Publicación: Fenómenos discontinuos, de compensación e histéresis en un sistema magnéticamente ordenado
dc.contributor.advisor | Espriella Vélez, Nicolás de la | |
dc.contributor.author | Yances Morales, Carlos Andrés | |
dc.contributor.educationalvalidator | MADERA YANCES JULIO | |
dc.contributor.jury | JIMENEZ NARVAEZ, ROSBEL | |
dc.contributor.jury | LOPEZ, JAVIER DEL CRISTO | |
dc.date.accessioned | 2024-02-04T00:10:56Z | |
dc.date.available | 2024-02-04T00:10:56Z | |
dc.date.issued | 2024-02-03 | |
dc.description.abstract | En este trabajo se estudió un sistema magnéticamente ordenado tipo Ising ferrimagnético, estructurado sobre una red de tamaño L x L sitios, con L=120, formado por una configuración bipartita de subredes cuadradas A y B. Cada sitio en la estructura está ocupado por una partícula de Ising de espín S=3/2 en la subred A y espín Q=7/2 en la subred B. En toda red, cada espín se acopla con interacciones de intercambio, J_1 para primeros vecinos (espines S-Q), J_2 para segundos vecinos (espines S) y J_3 para segundos vecinos (espines Q); además se tienen en cuenta campos cristalinos D_1 y D_2, para la subred A y B respectivamente, y un campo magnético externo longitudinal h. Lo anterior, permite definir el Hamiltoniano (H), y así, mediante simulaciones Monte Carlo (MC) se investiga el efecto de los parámetros: D_2, J_3 y h sobre comportamiento termomagnético del sistema. Se encontraron fenómenos como: temperaturas de compensación, discontinuidades en la magnetización, temperaturas críticas y lazos de histéresis magnética. | spa |
dc.description.abstract | In this work we studied a magnetically ordered ferrimagnetic Ising-like system, structured on a lattice of size L x L sites, with 𝐿=120, formed by a bipartite configuration of square A and B sublattices. Each site in the structure is occupied by an Ising particle of spin 𝑆=3/2 in the A sublattice and spin 𝑄=7/2 in the B sublattice. In any lattice, each spin is coupled with exchange interactions, 𝐽1 for first neighbors (spins 𝑆-𝑄), 𝐽2 for second neighbors (spins 𝑆) and 𝐽3 for second neighbors (spins 𝑄); in addition, crystal fields 𝐷1 and 𝐷2, for sublattice A and B respectively, and a longitudinal external magnetic field ℎ are taken into account. The above, allows defining the Hamiltonian (𝐻), and thus, by means of Monte Carlo (MC) simulations, the effect of the parameters: 𝐷2, 𝐽3 and ℎ on thermomagnetic behavior of the system is investigated. Phenomena such as: compensation temperatures, magnetization discontinuities, critical temperatures and magnetic hysteresis loops were found. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Resumen..................................................................1 | spa |
dc.description.tableofcontents | Capítulo 1: Introducción................................2 | spa |
dc.description.tableofcontents | Capítulo 2: Tópicos y Fenómenos Magnéticos.......................5 | spa |
dc.description.tableofcontents | 2.1. Sistemas magnéticamente ordenados.....................5 | spa |
dc.description.tableofcontents | 2.1.1. Ferromagnetismo.................................6 | spa |
dc.description.tableofcontents | 2.1.2. Antiferromagnetismo.....................................6 | spa |
dc.description.tableofcontents | 2.1.3. Ferrimagnetismo...................................8 | spa |
dc.description.tableofcontents | 2.2. Interacciones en los sistemas magnéticos..........................9 | spa |
dc.description.tableofcontents | 2.2.1. Interacciones anisotrópicas..........................9 | spa |
dc.description.tableofcontents | 1.2.1.1. Anisotropía magnetocristalina.................................9 | spa |
dc.description.tableofcontents | 2.2.2. Interacciones de intercambio...................................10 | spa |
dc.description.tableofcontents | 2.2.3. Campo magnético externo...................................11 | spa |
dc.description.tableofcontents | 2.3. Fenómenos magnéticos................................12 | spa |
dc.description.tableofcontents | 2.3.1. Temperatura crítica..................................12 | spa |
dc.description.tableofcontents | 2.3.2. Transiciones de fase....................................13 | spa |
dc.description.tableofcontents | 13 2.3.3. Temperatura de compensación.........................13 | spa |
dc.description.tableofcontents | 2.3.4. Histéresis magnética...............................14 | spa |
dc.description.tableofcontents | 2.4. Modelos y métodos para caracterizar sistemas magnéticos.........................15 | spa |
dc.description.tableofcontents | 2.4.1. Modelo de Ising...................................15 | spa |
dc.description.tableofcontents | 2.4.2. Método Monte Carlo............................18 | spa |
dc.description.tableofcontents | Capítulo 3: Resultados y Análisis................................20 | spa |
dc.description.tableofcontents | 3.1. Efectos del campo cristalino 𝐷2 sobre la magnetización y la susceptibilidad magnética...........................20 | spa |
dc.description.tableofcontents | 3.2. Influencia del campo ℎ sobre la magnetización y la susceptibilidad magnética...........................3 | spa |
dc.description.tableofcontents | Efectos del parámetro 𝐽3 sobre el comportamiento de histéresis del sistema....................28 | spa |
dc.description.tableofcontents | 3.4. Efectos del parámetro 𝐷1=𝐷2=𝐷 sobre comportamiento de histéresis del sistema.........................32 | spa |
dc.description.tableofcontents | Capítulo 4: Conclusiones..........................................35 | spa |
dc.description.tableofcontents | Bibliografía....................................................36 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8234 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | J. S. Suen, J. L. Eskine, Physica Rev. Lett. 1997, 78, 3567. | |
dc.relation.references | J. S. Suen, M. H. Lee, G. Teeter, J. L. Eskine, Physica Rev. B 1999, 59, 4249. | |
dc.relation.references | L. P. Jia, Q. F. Zhang, B. Yang, Colloid Interface Sci. Comm. 2015, 9, 6. | |
dc.relation.references | T. Kaneyoshi, Phase Transitions 2020, 93, 263. | |
dc.relation.references | T. Kaneyoshi, Chem. Phys. Lett. 2019, 715, 72. | |
dc.relation.references | H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. Sun, Nature 2019, 420, 395. | |
dc.relation.references | T. Kaneyoshi, Solid State Commun. 2021, 323, 114132. | |
dc.relation.references | H. K. Mohamad, Solid State Commun. 2020, 312, 113894. | |
dc.relation.references | Q. Li, R.-D. Li, W. Wang, R.-Z. Geng, H. Huang, S.-J. Zheng, Physica A 2020, 555, 124741. | |
dc.relation.references | D. Lv, W. Wang, J.-P. Liu, D.-Q. Guo, S.-X. Li, J. Magn. Magn. Mater. 2018, 465, 348. | |
dc.relation.references | M. Ertaş, M. Batı, Chin. J. Phys. 2020, 66, 724. | |
dc.relation.references | Z.-Y. Liu, W. Wang, S.-Y. Wang, H. Huang, Z.-H. Ma, Micro Nanostruct. 2022, 167, 207238. | |
dc.relation.references | D. Lv, F. Wang, R.-J. Liu, Q. Xue, S.-X. Li, J. Alloys Compd. 2017, 701, 935. | |
dc.relation.references | N. De La Espriella, M. Karimou, G. M. Buendía, Physica Status Solidi B 2021, 258, 2000536. | |
dc.relation.references | W. Wang, Y. Liu, Z.-Y. Gao, X.-R. Zhao, Y. Yang, S. Yang, Physica E: Low-dimens. Syst. Nanostruct. 2018, 101, 110. | |
dc.relation.references | M. Ertaş, J. Supercond. Nov. Magn. 2019, 32, 3853. | |
dc.relation.references | M. Keskin, M. Ertaş, Physica A 2018, 496, 79. | |
dc.relation.references | U. Thiele, T. Frohoff-Hülsmann, S. Engelnkemper, E. Knobloch,A. J. Archer, New J.Phys. 2019, 21, 123021. | |
dc.relation.references | Q. An, W. L. Johnson, K. Samwer, S. L. Corona, W. A. Goddard III, J. Phys. Chem. Lett. 2020, 11, 632. | |
dc.relation.references | M. Karimou, N. De La Espriella, Physica A 2018, 531, 121738. | |
dc.relation.references | D. Lv, W. Jiang, Y. Ma, Z. Gao, F. Wang, Physica E: Low-dimens. Syst. Nanostruct. 2019, 106, 101. | |
dc.relation.references | D. V. Makarov, A. N. Zakhlevnykh, Physica Rev. E 2010, 81, 051710. | |
dc.relation.references | E. Albayrak, Chin. J. Phys. 2020, 68, 100. | |
dc.relation.references | M. Gençaslan, M. Keskin, J. Magn. Magn. Mater. 2020, 514, 167242. | |
dc.relation.references | M. Keskin, M. Ertaş, Physica Scr. 2020, 95, 055805. | |
dc.relation.references | H. Bouda, T. Bahlagui, L. Bahmad, R. Masrour, A. El Kenz, A. Benyoussef, J. Supercond. Nov. Magn. 2019, 32, 2539. | |
dc.relation.references | H. K. Mohamad, A. Zuhair, J. Supercond. Nov. Magn. 2019, 33, 1481. | |
dc.relation.references | A. Figuerola, C. Diaz, M. S. El Fallah, J. Ribas, M. Maestro, J. Mahía, Chem. Commun. 2001, 13, 1204. | |
dc.relation.references | W. Wang, D. Chen, D. Lv, J. Liu, Q. Li, Z. Peng, J. Phys. Chem. Solids 2017, 108, 39. | |
dc.relation.references | T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B. A. Ivanov, A. M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, T. Rasing, A. V. Kimel, Nat. Commun. 2012, 3, 666. | |
dc.relation.references | J. Barker, U. Atxitia, T. A. Ostler, O. Hovorka, O. Chubykalo-Fesenko, R. W. Chantrell, Sci. Rep. 2013, 3, 3262. | |
dc.relation.references | N. Lupu, M. Lostun, H. Chiriac, J. Appl. Phys. 2010, 107, 09E315. | |
dc.relation.references | S. Bouhou, I. Essaoudi, A. Ainane, M. A. Saber, F. Dujardin, J. J. De Miguel, J. Magn. Magn. Mater. 2012, 324, 2434. | |
dc.relation.references | O. Kahn, Nature 1999, 399, 21. | |
dc.relation.references | S. Ohkoshi, Y. Abe, A. Fujishima, K. Hashimot, Physica Rev. Lett. 1999, 82, 1285. | |
dc.relation.references | G. Chern, L. Horng, W. K. Shieih, T. C. Wu, Physica Rev. B 2001, 63, 094421. | |
dc.relation.references | H. Kageyama, D. I. Khomskii, R. Z. Levitin, A. N. Vasilév, Physica Rev. B 2003, 67, 224422. | |
dc.relation.references | L. N. Néel, Ann. Phys. 1948, 3, 137. | |
dc.relation.references | M. Mansuripur, J. Appl. Phys. 1987, 61, 1580. | |
dc.relation.references | S. Ohkoshi, A. Yukinori, F. Akira, K. Hashimoto, Physica Rev. Lett. 1999, 82, 1285. | |
dc.relation.references | H. P. Shieh, M. H. Kryder, Appl. Phys. Lett. 1986, 49, 473. | |
dc.relation.references | T. Sahdane, R. Masrour, A. Jabar, Solid State Commun. 2021, 324, 114138. | |
dc.relation.references | N. Hachem, I. A. Badrour, A. El Antari, A. Lafhal, M. Madani, M. ElBouziani, Chin. J. Phys. 2020, 71, 12. | |
dc.relation.references | Y. Yüksel, E. Vatansever, Ü. Akıncı, Physica Lett. A 2021, 388, 127079. | |
dc.relation.references | L. Sun, F. Zhang, W. Wang, Z.-Y. Gao, B.-C. Li, J.-Q. Lv, J. Magn. Magn. Mater. 2022, 547, 168774. | |
dc.relation.references | M. Yang, F. Wang, J.-Q. Lv, B.-C. Li, W. Wang, Physica B 2022, 638, 413954. | |
dc.relation.references | S.-Y. Wang, D. Lv, Z.-Y. Liu, W. Wang, J. Bao, H. Huang, J. Mol. Graphics Modell. 2021, 107, 107967. | |
dc.relation.references | Y. An, W. Wang, L. Sun, B.-C. Li, Micro Nanostruct. 2022, 171, 207429. | |
dc.relation.references | B.-C. Li, W. Wang, J.-Q. Lv, X.-H. Zhang, F. Wang, Phase Transitions 2022, 95, 823. | |
dc.relation.references | H. Bouda, L. Bahmad, R. Masrour, A. Benyoussef, J. Supercond. Novel Magn. 2018, 32, 1837. | |
dc.relation.references | H. K. Mohamad, Int. J. Adv. Res. 2018, 2, 442. | |
dc.relation.references | M. Karimou, R. A. Yessoufou, G. D. Ngantso, F. Hontinfinde, A. Benyoussef, J. Supercond. Novel Magn. 2018, 32, 1769. | |
dc.relation.references | M. Karimou, R. A. Yessoufou, G. D. Ngantso, F. Hontinfinde, E. Albayrak, Condens. Matter Phys. 2019, 22, 33601. | |
dc.relation.references | S. Clymton, T. Mart, Proc. AIP Conf. 2017, 1862, 030011. | |
dc.relation.references | S. Clymton, T. Mart, Physica Rev. D: Part. Fields 2017, 96, 054004. | |
dc.relation.references | K. H. K. Ebrahimi, C. Silveira, S. Todorovic, Chem. Commun. 2018, 54, 8614. | |
dc.relation.references | R. Lora-Serrano, D. J. Garcia, D. Betancourth, R. P. Amaral, N. S. Camilo, E. Estévez-Rams, L. A. Ortellado G.Z., P. G. Pagliuso, J. Magn. Magn. Mater. 2016, 405, 304. | |
dc.relation.references | T. Bahlagui, H. Bouda, A. El Kenz, L. Bahmad, A. Benyoussef, Superlattices Microstruct. 2017, 110, 90. | |
dc.relation.references | T. Bahlagui, A. El Kenz, A. Benyoussef, J. Supercond. Novel Magn. 2018, 31, 4179. | |
dc.relation.references | R. Masrour, A. Jabar, L. Bahmad, M. Hamedoun, A. Benyoussef, J. Magn. Magn. Mater. 2017, 421, 76. | |
dc.relation.references | N. De La Espriella, J. C. Madera, R. Burgos, IEEE Trans. Magn. 2019, 55, 6000807. | |
dc.relation.references | Spaldin Nicola A., 2003, Magnetic Materials Fundamentals and Applications, 2ed, Cambridge University Press, New York. | |
dc.relation.references | Getzlaff Mathias, 2008, Fundamentals of magnetism, Springer-Verlag Berlin Heidelber. | |
dc.relation.references | B. D. Cullity, C. D. GRAHAM, 2009, Introduction to magnetic materials, 2ed, John Wiley & Sons, Inc., Hoboken, New Jersey. | |
dc.relation.references | Sólyom Jenő, 2007, Fundamentals of the physics of solids - Structure and Dynamics, Vol. 1, Springer-Verlag Berlin Heidelberg. | |
dc.relation.references | https://gc.scalahed.com/recursos/files/r145r/w831w/U6_liga9.html | |
dc.relation.references | Raymond A. Serway y John W. Jewett, Jr., 2009, Física para ciencias e ingeniería con física moderna, Volumen 2, Séptima edición, Cengage Learning, ISBN-13: 978-607-[69] 481-358-6. | |
dc.relation.references | Pierre Papon, Jacques Leblond, Paul H.E. Meijer, S.L. Schnur , 2006, -The physics of phase transitions_ concepts and applications, Springer Verlag. | |
dc.relation.references | YOUNG, HUGH D. y ROGER A. FREEDMAN, 2009, Física universitaria, con física moderna volumen 2. Decimosegunda edición, PEARSON EDUCACIÓN, México, ISBN: 978-607-442-304-4. | |
dc.relation.references | A. Gelover, Simulación del modelo de Ising con el método de Monte Carlo, segunda edición, Facultad de Ciencias UNAM, (2005) ISBN: 970-32-2869-0. | |
dc.relation.references | B. McCoy and T. Tsun Wu, The two-dimensional Ising Model, secon edition, Harvard university, (2014). | |
dc.relation.references | M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Clarendon Press-Oxford, (2006). | |
dc.relation.references | D. Frenkel and B. Smit. Understanding Molecular Simulation. From Algorithms to Applications. Academic Press. A Division of Harcourt, Inc. (1998). | |
dc.relation.references | M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Claredon Press Oxford, (1999). | |
dc.relation.references | Z. Zhang, D. Yu, Y. Cai, H. Chen, W. Fang, Z. Yang, Y. Li, Y. Ji, Y. Chu, C. Xu, in Optical Sensing and Imaging Technologies and Applications, Proc. SPIE 10846, Beijing, China 2018, p. 108460Z; https://doi.org/10.1117/12.2504223. | |
dc.relation.references | M. Ghanathe, A. Kumar, I. da Silva, S. M. Yusuf, J. Magn. Magn.Mater. 2021, 523,167632. | |
dc.relation.references | A. Boubekri, Z. Elmaddahi, A. Farchakh, M. E. Hafidi, Physica B: Condens. Matter 2022, 626, 413526. | |
dc.relation.references | H. K. Mohamad, Indian J. Phys. 2022, 96, 3517. | |
dc.relation.references | X. Shi, J. Zhao, L. Wang, J. Magn. Magn. Mater. 2018, 452, 477. | |
dc.relation.references | M. Perzanowski, A. Zarzycki, J. Gregor-Pawlowski, M. Marszalek, ACS Appl. Mater. Interfaces 2020, 12, 39926. | |
dc.relation.references | X. Zhao, A. O. Mandru, C. Vogler, M. A. Marioni, D. Suess, H. J. Hug,ACS Appl. Nano Mater. 2019, 12, 7478. | |
dc.relation.references | F. Radu, H. Zabel, Magnetic Heterostructures, Springer Tracts in Modern Physics, Vol. 227, Springer, Berlin, Heidelberg 2008. | |
dc.relation.references | T. Zhang, Y. Zhang, M. Huang, B. Li, Y. Sun, Z. Qu, X. Duan, C. Jiang, S. Yang, Adv. Sci. 2022, 9, 2105483. | |
dc.relation.references | P. D. Murray, C. J. Jensen, A. Quintana, J. Zhang, X. Zhang, A. J. Grutter, B. J. Kirby, K. Liu, ACS Appl. Mater. Interfaces 2021,13 38916. | |
dc.relation.references | I. S. Tereshina, I. A. Pelevin, E. A. Tereshina, G. S. Burkhanov, K. Rogacki, M. Miller, N. V. Kudrevatykh, P. E. Markin, A. S. Volegov, R. M. Grechishkin, S. V. Dobatkin, L. Schultz, J. Alloys Compd. 2016, 681, 555. | |
dc.relation.references | S. M. Humphrey, P. T. Wood, J. Am. Chem. Soc. 2004, 126, 13236. | |
dc.relation.references | Y. Kocakaplan, E. Kantar, Eur. Phys. J. B 2014, 87, 135. | |
dc.relation.references | H. Zeng, S. Sun, J. Li, Z. L. Wang, J. P. Liu, Appl. Phys. Lett. 2004, 85,792. | |
dc.relation.references | L. B. Drissi, S. Zriouel, E. H. Saidi, J. Magn. Magn. Mater. 2015, 374, 394. | |
dc.relation.references | R. Masrour, A. Jabar, J. Magn. Magn. Mater. 2017, 426, 225. | |
dc.relation.references | E. Kantar, Chin. Phys. B 2015, 24, 107501. | |
dc.relation.references | C. T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu,F. Le Normand, A. Derory, Appl. Surf. Sci. 2009, 255, 5386. | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Histéresis magnética | eng |
dc.subject.keywords | Magnetically ordered system | eng |
dc.subject.keywords | Mixed Ising model | eng |
dc.subject.keywords | Monte carlo simulation | eng |
dc.subject.keywords | Compensation temperature | eng |
dc.subject.keywords | Magnetization discontinuities | eng |
dc.subject.keywords | Critical temperature | eng |
dc.subject.keywords | Magnetic hysteresis | eng |
dc.subject.proposal | Sistema magnéticamente ordenado | spa |
dc.subject.proposal | Modelo de ising mixto | spa |
dc.subject.proposal | Simulación monte carlo | spa |
dc.subject.proposal | Temperatura de compensación | spa |
dc.subject.proposal | Discontinuidades en la magnetización | spa |
dc.subject.proposal | Temperatura crítica | spa |
dc.subject.proposal | Histéresis magnética | spa |
dc.title | Fenómenos discontinuos, de compensación e histéresis en un sistema magnéticamente ordenado | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: