Publicación: Eichhornia crassipes contaminada con mercurio como un generador de biogas
dc.contributor.advisor | Marrugo Negrete, José Luis | spa |
dc.contributor.author | Bossio Sanchez, Amaury | |
dc.date.accessioned | 2022-03-09T15:50:18Z | |
dc.date.available | 2022-03-09T15:50:18Z | |
dc.date.issued | 2022-03-04 | |
dc.description.abstract | La Eichhornia crassipes (EC) es considerada como una maleza nociva en muchas partes del mundo, ya que su vertiginoso crecimiento agota el oxígeno y los nutrientes rápidamente en los cuerpos de agua, afectando negativamente a la flora y la fauna. El objetivo de este estudio fue determinar el rendimiento en la producción de biogás usando la EC como sustrato único proveniente de una zona contaminada por metales pesados (Mojana-Colombia) y co-digestión con estiércol de vaca como inóculo, teniendo en cuenta que la producción de biogás a través de digestión anaeróbica (AC) de materiales orgánicos de desecho ofrece una alternativa ecológica de energía renovable. En este estudio, se evalúa la producción de biogás a partir de la digestión de EC con estiércol de vaca (co-digestor, AC) en diferentes composiciones porcentuales según el diseño experimental de optimización-superficie respuesta, los %EC y %AC estuvieron en los rangos de composición de 8,8 a 26,4% y 2,6 a 7,7 respectivamente y la respuesta estimada fue el % Metano generado. Todas las digestiones se realizaron en condiciones mesófilas (38 °C) usando un digestor batch en el laboratorio de toxicología ambiental en la Universidad de Córdoba-Colombia. En todos los tratamientos se determinó los sólidos totales (ST), sólidos volátiles (SV), Carbono orgánico, porcentaje de humedad, pH y Hg-Total antes y después de cada digestión. La producción de biogás se midió por el método de desplazamiento de agua para los siguientes 32 días. Los resultados muestran un valor óptimo de eficiencia para la producción de metano de 60,91% en las condiciones de composición %EC 26,4 y %AC 7,7 teniendo una mayor influencia la variable AC (Co-digestor) en la respuesta generada para la digestión. Se destacan el buen comportamiento de los tratamientos T1: 8,8%EC-2,6%AC; T3: 8,8%EC-7,7%AC y T6: 8,8%EC-5,1%AC en cuanto a la favorabilidad de las variables pH, %Humedad, %Carbono, TS y VS en la generación del biogás. Para todos los tratamientos los porcentajes de Hg-T retenidos después de la digestión anaeróbica estuvieron entre 84,74 y 92,59 % para los tratamientos T4 y T5 respectivamente, estos valores indican que el Hg-T se mantiene en la biomasa aun después de la digestión anaeróbica con porcentajes encima de 80%. En cuanto a los subproductos de la digestión anaeróbica los resultados indican que pueden ser utilizados como abonos orgánicos líquidos según la norma NTC 5167. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Ambientales | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | RESUMEN .......................................................................................................................... 10 | spa |
dc.description.tableofcontents | ABSTRACT ......................................................................................................................... 11 | spa |
dc.description.tableofcontents | INTRODUCCIÓN ............................................................................................................... 12 | spa |
dc.description.tableofcontents | 1. OBJETIVOS ................................................................................................................ 16 | spa |
dc.description.tableofcontents | 2. MARCO TEÓRICO Y ANTECEDENTES ............................................................... 17 | spa |
dc.description.tableofcontents | 2.1. Jacinto de agua (Eichhornia crassipes) ........................................................... 17 | spa |
dc.description.tableofcontents | 2.1.1. EC como especie acumuladora de metales pesados ............................ 18 | spa |
dc.description.tableofcontents | 2.1.2. Aprovechamiento energético de la EC ..................................................... 18 | spa |
dc.description.tableofcontents | 2.2. Aprovechamiento de Biomasa .......................................................................... 20 | spa |
dc.description.tableofcontents | 2.3. Reutilización de biomasa contaminada con metales pesados (HMBC)..... 20 | spa |
dc.description.tableofcontents | 2.4. Biogás ................................................................................................................... 22 | spa |
dc.description.tableofcontents | 2.4.1. Descripción del proceso de biodigestión ................................................. 23 | spa |
dc.description.tableofcontents | 2.4.2. Factores que influyen en la digestión anaerobia .................................... 26 | spa |
dc.description.tableofcontents | 2.4.3. Microorganismos presentes en la digesti n anaerobia ......................... 29 | spa |
dc.description.tableofcontents | 2.4.4. Tipos de biodigestores ................................................................................ 32 | spa |
dc.description.tableofcontents | 2.5. Generaci n de Bioenergía en Colombia ......................................................... 33 | spa |
dc.description.tableofcontents | 2.5.1. Proyectos y empresas implicadas en Colombia ..................................... 34 | spa |
dc.description.tableofcontents | 2.5.2. Antecedentes Investigativos en Colombia ............................................... 35 | spa |
dc.description.tableofcontents | 3. METODOLOGÍA ........................................................................................................ 40 | spa |
dc.description.tableofcontents | 3.1. Descripción del área de estudio........................................................................ 40 | spa |
dc.description.tableofcontents | 3.2. Materia prima ....................................................................................................... 40 | spa |
dc.description.tableofcontents | 3.3. Diseño del Experimento ..................................................................................... 40 | spa |
dc.description.tableofcontents | 3.4. Determinación de las propiedades físico-químicas de los sustratos .......... 41 | spa |
dc.description.tableofcontents | 3.4.1. Sólidos totales .............................................................................................. 41 | spa |
dc.description.tableofcontents | 3.4.2. Sólidos volátiles y fijos ................................................................................ 42 | spa |
dc.description.tableofcontents | 3.4.3. Determinación del contenido de humedad .............................................. 42 | spa |
dc.description.tableofcontents | 3.4.4. Las determinaciones de pH........................................................................ 43 | spa |
dc.description.tableofcontents | 3.4.5. El carbono orgánico ..................................................................................... 43 | spa |
dc.description.tableofcontents | 3.5. Análisis de mercurio total en la digestión anaeróbica ................................... 43 | spa |
dc.description.tableofcontents | 3.6. Digestión anaeróbica de los sustratos ............................................................. 44 | spa |
dc.description.tableofcontents | 3.7. Configuración del digestor para producción de biogás ................................. 45 | spa |
dc.description.tableofcontents | 3.8. Subproductos de digestión como fertilizante agrícola ................................... 46 | spa |
dc.description.tableofcontents | 3.8.1. Análisis de los datos .................................................................................... 46 | spa |
dc.description.tableofcontents | 4. RESULTADOS Y ANÁLISIS .................................................................................... 47 | spa |
dc.description.tableofcontents | 4.1. Propiedades físico-químicas de los sustratos utilizados en la co-digestión. 47 | spa |
dc.description.tableofcontents | 4.1.1. El análisis de los valores de TS y VS de los diferentes tratamientos antes y después de la digestión anaeróbica. ........................................................ 49 | spa |
dc.description.tableofcontents | 4.2. Optimización de composiciones de EC y co-digestor de estiércol de ganado (AC) para la digestión anaeróbica. ............................................................... 53 | spa |
dc.description.tableofcontents | 4.3. Subproductos de la digestión anaeróbica de EC y AC (Co-digestor de estiércol de vaca). .......................................................................................................... 58 | spa |
dc.description.tableofcontents | 5. CONCLUSIONES ...................................................................................................... 62 | spa |
dc.description.tableofcontents | REFERENCIAS .................................................................................................................. 63 | spa |
dc.description.tableofcontents | Anexo I ................................................................................................................................. 83 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4928 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ciencias Ambientales | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Biogas | eng |
dc.subject.keywords | Co-digestion | eng |
dc.subject.keywords | Manure | eng |
dc.subject.keywords | Eichhornia crassipes | eng |
dc.subject.keywords | Biomass contaminated | eng |
dc.subject.keywords | Generator biogas | eng |
dc.subject.proposal | Biogás, | spa |
dc.subject.proposal | Co-digestión | spa |
dc.subject.proposal | Estiércol de Vaca | spa |
dc.subject.proposal | Eichhornia crassipes | spa |
dc.subject.proposal | Sólidos totales | spa |
dc.subject.proposal | Sólidos volátiles | spa |
dc.title | Eichhornia crassipes contaminada con mercurio como un generador de biogas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | A.P.H.A. Standard Methods for the Examination of Water and Wastewater. http:// www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf⟩.Part1000,[accessed 2016]. | spa |
dcterms.references | Abhilash, P., Dubey, R., Tripathi, V., Srivastava, P., Verma, J., Singh, H. (2013). Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives, Environ. Sci. Pollut. Res. 20 : pp. 5879-5885. | spa |
dcterms.references | Abuabaker, B., and Ismail, N. (2012). Anaerobic Digestion of Cow Dung for Biogas Production. ARPN J. Eng. Appl. Sci. 7 (2): pp. 169-172. Acevedo, | spa |
dcterms.references | Acevedo, P., Hernandez, M., Cabeza, I. (2016). Anaerobic Co-digestion of Organic Residues from Different Productive Sectors in Colombia: Biomethanation Potential Assessment. Chemical Engineering Transactions. 49. 10.3303/CET1649065. | spa |
dcterms.references | Al-Karaghouli A., Kazmerski LL. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sustain Energy Rev. 24: pp. 343–56. | spa |
dcterms.references | Alker, S., Joy, V., Roberts, P., Smith, N. (2000). The definition of brownfield, J. Environ. Plann. Manage. 43: pp. 49–69. | spa |
dcterms.references | Angelidaki, I., and Ahring, B.K. (1999). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. pp. 23-32.In: J.Mata- Alvarez, A. Tilche and F. Cecchi (eds.). Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes. | spa |
dcterms.references | Annaschnurer, J. (2010). Microbiological Handbook for biogas plants. Swedish waste management. Swedish. | spa |
dcterms.references | Anonymous, J. (1981). Biogas technology and utilization. A status Report. Department of Science and Technology. Government of India, New Delhi.20-46.098UUJKL. | spa |
dcterms.references | Anushree, N. (2007). Environmental challenge a vis opportunity: The case of water hyacinth. Environment International 33: pp. 122–138. | spa |
dcterms.references | Ariza, A. (2018). Biometano: Alternativa sostenible del gas natural. Recuperado el 04 de 06 de 2018, de http://www.cdtdegas.com/images/Descargas/Nuestra_revista/MetFlu11/6. | spa |
dcterms.references | Arogo, J., Wen, Z., Ignosh, J., Bendfeldt E. and Collins, E.R. (2009). Biomethane Technology College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Virginia. pp. 442-881. | spa |
dcterms.references | Atkins, M., Fuchs, M., Hoffman A. and Wilhelm, N. (2008). Plastic Tubular Biogas Digesters: A Pilot Project in Uru, Kilimanjaro, Tanzania. | spa |
dcterms.references | AviNews. Colombia. (2018). El mayor productor de huevos invierte en biog s. Recuperado el 04 de 06 de 2018, de https://avicultura.info/colombia-mayor-productor-huevos-invierte-biogas/. (17 de 08 de 2016). | spa |
dcterms.references | Aysu, T. and Kü ük, M. (2014). Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products, Energy, 64, issue C, pp. 1002-1025. | spa |
dcterms.references | Azizi, K., Moraveji, M., Najafabadi, H. (2017). Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA, Bioresour. Technol. 243: pp. 481–491. | spa |
dcterms.references | Bacca, A. (2007). Estudio de los efectos hidráulicos causados por la planta acuática Eichhornia crassipes localizada en la superficie del agua en canales abiertos, Bogotá: Universidad de La Salle. | spa |
dcterms.references | Badger, C., Bogue, M. and Stewart, D. (1979). Biogas production from crops and organic wastes. J. Sci. 22: pp. 11-20. | spa |
dcterms.references | Balsamo, R., Kelly, W., Satrio, J., Ruiz-Felix, M., Fetterman, M., Wynn, R., Hagel, K. (2015). Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils, Int. J. Phytorem. 17: pp. 448–455. | spa |
dcterms.references | Bert, V., Allemon, J., Sajet, P., Dieu, S., Papin, A., Collet, S., Gaucher, R., Chalot, M., Michiels, B., Raventos, C. (2017). Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options, Biomass Bioenergy 96: pp. 1–11. | spa |
dcterms.references | Borowski, S. (2015). Codigestión de la materia orgánica separada hidromecánicamente fracción de residuos sólidos municipales con lodos de depuradora. J. Environ. Administrar, 147: pp. 87-94. | spa |
dcterms.references | Buysman, E. (2015). Anaerobic Digestion for Developing Countries with Cold Climates - Utilizing solar heat to address technical challenges and facilitating dissemination through the use of carbon finance. 10.13140/RG.2.1.4848.8807. | spa |
dcterms.references | Cadavid-Rodríguez, L., Bola os-Valencia, I. (2015). Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana” de. Energética 46, diciembre, pp.23-28. | spa |
dcterms.references | Cao, Z., Wang, S., Wang, T., Chang, Z., Shen, Z., Chen, Y. (2015). Using contaminated plants involved in phytoremediation for anaerobic digestion, Int. J. Phytorem. 17: pp. 201.207. | spa |
dcterms.references | Carina, C. and Mattson, C. (2007). Water hyacinth as a resource in agriculture and energyproduction: A literature review. Waste Management 27: pp. 117–129. | spa |
dcterms.references | Castro, L., Escalante, J. Jaimes-Est vez, L., D az, J., Vecino, K., Rojas, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology Volume 239: pp. 311-317. https://doi.org/10.1016/j.biortech.2017.05.035. | spa |
dcterms.references | Chalot, M., Blaudez, D., Rogaume, Y., Provent, A., Pascual, C. (2012). Fate of trace elements during the combustion of phytoremediation wood, Environ. Sci. Technol. 46: pp. 13361–13369. | spa |
dcterms.references | Chiang, S., Gu, Q. (2015). Brownfield sites remediation technology overview, trends, and opportunities in China, Rem. J. 25: pp. 85–99. | spa |
dcterms.references | Cui, H., Turn, S., Keffer, V., Evans, D., Tran, T., Foley, M. (2013). Study on the fate of metal elements from biomass in a bench-scale fluidized bed gasifier, Fuel 108: pp. 1–12. | spa |
dcterms.references | Damartzis, T. and Zabaniotou, A. (2011). Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review, Renewable and Sustainable Energy Reviews, 15, issue 1, pp. 366-378. | spa |
dcterms.references | Devlin, D., Esteves, S., Dinsdale, R., Guwy, A. (2011). El efecto de la pre-ácido el tratamiento de la digestión anaerobia y deshidratación de lodos activados de residuos. Bioresour. Technol. 102: pp. 4076 - 4082. | spa |
dcterms.references | Díaz, M., Espitia, V. Molina, P. (2002) Digestión Anaerobia. p.37-62. | spa |
dcterms.references | Dilks, R., Monette, F., Glaus, M. (2016). The major parameters on biomass pyrolysis for hyperaccumulative plants–A review, Chemosphere 146: 385-395. | spa |
dcterms.references | El Tiempo. (2017). En C cuta construyen planta para generar energ as con las basuras. Obtenido de http://www.eltiempo.com/colombia/otras-ciudades/construyen-planta-detratamiento-para-generar-energias-con-las-basuras-118322. (10 de 08 de 2017) | spa |
dcterms.references | Escalante, H., Castro, L. Gauthier-Marade, P., Rodr guez, R. (2016). Spatial Decision Support System to Evaluate Crop Residue Energy Potential by Anaerobic Digestion Bioresource Technology Volume 219, pp. 80-90. https://doi.org/10.1016/j.biortech.2016.06.136Get rights and content. | spa |
dcterms.references | Escalante, H., Castro, L., Amaya, M., Jaimes, L., Jaimes-Est vez, J. (2017). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste management, (New York, N.Y.). 71. 10.1016/j.wasman.2017.09.026. | spa |
dcterms.references | Fekadu, E. (2014). Biogas production from water hyacinth (Eichhornia crassipes) co-digestion with cow dung. M.Sc. Thesis. Haramaya University. | spa |
dcterms.references | Ferber, U., Grimski, D., Millar, K., Nathanail, P. (2006). Sustainable Brownfield Regeneration: CABERNET Network Report, University of Nottingham: L & Quality Management Group. | spa |
dcterms.references | Fern ndez, A., Sanchez, A. and Font, X. (2005). Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem. Eng.26: pp. 22-29. | spa |
dcterms.references | Forster-Carneiro, T., M. Perez, L., Romero. and Sales, D. (2007). Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculums sources. Bioresour. Technol. 98:3195-3203. | spa |
dcterms.references | Frandsen, F., Van, S., Lith, R., Korbee, P., Yrjas, R., Backman, I., Obernberger, T., Brunner, M. (2007). Quantification of the release of inorganic elements from biofuels, Fuel Process. Technol. 88: pp. 1118–1128. | spa |
dcterms.references | Fulford, D. (1988). Running a biogas programme, a handbook. Intermediate technology Publications, London. 123pp. | spa |
dcterms.references | Fulton, L., Lynd, L., K rner, A., Greene, N., Tonachel, L. (2015). The need for biofuels as part of a low carbon energy future, Biofuels Bioprod. Biorefin. 9: pp. 476-483. | spa |
dcterms.references | Gerardi, M. (2003). La microbiología de digestores anaeróbicos. A John Wiley and Sons. pp. 99- 103. | spa |
dcterms.references | Ghosh, M. Singh, S. A review on phytoremediation of heavy metals and utilization Ghosh, M., S. Singh. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products, Asian J. Energy Environ. 6: 18. | spa |
dcterms.references | Gomez CDC. Biogas as an energy option: an overview. The Biogas Handbook: Science, Production and Applications; Wellinger A, Murphy J, Baxter D, Eds: p. 1; 2013. | spa |
dcterms.references | Gonsalvesh, L., Yperman, J., Carleer, R., Mench, M., Herzig, R., Vangronsveld, J. (2015). Valorisation of heavy metals enriched tobacco biomass through slow pyrolysis and Latinwo GK, Agarry SE. Modelling the kinetics of biogas production from mesophilic anaerobic co-digestion of cow dung with plantain peels. Int J Renew Energy Dev; 4(1):55. | spa |
dcterms.references | Gopalaiah, N., & Nageswara, T., Venkatesh, S, Sameer, S. (2021). Effects of Process Variables on Biomethane Productivity in Anaerobic Digestion of Market waste co-fermented with Food Waste. International Journal of Engineering Trends and Technology. 69. 109-118. 10.14445/22315381/IJETT-V69I5P216. | spa |
dcterms.references | Gray, K. and Biddlestone, A. A review of composting-part 1. Process Biochem. (1971), pp. 32-36. | spa |
dcterms.references | Guerrero, C. (2014). Biogas. Alternativa Ambiental En El Manejo De Residuos Para Su Uso Como Energético Sustentable. España: Academia Espa ola, ISBN. 145978-3-659-07190-4. | spa |
dcterms.references | Guo, F., Zhong, Z. (2018). Pollution emission and heavy metal speciation from co-combustion of sedum plumbizincicola and sludge in fluidized bed, J. Cleaner Prod. 179: pp. 317-324. | spa |
dcterms.references | Guo, F., Zhong, Z., Xue, H., Zhong, D. (2017). Migration and distribution of heavy metals during co-combustion of sedum plumbizincicola and coal, Waste Biomass Valorization, pp. 1-8. | spa |
dcterms.references | Guo, M., Song, W., Buhain, J. (2015). Bioenergy and biofuels: history, status, and perspective, Renew. Sustain. Energy Rev. 42: pp. 712-725. | spa |
dcterms.references | Guo, Z., Liu, Y., Wang, F., Xiao, X. (2014). Liquefaction of metal-contaminated giant reed biomass in acidified ethylene glycol system: batch experiments, J. Central South Univ. 21: pp. 1756-1762. | spa |
dcterms.references | Han, Z., Guo, Z., Zhang, Y., Xiao, X., Xu, Z., Sun, Y. (2014). Pyrolysis characteristics of biomass impregnated with cadmium, copper and lead: influence and distribution, Int. J. Phytorem. 34: pp.34-38. | spa |
dcterms.references | Hern ndez, E., Samayoas, V., lvarez, E., Talavera, C. (2012). Estudio sobre potencial de desarrollo de iniciativas de biogás a nivel productivo en honduras. pp. 21-188. | spa |
dcterms.references | Hetland, M., Gallagher, J., Daly, D., Hassett, D., Heebink, L. (2001). Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson, A., Foote, E.A., Banks, M.K., Magar, V.S. (Eds.), Phytoremediation, Wetlands, and Sediments, – The Sixth International in situ and on-site Bioremediation Symposium, San Diego, California, 4–7 June. Battelle Press, Columbus, Richland: pp. 129–136. | spa |
dcterms.references | Hills, D. and Roberts, D. (1981). Anaerobic digestion of dairy manure and field crop residues. Agric. Wastes 3: pp. 179–189. | spa |
dcterms.references | Huang, H., Yuan, X., Zhu, H., Li, H., Liu, Y., Wang, X., Zeng, G. (2013). Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge, Energy 56: pp. 52-60. | spa |
dcterms.references | Huang, X., Yun, S., Zhu, J., Du, T., Zhang, C., Li, X. (2016). Mesophilic anaerobic codigestion of aloe peel waste with dairy manure in the batch digester: focusing on mixing ratios and digestate stability. Bioresour. Technol. 218 : pp. 62–68. | spa |
dcterms.references | Itodo, I., Lucas, E. and Kucha, E. (1992). The Effect of Media Materials and its Quality on Biogas Yield. Niger. J. Renew energ. 3(1): pp. 45-49. | spa |
dcterms.references | Jagustyn, B., Kmieć, M., Smędowski, Ł., Sajdak, M. (2017). The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards, J. Energy Inst. 99: pp. 704–714. | spa |
dcterms.references | Jing, G. (2013). Effect of Ionic Liquid Pretreatment on the Composition, Structure and Biogas Production of Water Hyacinth (Eichhornia crassipes), Bioresource Technology, vol. 132: pp. 361-364. | spa |
dcterms.references | Jones, K. (1991). Contaminant trends in soils and crops, Environ. Pollut. 69, pp. 311–325. | spa |
dcterms.references | Joung, D., Sung, E., Ki-Cheol, S. Shihwu, P. SangWon, K. Hyunook, M. (2008). Predicting Methane Production Potential of Anaerobic Co-digestion of Swine Manure and Food Waste. Environ. Eng. Res, 13(2): pp. 93-97. | spa |
dcterms.references | Knottier, M., (2003). Integration of biogas technology, organic farming and energy crops. The future of biogas in Europe II, European biogas workshop. University of Southern Denmark. | spa |
dcterms.references | Kovacs, H., Szemmelveisz, K. (2014). Disposal options for polluted plants grown on heavy, 23: pp. 12-16. | spa |
dcterms.references | Kovacs, H., Szemmelveisz, K. (2017). Disposal options for polluted plants grown on heavy metal contaminated brownfield lands–A review, Chemosphere 166: pp. 8-20. | spa |
dcterms.references | Kovacs, H., Szemmelveisz, K., Palotas, A. (2013). Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area, Environ. Sci. Pollut. Res. 20: pp. 7917–7925. | spa |
dcterms.references | Kovacs, H., Szemmelveisz, K., Ko s, T. (2016). Theoretical and experimental metals flow calculations during biomass combustion, Fuel 185: pp. 524-531. | spa |
dcterms.references | Kythreotou, N., Florides, G., Tassou, S. (2014). A review of simple to scientific models for anaerobic digestion. Renew Energy 71: pp 701-714. | spa |
dcterms.references | Laval-Gilly, P., Henry, S., Mazziotti, M., Bonnefoy, A., Comel, A., Falla, J. (2017). Miscanthus x Giganteus composition in metals and potassium after culture on polluted soil and its use as biofuel, Bioenergy Res. 10: 846-852. | spa |
dcterms.references | Leijenhorst, E., Wolters, W., Van de Beld, L., Prins, W. (2016). Inorganic element transfer from biomass to fast pyrolysis oil: review and experiments, Fuel Process. Technol. 149: pp. 96-111. | spa |
dcterms.references | Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., Liu, X. (2013). Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol; 149: pp. 406–12. | spa |
dcterms.references | Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Gan, H., 2011. Efectos de la relación de mezcla en codigestión anaeróbica con desperdicios de frutas y verduras y desperdicios de alimentos de China. J. Environ. Sci. 23, 1403–1408. | spa |
dcterms.references | Liu, W., Tian, K., Jiang, H., Zhang, X., Ding, H., Yu, H. (2012). Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example, Environ. Sci. Technol. 46: pp. 7849-7856. | spa |
dcterms.references | Luning, L., Van, E., Brinkmann. (2003). A.Comparison of dry and wet digestion for solid waste, Water Sci. Technol. 48: pp. 15 - 20. | spa |
dcterms.references | Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H. and Longworth, J. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect. | spa |
dcterms.references | Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review, Ecotoxicol. Environ. Saf. 126: pp. 111–121. | spa |
dcterms.references | Mantilla, J., Duque, C., Galeano, C. (2007). Diseño y estudio económico preliminar de una planta productora de biogas utilizando residuos orgánicos de ganado vacuno. Ing. Investig, vol.27 no.3. | spa |
dcterms.references | Marin-Batista, J., Castro, L., Escalante, H. (2015). Efecto de la carga orgánica de la gallinaza de jaula en el potencial de biometanización Effect of chicken manure organic load on biomethane potential. Rev. Colomb. Biotecnol. Vol. XVII No. 1: pp. 18-23. DOI: 10.15446/rev.colomb.biote.v17n1.39971 | spa |
dcterms.references | Marrugo. J., Pinedo-Hern ndez. J., Paternina–Uribe. R., Quiroz-Aguas, L., Pacheco-Fl rez, S. (2018). Distribuci n espacial y evaluaci n de la contaminaci n ambiental por mercurio en la regi n de la Mojana, Colombia. Rev. MVZ 23:7062-7075, ISSN: 0122-0268. | spa |
dcterms.references | Marrugo-Negrete J, Pinedo-Hern ndez J, D ez S. (2015). Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere. 134: pp. 44–51. | spa |
dcterms.references | Marrugo-Negrete, J., Ben tez, L., Olivero-Verbel, J., Lans, E. and Gutierrez, F. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia, International Journal of Environmental Health Research, 20: 6, pp. 451-459: DOI: 10.1080/09603123.2010.499451. | spa |
dcterms.references | Martelo, J., Lara, J. (2012). Macrófitas flotantes en el tratamiento de aguas residuales; 8(15):243 221. | spa |
dcterms.references | Mart n-Lara, M., Bl zquez, G., Ronda, M., Calero, M. (2016). Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: effect of heavy metals incorporated by biosorption, Renewable Energy 96:613-624. | spa |
dcterms.references | Matheri, A., Belaid, M., Seodigeng, T., Ngila, J. (2017). The Role of Trace Elements on Anaerobic Co-digestion in Biogas Production. in Proceedings of the World Congress on Engineering, London, U.K; 2016.metal contaminated brownfield lands–A review, Chemosphere 166, pp. 8-20. | spa |
dcterms.references | Miller, J., Miller, J. (2010). Exactitud. In Estadástica y Quimiometría para Química Analítica. London: Prentice Hall. | spa |
dcterms.references | Ministerio de Energías. (2011). Programa de las Naciones Unidas para la Alimentación y la Agricultura, Global Environment Facility. MANUAL DE BIOGÁS. Santiago de Chile: p.19. ISBN, 119978-95-306892. | spa |
dcterms.references | Miranda, C. (2016). Generación de Biogás con plantas de digestión anaeróbicas. Recuperado el 04 de 06 de 2018, de https://twenergy.com/co/a/generacion-biogas-plantas-digestionanaerobicas. | spa |
dcterms.references | Mishra, S., Maiti, A. (2017). The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res Int. 2017 Mar;24(9): pp. 7921-7937. doi: 10.1007/s11356-016-8357-7. Epub Jan 16. PMID: 28092006. | spa |
dcterms.references | Mladenovska, Z., Hartmann, T., Kvist, M., Sales-Cruz, R., Gani, B. and Ahring, B. (2006). Thermal pre-treatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. Water Sci. Technol. 53 (8): pp. 59-67. | spa |
dcterms.references | Montenegro, A. (2010). Diseño, Construcción y Puesta en Marcha de un Biodigestor Con Biomasa Obtenida Del Jacinto De Agua (Eichornia crassipes). | spa |
dcterms.references | Montenegro, K., Rojas, A., Cabeza, I., Hernandez, M. Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. Revista ION DOI, (2016), 3.Vol. 29 N m. 2: https://doi.org/10.18273/revion.v29n2-2016002. | spa |
dcterms.references | Mullen, C., Boateng, A. (2013). Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass, Ind. Eng. Chem. Res. 52: pp. 17156 -17161. | spa |
dcterms.references | Mu oz, D., Pantoja, M., Cuatin-Guarin, M. (2013). Aprovechamiento de residuos agroindustriales como biocombustible y biorefiner a utilization of agroindustriales residues as biofuels and biorefinery utilisation des residus agro-industriels comme les biocarburants et bioraffinerie, pp. 10-19. | spa |
dcterms.references | Niee, L., Liew, B. (2011). Solid- State Anaerobic Digestion of Lignocellulosic Biomass for Biogas Production.An MSc Thesis Presented to the School of Graduate Studies ofthe Ohio State University. 44pp. | spa |
dcterms.references | Oudenhoven, S., Van der Ham, A., Van den Berg, H., Westerhof, R., Kersten, S. (2016). Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: process design and economic evaluation, Biomass Bioenergy 95: pp. 388–404. | spa |
dcterms.references | Panagos, P., Van, M., Liedekerke, Y., Yigini, L. (2013). Montanarella, Contaminated sites in Europe: review of the current situation based on data collected through a European network, J. Environ. Public Health. | spa |
dcterms.references | Pandey, B., Suthar, S., Singh, V. (2016). Accumulation and health risk of heavy metals in sugarcane irrigated with industrial effluent in some rural areas of Uttarakhand, India, Process Saf. Environ. Prot. 102: pp. 655–666. | spa |
dcterms.references | Pavi, S., Kramer, L., Gomes, L., Schiavo, L. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology 228: pp. 362–367. | spa |
dcterms.references | Promoenerg a. (2015). Peque as plantas de biogás – sistema biodigestor biobolsa Colombia. Recuperado el 04 de 06 de 2018, de http://www.promoenergia.co/biodigestores/index.html. | spa |
dcterms.references | Pudasainee, D., Paur, H., Fleck, S., Seifert, H. (2014). Trace metals emission in syngas from biomass gasification, Fuel Process. Technol. 120: pp. 54–60. | spa |
dcterms.references | Quintero, M., Castro, L., Ortiza, C., Guzm n, C., Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresource Technology Volume 108, pp. 8-13 https://doi.org/10.1016/j.biortech.2011.12.052. | spa |
dcterms.references | Reales, J. (2013). Acid Hydrolisys of Water Hyacinth to Obtain Fermentable Sugars. CT&F - Ciencia, Tecnolog a y Futuro, vol. 5, n. 2, pp. 101-102. | spa |
dcterms.references | Ren, W., Xue, B., Geng, Y., Sun, L., Ma, Z., Zhang, Y., Mitchell, B., Zhang, L. (2014). Inventorying heavy metal pollution in redeveloped brownfield and its policy contribution: case study from Tiexi District, Shenyang, China, Land Use Policy 38: pp. 138–146. | spa |
dcterms.references | Rilling, N. (2005). Anaerobic Fermentation of Wet and Semidry Garbage Waste Fractions. pp. 355-373: H. J rdening and J. Winter (eds.). Environmental Biotechnology. Concepts and Applications. WILEY-VCH Verlag GmbH and Co. | spa |
dcterms.references | Rodríguez, D., García, A. (2013). Diseño y construcción de un biodigestor para la producción de biogás a partir de heces caninas. Universidad distrital francisco jos de caldas facultad tecnol gica tecnolog a mec nica bogot , d.c. | spa |
dcterms.references | Romero, S., Marrugo, J., Arias, J., Hadad, H., Maine, M. (2011). Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands. Water Air Soil Pollut, 216:361–373. DOI 10.1007/s11270-010-0538-2. | spa |
dcterms.references | Rotimi, M. et al. (2013). Combustion Characteristics of Traditional Energy Sources and Water Hyacinth Briquettes. Enviromental Science (ijsres), vol. 1. | spa |
dcterms.references | Sadaka, S., Dan, C. (2003). Effect of initial total solids on composting of raw manure with biogas recovery. Compost Sci. Utilizat. 11: pp. 361-369. | spa |
dcterms.references | Sahu, S., Chakraborty, N. y Sarkar, P. (2014). Cocombustión carbón-biomasa: una visión general, Renewable and Sustainable Energy Reviews, 39, n mero C, pp. 575-586. | spa |
dcterms.references | Sahu, S., Sarkar, P., Chakraborty, N., Adak, A. (2010). Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars, Fuel Process. Technol. 91: 369-378. | spa |
dcterms.references | Sanint, S. (2010). Modelado de especies invasoras, caso de estudio: pérdida del espejo de agua en la laguna de Bogotá D.C, Bogotá D.C: Pontificia Universidad Javeriana. | spa |
dcterms.references | Sarabia, L., Ortiz, M. (2009). Response surface methodology, in: S.D. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics, Elsevier, Oxford, pp. 345–390. | spa |
dcterms.references | Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J.M., Kryński, K. (2004). Phytoextraction crop disposal an unsolved problem, Environ. Pollut. 128: pp. 373–379. | spa |
dcterms.references | Scano, E., Asquer, C., Pistis, A., Ortu, L., Demontis, V., Cocco, D. (2014). Bioás de digestión anaeróbica de desechos de frutas y verduras: resultados experimentales a escala piloto y evaluación preliminar del rendimiento de una planta de energía a gran escala. Convers de energ a, Administrar 77, 22-30. | spa |
dcterms.references | Shahabaldin, R., Mohanadoss, P., Mohd, F., Ahmad, R., Fadzlin, M., Shreeshivadasan, C. (2015). The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview. Renewable and Sustainable Energy Reviews 41: pp. 943954. http://dx.doi.org/10.1016/j.rser.2014.09.006. | spa |
dcterms.references | Shukla, O., Rai, U., Dubey, S. (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L, Bioresour. Technol. 100: 2198-2203. | spa |
dcterms.references | Shukla, O., Rai, U., Dubey, S. (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L, Bioresour. Technol. 100: pp. 2198-2203. | spa |
dcterms.references | Singh, J., Kalamdhad, A. (2013). Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth, Bioresour. Technol. 138, 148-155. | spa |
dcterms.references | Singh, J., Kalamdhad, A. (2013). Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth, Bioresour. Technol. 138: pp. 148–155. | spa |
dcterms.references | Stals, M., Thijssen, E., Vangronsveld, J., Carleer, R., Schreurs, S., Yperman, J. (2010). Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals, J. Anal. Appl. Pyrol. 87: pp. 1-7. | spa |
dcterms.references | Suer, P., Andersson-Sk ld, Y. (2011). Biofuel or excavation, Life cycle assessment (LCA) of soil remediation options, Biomass Bioenergy 35: 969-981. | spa |
dcterms.references | Suer, P., Andersson-Sk ld, Y. (2011). Biofuel or excavation?-Life cycle assessment (LCA) of soil remediation options, Biomass Bioenergy 35: pp. 969–981. | spa |
dcterms.references | Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol. 83: pp. 1–11. | spa |
dcterms.references | Sunarso, S., Johari, Z., Widiasa, I. and Budiyono, N. (2012). The Effect of Feed to Inoculums Ratio on Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums.Internat. J. of Waste Resources 2(1): pp. 1-4. | spa |
dcterms.references | Tchobanoglous, G., Theisen, H. and Vigil, S. (1993). Integrated Solid Waste Management engineering: Principle and Management Issue, McGraw-Hill U.S. Singapore. | spa |
dcterms.references | Teame, G. (2014). La producci n de biog s a partir de Cactus Peel co-digesti n con esti rcol de vaca en experimento discontinuo. Un MSC tesis presentada a la Escuela de Estudios de Posgrado de la Universidad Haramaya, pp. 62. | spa |
dcterms.references | Tripathi, V., Edrisi, S., Abhilash, P. (2016). Towards the coupling of phytoremediation with bioenergy production, Renew. Sustain. Energy Rev. 57: pp. 1386-1389. | spa |
dcterms.references | V.C. Pandey, O. Bajpai, N. Singh, Energy crops in sustainable phytoremediation, Renew. Sustain. Energy Rev. 54 (2016) 58–73. | spa |
dcterms.references | Vanegas, M. (2015). Aislamiento de levaduras capaces de producir alcohol a partir de macrófitas acuáticas extraídas mecánicamente de la laguna de Fúquene, Bogotá, Pontificia Universidad Javeriana. | spa |
dcterms.references | Wafa, D., Abdul, R., Jun, H., Ming, Z. (2019). Biofuel Production Using Thermochemical Conversion of Heavy Metal- Contaminated Biomass (HMCB) Harvested from Phytoextraction Process. Chemical Engineering Journal 358: pp. 759–785. | spa |
dcterms.references | Werle, S., Bisorca, D., Katelbach-Woźniak, A., Pogrzeba, M., Krzyżak, J. (2016). Ratman metals from contaminated area–TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops, J. Energy Inst. | spa |
dcterms.references | Wiinikka, H., Carlsson, P., Johansson, A., Gullberg, M., Ylip , C., Lundgren, M., Sandstr m, L. (2015). Fast pyrolysis of stem wood in a pilot-scale cyclone reactor, Energy Fuels 29: pp. 3158-3167. | spa |
dcterms.references | Xiao, Z., Yuan, X., Jiang, L., Chen, X., Li, H., Zeng, G., Leng, L., Wang, H., Huang, H. (2015). Energy recovery and secondary pollutant emission from the combustion of copelletized fuel from municipal sewage sludge and wood sawdust, Energy 91: pp. 441–450. | spa |
dcterms.references | Xie, J., Weng, Q., Ye, G., Luo, S., Zhu, R., Zhang, A., Chen, X., Lin, C. (2014). Bioethanol production from sugarcane grown in heavy metal-contaminated soils, BioResources 9: pp. 2509–2520. | spa |
dcterms.references | Xuan, J., Junshe, S., Li, L., Liping, K. (2009). Promotive effect of acid pretreatment of corn stalk using metal cations, Trans. Chin. Soc. Agric. Eng: pp. 23-28. | spa |
dcterms.references | Yadvika, T., Sreekrishnan, S., Kohli, R. (2004). Enhancement of biogas production from solid substrates using different technique. Bioresour. Technol. 95: pp. 1–10. | spa |
dcterms.references | Zhang, H., Tian, Y., Wang, L., Zhang, L., Dai, L. (2013). Ecophysiological characteristics and biogas production of cadmium-contaminated crops, Bioresour. Technol. 146: pp. 628–636. | spa |
dcterms.references | Zhang, L. Loh, K., Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports, 5 pp. 280-296. | spa |
dcterms.references | Zhang, S., Dong, Q., Chen, T., Xiong, Y. (2016). Combination of light bio-oil washing and torrefaction pretreatment of rice husk: its effects on physicochemical characteristics and fast pyrolysis behavior, Energy Fuels 30: pp. 3030–3037. | spa |
dcterms.references | Zhang, S., Xiong, Y. (2016). Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar, RSC Adv. 6: pp. 5270–5277. | spa |
dcterms.references | Zhang, T., Mao, C., Zhai, N., Wang, X., Yang, G. (2015). Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag, 35: pp. 119 - 126. | spa |
dcterms.references | Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W. and Xiao, M. (2011). Effect of biological pre-treatments in enhancing corn straw biogas production. Bioresour. Technol. 102: pp. 11177-11182. | spa |
dcterms.references | Zhou, Q. (2014). Impacts of Eichhornia Crassipes (Mart.) Solms Stress on The Physiological Characteristics, Microcystin Production and Release of Microcystis Aeruginosa. Biochemical Systematics and Ecology, vol. 55. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- bossiosanchezamaury.pdf
- Tamaño:
- 1.22 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Grado
No hay miniatura disponible
- Nombre:
- Autorización publicación de documentos Amaury.pdf
- Tamaño:
- 631.61 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización para publicar documentos Firmada
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: