar, E., Ali, S., van Soest, R., & Youssef, D. (2015). Evaluation of the Anti-Inflammatory, Antioxidant and Immunomodulatory Effects of the Organic Extract of the Red Sea Marine Sponge Xestospongia testudinaria against Carrageenan Induced Rat Paw Inflammation. PLOS ONE, 10(9). https://doi.org/10.1371/journal.pone.0138917. | spa |
dcterms.references | Fontalvo, E. García, D. & Duque, G. 2010. Moluscos bentónicos de la Guajira (10 y 50 m de profundidad), Caribe Colombiano, Boletín de investigaciones marinas y costeras IMVEMAR, 39 (2), Santa Marta, Colombia. 397-416p. | spa |
dcterms.references | Francis, P., & Chakraborty, K. (2021). Anti-inflammatory pregnane-type steroid derivatives clathroids A-B from the marine Microcionidae sponge Clathria (Thalysias) vulpina: Prospective duel inhibitors of pro-inflammatory cyclooxygenase-2 and 5-lipoxygenase. Steroids, 172, 108858. https://doi.org/10.1016/j.steroids.2021.108858. | spa |
dcterms.references | Gómez, A. 1999. Los recursos marinos renovables del Estado Nueva Esparta Venezuela. Biología y pesca de las especies comerciales. Tomo I. Invertebrados y algas. Caracas, Venezuela. 208 p. | spa |
dcterms.references | Gómez, L., Rugeles, M, & Zapata, W. (2014). Actividad antiviral de compuestos aislados de esponjas marinas. Revista de biología marina y oceanografía, 49(3), 401-412. https://doi.org/10.4067/s0718-19572014000300001. | spa |
dcterms.references | Goudou, F., Petit, P., Moriou, C., Gros, O., & Al-Mourabit, A. (2017). Orbicularisine: A Spiro-Indolothiazine Isolated from Gills of the Tropical Bivalve Codakia orbicularis. Journal of Natural Products, 80(5), 1693–1696. https://doi.org/10.1021/acs.jnatprod.7b00149. | spa |
dcterms.references | Govinden, J., Marie, D., Kauroo, S., Beesoo, R., & Ramanjooloo, A. (2014). Antibacterial Properties of Marine Sponges from Mauritius Waters. Tropical Journal of Pharmaceutical Research, 13(2), 249. https://doi.org/10.4314/tjpr.v13i2.13. | spa |
dcterms.references | Hong, L., Wang, J., Liu, L., Sun, F., Sun, J., Miao, X., Liu, H., Zhan, K., Jiao, W., & Lin, H. (2021). Hippobutenolides A and B, two new long-chain fatty acid esters from the marine sponge Hippospongia lachne. Tetrahedron Letters, 84, 153437. https://doi.org/10.1016/j.tetlet.2021.153437. | spa |
dcterms.references | Hu, J., Zhao, Y., Chen, J., Miao, H., & Zhou, J. (2009). ChemInform Abstract: A New Spongilipid from the Freshwater Sponge Spongilla lacustris. ChemInform, 40(39), 1166–1168. https://doi.org/10.1002/chin.200939200. | spa |
dcterms.references | Jiménez, C. (2018). Marine Natural Products in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 9(10), 959–961. https://doi.org/10.1021/acsmedchemlett.8b00368. | spa |
dcterms.references | Joy, M., & Chakraborty, K. (2017). Biogenic antioxidative and anti-inflammatory aryl polyketides from the venerid bivalve clam Paphia malabarica. Food Chemistry, 237, 169–180. https://doi.org/10.1016/j.foodchem.2017.05.087. | spa |
dcterms.references | Joy, M., Chakraborty, K., & Raola, V. (2016). New sterols with anti-inflammatory potentials against cyclooxygenase-2 and 5-lipoxygenase from Paphia malabarica. Natural Product Research, 31(11), 1286–1298. https://doi.org/10.1080/14786419.2016.1242001. | spa |
dcterms.references | Júnior, A., Pontes, M., Barbosa, J., Höfling, J., Araújo, R., Boniek, D., . . . Andrade, V. (2021). Antibiofilm and Anti-candidal Activity of Extract of the Marine Sponge Agelas Dispar. Antibiofilm and Anti-candidal Activity of Extract of the Marine Sponge Agelas Dispar. Published. https://doi.org/10.21203/rs.3.rs-653627/v1. | spa |
dcterms.references | Karan, D., Dubey, S., Pirisi, L., Nagel, A., Pina, I., Choo, Y.-M., & Hamann, M. T. (2020). The Marine Natural Product Manzamine A Inhibits Cervical Cancer by Targeting the SIX1 Protein. Journal of Natural Products, 83(2), 286-295. https://doi.org/10.1021/acs.jnatprod.9b00577. | spa |
dcterms.references | Khakshoor, M. Pazooki, J. (2014). Bactericidal and fungicidal activities of different crude extracts of Gelliodes carnosa (sponge, Persian Gulf) Iranian Journal of Fisheries Sciences. 13(3) 776 -784. | spa |
dcterms.references | Koulenti, D., Xu, E., Song, A., Sum Mok, I. Y., Karageorgopoulos, D. E., Armaganidis, A., & Lipman, J. (2020). Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms, 8(2), 191. https://doi.org/10.3390/microorganisms8020191. | spa |
dcterms.references | Lages, E., Fernandes, R., Silva, J., de Souza, N., Cassali, G., de Barros, A., & Miranda, L. (2020). Co-delivery of doxorubicin, docosahexaenoic acid, and α-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity. Biomedicine & Pharmacotherapy, 132, 110876. https://doi.org/10.1016/j.biopha.2020.110876. | spa |
dcterms.references | Lasta, M. Ciocco, C. Bremec y A. Roux. 1998. Moluscos bivalvos y gasterópodos. Pp. 115-142, en E. Boschi (ed.) El mar argentino y sus recursos pesqueros, Tomo 2: Los moluscos de interés pesquero. Cultivos y estrategias reproductivas de bivalvos y equinodermos. Contribución INIDEP No 1046. Argentina. | spa |
dcterms.references | Lodeiros, C., Marín, B. & Prieto, A. 1999. Catálogo de moluscos marinos de las costas nororientales de Venezuela: Clase Bivalvia. Edición APUDONS. Sucre, Venezuela. 109 p. | spa |
dcterms.references | Malve, H. (2018). Sports pharmacology: A medical pharmacologist’s perspective. Journal of Pharmacy And Bioallied Sciences, 10(3), 83–91. https://doi.org/10.4103/jpbs.jpbs_229_17 | spa |
dcterms.references | Manconi, R., & Pronzato, R. (2002). Suborder Spongillina subord. nov.: Freshwater Sponges. Systema Porifera, 921-1019. https://doi.org/10.1007/978-1-4615-0747-5_97. | spa |
dcterms.references | Martín, M, Coello, L., Fernández, R., Reyes, F., Rodríguez, A., Murcia, C., Garranzo, M., Mateo, C., Sánchez, F., Bueno, S., De Eguilior, C., Francesch, A., Munt, S., & Cuevas, C. (2013). Isolation and First Total Synthesis of PM050489 and PM060184, Two New Marine Anticancer Compounds. Journal of the American Chemical Society, 135(27), 10164–10171. https://doi.org/10.1021/ja404578u. | spa |
dcterms.references | Miyashita, K. (2014). Marine antioxidants. Antioxidants and Functional Components in Aquatic Foods, 219–235. https://doi.org/10.1002/9781118855102.ch8. | spa |
dcterms.references | Monowar, T., & Bhore, S. J. (2014). Antibiotic resistance needs global solutions. The Lancet Infectious Diseases, 14(7), 549. https://doi.org/10.1016/s1473-3099(14)70799-6. | spa |
dcterms.references | Nguyen, H. M., Ito, T., Win, N. N., Kodama, T., Hung, V. Q., Nguyen, H. T., & Morita, H. (2016b). New antibacterial sesquiterpene aminoquinones from a Vietnamese marine sponge of Spongia sp. Phytochemistry Letters, 17, 288–292. https://doi.org/10.1016/j.phytol.2016.08.012. | spa |
dcterms.references | Orhan, I. E. (2017). Pharmacognosy: Science of natural products in drug discovery. BioImpacts, 4(3), 109-110. https://doi.org/10.15171/bi.2014.001. | spa |
dcterms.references | ÖZtürk, A., Aygül, A., & ŞEnel, B. (2019). Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity. Journal of Drug Delivery Science and Technology, 54, 101240. https://doi.org/10.1016/j.jddst.2019.101240. | spa |
dcterms.references | Parasuraman, S., Krishnamoorthy, V., Chuen, L., Sivayogi, V., Kathiresan, S., Bahari, M., & Raju, G. (2019). Exploration of antioxidant capacity of extracts of Perna viridis, a marine bivalve. Pharmacognosy Magazine, 15(66), 402–409. https://doi.org/10.4103/pm.pm_301_19. | spa |
dcterms.references | Pastrana, O., Santafé, G., & Quiroz, J. (2016). Actividad antioxidante del erizo de mar Mellita quinquiesperforata (Leske) e identificación de sus compuestos lipídicos mayoritarios. Actual Biol, 38, 15–22. https://doi.org/10.17533/udea.acbi.v38n104a02. | spa |
dcterms.references | Pastrana, O., Santafé, G., & Sánchez, E. (2019). Perfil lipídico y ensayos de las actividades antioxidante, insecticida y antialimentaria de la esponja marina Iotrochota birotulata (Iotrochotidae: Demospongiae). Revista de Biología Tropical, 67(1), 213–223. https://doi.org/10.15517/rbt.v67i1.32357 | spa |
dcterms.references | Pech-Puch, D., Pérez-Povedano, M., Martinez-Guitian, M., Lasarte-Monterrubio, C., Vázquez-Ucha, J., Bou, G., . . . Jimenez, C. (2020). In Vitro and In Vivo Assessment of the Efficacy of Bromoageliferin, an Alkaloid Isolated from the Sponge Agelas dilatata, against Pseudomonas aeruginosa. Marine Drugs, 18(6), 326. https://doi.org/10.3390/md18060326. | spa |
dcterms.references | Pérez, M., Hernández, I., & Regueira, S. (2015, mayo 27). Bioactivos marinos en el tratamiento del cáncer. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. Recuperado 9 de octubre de 2021, de http://revzoilomarinello.sld.cu/index.php/zmv/article/view/46/html_71. | spa |
dcterms.references | Pham-Huy, L., He, H., & Pham-Huy, C. (2008). Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci, 2, 89–96. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614697/. | spa |
dcterms.references | Qaralleh, H., Idid, S., Saad, S., Susanti, D., Taher, M., & Khleifat, K. (2010). Antifungal and Antibacterial Activities of Four Malaysian Sponge Species (Petrosiidae). Journal de Mycologie Médicale, 20(4), 315–320. https://doi.org/10.1016/j.mycmed.2010.10.002. | spa |
dcterms.references | Quirós, J. (2014). Echinoderms in Shallow-Bottom from Ahumadera Sector, Cispatá Bay, Cordoba, Colombian Caribbean. Acta Biológica Colombiana, 20(1), 101-108. https://doi.org/10.15446/abc.v20n1.42529 | spa |
dcterms.references | Quirós, J., Medrano, W., & Santafé, G. (2017). Esponjas (Porifera: Demospongiae) de raíces sumergidas de Rhizophora mangle en la bahía de Cispatá, Córdoba, Caribe colombiano. Revista Mexicana de Biodiversidad, 88(1), 80–85. https://doi.org/10.1016/j.rmb.2017.01.023 | spa |
dcterms.references | Rajivgandhi, G., Kumar, S. N., Ramachandran, G., & Manoharan, N. (2019). Marine sponge alkaloid aaptamine enhances the anti-bacterial and anti-cancer activity against ESBL producing Gram negative bacteria and HepG 2 human liver carcinoma cells. Biocatalysis and Agricultural Biotechnology, 17, 628–637. https://doi.org/10.1016/j.bcab.2019.01.007. | spa |
dcterms.references | Ramasamy, M., & Balasubramanian, U., (2014). Study on antimicrobial activity of marine of bivalves Meretrix casta (Chemnitz) and Anadara granosa (Linn) from Muthupet and Tutcorin Southeast coast of India. International Journal of Science and Nature, 5 (1) (2014), 109-112. | spa |
dcterms.references | Rangel, M. S., Mendoza, J., Freites, L., Tagliafico, A., Silva, J., & Garcia, N. (2016). Biometric and reproductive aspects of the pen shell Atrina seminuda (Bivalvia: Pinnidae) in northeastern Venezuela. Molluscan Research, 37(2), 88-97. https://doi.org/10.1080/13235818.2016.1231303. | spa |
dcterms.references | Rocha-Granados, M. C., Zenick, B., Englander, H. E., & Mok, W. W. (2020). The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cellular Signalling, 75, 109750. https://doi.org/10.1016/j.cellsig.2020.109750. | spa |
dcterms.references | Safaeian, S., Hosseini, H., Abbas Pour Asadolah, A., & Farmohamadi, S. (2009). Antimicrobial activity of marine sponge extracts of offshore zone from Nay Band Bay, Iran. Journal de Mycologie Médicale, 19(1), 11–16. https://doi.org/10.1016/j.mycmed.2008.11.003. | spa |
dcterms.references | Sailaja, P., Kalva, S., Yerramilli, A., & Mamidi, S. (2011). Free Radicals and Tissue Damage: Role of Antioxidants. Free Radicals and Antioxidants, 1(4), 2–7. https://doi.org/10.5530/ax.2011.4.2. | spa |
dcterms.references | Santafé, G. G., Guzmán, M. S., & Torres, O. L. (2014). Triterpenos Holostáticos con Actividad Antifúngica obtenidos del pepino de mar Holothuria Floridana: Recolectado en la Bahía de Cispatá, Córdoba-Colombia. Información tecnológica, 25(2), 87–92. https://doi.org/10.4067/s0718-07642014000200010 | spa |
dcterms.references | Seleghim MHR, Lira SP, Kossuga MH, et al. (2007). Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Rev Bras Farmacogn.17:287-318. https://doi.org/10.1590/S0102-695X2007000300002. | spa |
dcterms.references | Shantharam, A., & Baco, A. (2020). Biogeographic and bathymetric patterns of benthic molluscs in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 155, 103167. https://doi.org/10.1016/j.dsr.2019.103167. | spa |
dcterms.references | Shi, H., Hu, X., Zheng, H., Li, C., Sun, L., Guo, Z., Huang, W., Yu, R., Song, L., & Zhu, J. (2021). Two novel antioxidant peptides derived from Arca subcrenata against oxidative stress and extend lifespan in Caenorhabditis elegans. Journal of Functional Foods, 81, 104462. https://doi.org/10.1016/j.jff.2021.104462. | spa |
dcterms.references | Valdés, I., Pérez, G., y Colom, Y., (2010). Actividad antitumoral de los organismos marinos. Revista electrónica de la Agencia de Medio Ambiente [revista en internet]. [citado 25 de septiembre 2021]; 10(19). Disponible en: http://ama.redciencia.cu/articulos/19.04.pdf | spa |
dcterms.references | Wang, F., Cao, Y., Guo, Y., Zhu, Z., & Zhang, C. (2021). Evaluation of antioxidant and antibacterial activities of lipid extracts from Eustigmatos cf. polyphem (Eustigmatophyceae) and preliminary identification of bioactive compound. Algal Research, 59, 102446. https://doi.org/10.1016/j.algal.2021.102446. | spa |
dcterms.references | Wang, J., Liu, L., Hong, L., Zhan, K., Lin, Z., Jiao, W., & Lin, H. (2021). New bisabolane-type phenolic sesquiterpenoids from the marine sponge Plakortis simplex. Chinese Journal of Natural Medicines, 19(8), 626–631. https://doi.org/10.1016/s1875-5364(21)60062-6. | spa |
dcterms.references | Wu, Z., Liu, D., Xu, Y., Chen, J., & Lin, W. (2018). Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chinese Journal of Natural Medicines, 16(3), 219–224. https://doi.org/10.1016/s1875-5364(18)30050-5. | spa |
dcterms.references | Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559. | spa |
dcterms.references | Yunovilsa, M., Aryono, T., & Murniasih, T. (2016). In vitro antibacterial and antifungal activities of twelve sponges collected from the Anambas Islands, Indonesia. Asian Pacific Journal of Tropical Disease V, 6, 732–735. https://doi.org/10.1016/S2222-1808(16)61119-2. | spa |
dcterms.references | Zea S. (1998). Estado actual del conocimiento de esponjas marinas (Porífera) del Caribe Colombiano. Bol Ecotrópica ecosistemas Trop. 33. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- INFORME ESTUDIO QUÍMICO Y EVALUACIÓN DE LAS ACTIVIDADES ANTIOXIDANTES, ANTIBACTERIANA Y ANTIFÚNGICA DE LOS INVERTEBRADOS MARINOS Saturnospongilla carvalhoi y Atrina seminuda RECOLECTADOS EN LA BAHÍA DE CISP.pdf
- Tamaño:
- 4.81 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- INFORMEFINAL
No hay miniatura disponible
- Nombre:
- Formato Autorización.pdf
- Tamaño:
- 5.24 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: