Publicación:
Eichhornia crassipes contaminada con mercurio como un generador de biogas

dc.contributor.advisorMarrugo Negrete, José Luisspa
dc.contributor.authorBossio Sanchez, Amaury
dc.date.accessioned2022-03-09T15:50:18Z
dc.date.available2022-03-09T15:50:18Z
dc.date.issued2022-03-04
dc.description.abstractLa Eichhornia crassipes (EC) es considerada como una maleza nociva en muchas partes del mundo, ya que su vertiginoso crecimiento agota el oxígeno y los nutrientes rápidamente en los cuerpos de agua, afectando negativamente a la flora y la fauna. El objetivo de este estudio fue determinar el rendimiento en la producción de biogás usando la EC como sustrato único proveniente de una zona contaminada por metales pesados (Mojana-Colombia) y co-digestión con estiércol de vaca como inóculo, teniendo en cuenta que la producción de biogás a través de digestión anaeróbica (AC) de materiales orgánicos de desecho ofrece una alternativa ecológica de energía renovable. En este estudio, se evalúa  la producción de biogás a partir de la digestión de EC con estiércol de vaca (co-digestor, AC) en diferentes composiciones porcentuales según el diseño experimental de optimización-superficie respuesta, los %EC y %AC estuvieron en los rangos de composición de 8,8 a 26,4% y 2,6 a 7,7 respectivamente y la respuesta estimada fue el % Metano generado. Todas las digestiones se realizaron en condiciones mesófilas (38 °C) usando un digestor batch en el laboratorio de toxicología ambiental en la Universidad de Córdoba-Colombia. En todos los tratamientos se determinó  los sólidos totales (ST), sólidos volátiles (SV), Carbono orgánico, porcentaje de humedad, pH y Hg-Total antes y después de cada digestión. La producción de biogás se midió  por el método de desplazamiento de agua para los siguientes 32 días. Los resultados muestran un valor  óptimo de eficiencia para la producción de metano de 60,91% en las condiciones de composición %EC 26,4 y %AC 7,7 teniendo una mayor influencia la variable AC (Co-digestor) en la respuesta generada para la digestión. Se destacan el buen comportamiento de los tratamientos T1: 8,8%EC-2,6%AC; T3: 8,8%EC-7,7%AC y T6: 8,8%EC-5,1%AC en cuanto a la favorabilidad de las variables pH, %Humedad, %Carbono, TS y VS en la generación del biogás. Para todos los tratamientos los porcentajes de Hg-T retenidos después de la digestión anaeróbica estuvieron entre 84,74 y 92,59 % para los tratamientos T4 y T5 respectivamente, estos valores indican que el Hg-T se mantiene en la biomasa aun después de la digestión anaeróbica con porcentajes encima de 80%. En cuanto a los subproductos de la digestión anaeróbica los resultados indican que pueden ser utilizados como abonos orgánicos líquidos según la norma NTC 5167.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Ambientalesspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsRESUMEN .......................................................................................................................... 10spa
dc.description.tableofcontentsABSTRACT ......................................................................................................................... 11spa
dc.description.tableofcontentsINTRODUCCIÓN ............................................................................................................... 12spa
dc.description.tableofcontents1. OBJETIVOS ................................................................................................................ 16spa
dc.description.tableofcontents2. MARCO TEÓRICO Y ANTECEDENTES ............................................................... 17spa
dc.description.tableofcontents2.1. Jacinto de agua (Eichhornia crassipes) ........................................................... 17spa
dc.description.tableofcontents2.1.1. EC como especie acumuladora de metales pesados ............................ 18spa
dc.description.tableofcontents2.1.2. Aprovechamiento energético de la EC ..................................................... 18spa
dc.description.tableofcontents2.2. Aprovechamiento de Biomasa .......................................................................... 20spa
dc.description.tableofcontents2.3. Reutilización de biomasa contaminada con metales pesados (HMBC)..... 20spa
dc.description.tableofcontents2.4. Biogás ................................................................................................................... 22spa
dc.description.tableofcontents2.4.1. Descripción del proceso de biodigestión ................................................. 23spa
dc.description.tableofcontents2.4.2. Factores que influyen en la digestión anaerobia .................................... 26spa
dc.description.tableofcontents2.4.3. Microorganismos presentes en la digesti n anaerobia ......................... 29spa
dc.description.tableofcontents2.4.4. Tipos de biodigestores ................................................................................ 32spa
dc.description.tableofcontents2.5. Generaci n de Bioenergía en Colombia ......................................................... 33spa
dc.description.tableofcontents2.5.1. Proyectos y empresas implicadas en Colombia ..................................... 34spa
dc.description.tableofcontents2.5.2. Antecedentes Investigativos en Colombia ............................................... 35spa
dc.description.tableofcontents3. METODOLOGÍA ........................................................................................................ 40spa
dc.description.tableofcontents3.1. Descripción del área de estudio........................................................................ 40spa
dc.description.tableofcontents3.2. Materia prima ....................................................................................................... 40spa
dc.description.tableofcontents3.3. Diseño del Experimento ..................................................................................... 40spa
dc.description.tableofcontents3.4. Determinación de las propiedades físico-químicas de los sustratos .......... 41spa
dc.description.tableofcontents3.4.1. Sólidos totales .............................................................................................. 41spa
dc.description.tableofcontents3.4.2. Sólidos volátiles y fijos ................................................................................ 42spa
dc.description.tableofcontents3.4.3. Determinación del contenido de humedad .............................................. 42spa
dc.description.tableofcontents3.4.4. Las determinaciones de pH........................................................................ 43spa
dc.description.tableofcontents3.4.5. El carbono orgánico ..................................................................................... 43spa
dc.description.tableofcontents3.5. Análisis de mercurio total en la digestión anaeróbica ................................... 43spa
dc.description.tableofcontents3.6. Digestión anaeróbica de los sustratos ............................................................. 44spa
dc.description.tableofcontents3.7. Configuración del digestor para producción de biogás ................................. 45spa
dc.description.tableofcontents3.8. Subproductos de digestión como fertilizante agrícola ................................... 46spa
dc.description.tableofcontents3.8.1. Análisis de los datos .................................................................................... 46spa
dc.description.tableofcontents4. RESULTADOS Y ANÁLISIS .................................................................................... 47spa
dc.description.tableofcontents4.1. Propiedades físico-químicas de los sustratos utilizados en la co-digestión. 47spa
dc.description.tableofcontents4.1.1. El análisis de los valores de TS y VS de los diferentes tratamientos antes y después de la digestión anaeróbica. ........................................................ 49spa
dc.description.tableofcontents4.2. Optimización de composiciones de EC y co-digestor de estiércol de ganado (AC) para la digestión anaeróbica. ............................................................... 53spa
dc.description.tableofcontents4.3. Subproductos de la digestión anaeróbica de EC y AC (Co-digestor de estiércol de vaca). .......................................................................................................... 58spa
dc.description.tableofcontents5. CONCLUSIONES ...................................................................................................... 62spa
dc.description.tableofcontentsREFERENCIAS .................................................................................................................. 63spa
dc.description.tableofcontentsAnexo I ................................................................................................................................. 83spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4928
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ciencias Ambientalesspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsBiogaseng
dc.subject.keywordsCo-digestioneng
dc.subject.keywordsManureeng
dc.subject.keywordsEichhornia crassipeseng
dc.subject.keywordsBiomass contaminatedeng
dc.subject.keywordsGenerator biogaseng
dc.subject.proposalBiogás,spa
dc.subject.proposalCo-digestiónspa
dc.subject.proposalEstiércol de Vacaspa
dc.subject.proposalEichhornia crassipesspa
dc.subject.proposalSólidos totalesspa
dc.subject.proposalSólidos volátilesspa
dc.titleEichhornia crassipes contaminada con mercurio como un generador de biogasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesA.P.H.A. Standard Methods for the Examination of Water and Wastewater. http:// www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf⟩.Part1000,[accessed 2016].spa
dcterms.referencesAbhilash, P., Dubey, R., Tripathi, V., Srivastava, P., Verma, J., Singh, H. (2013). Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives, Environ. Sci. Pollut. Res. 20 : pp. 5879-5885.spa
dcterms.referencesAbuabaker, B., and Ismail, N. (2012). Anaerobic Digestion of Cow Dung for Biogas Production. ARPN J. Eng. Appl. Sci. 7 (2): pp. 169-172. Acevedo,spa
dcterms.referencesAcevedo, P., Hernandez, M., Cabeza, I. (2016). Anaerobic Co-digestion of Organic Residues from Different Productive Sectors in Colombia: Biomethanation Potential Assessment. Chemical Engineering Transactions. 49. 10.3303/CET1649065.spa
dcterms.referencesAl-Karaghouli A., Kazmerski LL. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sustain Energy Rev. 24: pp. 343–56.spa
dcterms.referencesAlker, S., Joy, V., Roberts, P., Smith, N. (2000). The definition of brownfield, J. Environ. Plann. Manage. 43: pp. 49–69.spa
dcterms.referencesAngelidaki, I., and Ahring, B.K. (1999). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. pp. 23-32.In: J.Mata- Alvarez, A. Tilche and F. Cecchi (eds.). Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes.spa
dcterms.referencesAnnaschnurer, J. (2010). Microbiological Handbook for biogas plants. Swedish waste management. Swedish.spa
dcterms.referencesAnonymous, J. (1981). Biogas technology and utilization. A status Report. Department of Science and Technology. Government of India, New Delhi.20-46.098UUJKL.spa
dcterms.referencesAnushree, N. (2007). Environmental challenge a vis opportunity: The case of water hyacinth. Environment International 33: pp. 122–138.spa
dcterms.referencesAriza, A. (2018). Biometano: Alternativa sostenible del gas natural. Recuperado el 04 de 06 de 2018, de http://www.cdtdegas.com/images/Descargas/Nuestra_revista/MetFlu11/6.spa
dcterms.referencesArogo, J., Wen, Z., Ignosh, J., Bendfeldt E. and Collins, E.R. (2009). Biomethane Technology College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Virginia. pp. 442-881.spa
dcterms.referencesAtkins, M., Fuchs, M., Hoffman A. and Wilhelm, N. (2008). Plastic Tubular Biogas Digesters: A Pilot Project in Uru, Kilimanjaro, Tanzania.spa
dcterms.referencesAviNews. Colombia. (2018). El mayor productor de huevos invierte en biog s. Recuperado el 04 de 06 de 2018, de https://avicultura.info/colombia-mayor-productor-huevos-invierte-biogas/. (17 de 08 de 2016).spa
dcterms.referencesAysu, T. and Kü ük, M. (2014). Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products, Energy, 64, issue C, pp. 1002-1025.spa
dcterms.referencesAzizi, K., Moraveji, M., Najafabadi, H. (2017). Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA, Bioresour. Technol. 243: pp. 481–491.spa
dcterms.referencesBacca, A. (2007). Estudio de los efectos hidráulicos causados por la planta acuática Eichhornia crassipes localizada en la superficie del agua en canales abiertos, Bogotá: Universidad de La Salle.spa
dcterms.referencesBadger, C., Bogue, M. and Stewart, D. (1979). Biogas production from crops and organic wastes. J. Sci. 22: pp. 11-20.spa
dcterms.referencesBalsamo, R., Kelly, W., Satrio, J., Ruiz-Felix, M., Fetterman, M., Wynn, R., Hagel, K. (2015). Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils, Int. J. Phytorem. 17: pp. 448–455.spa
dcterms.referencesBert, V., Allemon, J., Sajet, P., Dieu, S., Papin, A., Collet, S., Gaucher, R., Chalot, M., Michiels, B., Raventos, C. (2017). Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options, Biomass Bioenergy 96: pp. 1–11.spa
dcterms.referencesBorowski, S. (2015). Codigestión de la materia orgánica separada hidromecánicamente fracción de residuos sólidos municipales con lodos de depuradora. J. Environ. Administrar, 147: pp. 87-94.spa
dcterms.referencesBuysman, E. (2015). Anaerobic Digestion for Developing Countries with Cold Climates - Utilizing solar heat to address technical challenges and facilitating dissemination through the use of carbon finance. 10.13140/RG.2.1.4848.8807.spa
dcterms.referencesCadavid-Rodríguez, L., Bola os-Valencia, I. (2015). Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana” de. Energética 46, diciembre, pp.23-28.spa
dcterms.referencesCao, Z., Wang, S., Wang, T., Chang, Z., Shen, Z., Chen, Y. (2015). Using contaminated plants involved in phytoremediation for anaerobic digestion, Int. J. Phytorem. 17: pp. 201.207.spa
dcterms.referencesCarina, C. and Mattson, C. (2007). Water hyacinth as a resource in agriculture and energyproduction: A literature review. Waste Management 27: pp. 117–129.spa
dcterms.referencesCastro, L., Escalante, J. Jaimes-Est vez, L., D az, J., Vecino, K., Rojas, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology Volume 239: pp. 311-317. https://doi.org/10.1016/j.biortech.2017.05.035.spa
dcterms.referencesChalot, M., Blaudez, D., Rogaume, Y., Provent, A., Pascual, C. (2012). Fate of trace elements during the combustion of phytoremediation wood, Environ. Sci. Technol. 46: pp. 13361–13369.spa
dcterms.referencesChiang, S., Gu, Q. (2015). Brownfield sites remediation technology overview, trends, and opportunities in China, Rem. J. 25: pp. 85–99.spa
dcterms.referencesCui, H., Turn, S., Keffer, V., Evans, D., Tran, T., Foley, M. (2013). Study on the fate of metal elements from biomass in a bench-scale fluidized bed gasifier, Fuel 108: pp. 1–12.spa
dcterms.referencesDamartzis, T. and Zabaniotou, A. (2011). Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review, Renewable and Sustainable Energy Reviews, 15, issue 1, pp. 366-378.spa
dcterms.referencesDevlin, D., Esteves, S., Dinsdale, R., Guwy, A. (2011). El efecto de la pre-ácido el tratamiento de la digestión anaerobia y deshidratación de lodos activados de residuos. Bioresour. Technol. 102: pp. 4076 - 4082.spa
dcterms.referencesDíaz, M., Espitia, V. Molina, P. (2002) Digestión Anaerobia. p.37-62.spa
dcterms.referencesDilks, R., Monette, F., Glaus, M. (2016). The major parameters on biomass pyrolysis for hyperaccumulative plants–A review, Chemosphere 146: 385-395.spa
dcterms.referencesEl Tiempo. (2017). En C cuta construyen planta para generar energ as con las basuras. Obtenido de http://www.eltiempo.com/colombia/otras-ciudades/construyen-planta-detratamiento-para-generar-energias-con-las-basuras-118322. (10 de 08 de 2017)spa
dcterms.referencesEscalante, H., Castro, L. Gauthier-Marade, P., Rodr guez, R. (2016). Spatial Decision Support System to Evaluate Crop Residue Energy Potential by Anaerobic Digestion Bioresource Technology Volume 219, pp. 80-90. https://doi.org/10.1016/j.biortech.2016.06.136Get rights and content.spa
dcterms.referencesEscalante, H., Castro, L., Amaya, M., Jaimes, L., Jaimes-Est vez, J. (2017). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste management, (New York, N.Y.). 71. 10.1016/j.wasman.2017.09.026.spa
dcterms.referencesFekadu, E. (2014). Biogas production from water hyacinth (Eichhornia crassipes) co-digestion with cow dung. M.Sc. Thesis. Haramaya University.spa
dcterms.referencesFerber, U., Grimski, D., Millar, K., Nathanail, P. (2006). Sustainable Brownfield Regeneration: CABERNET Network Report, University of Nottingham: L & Quality Management Group.spa
dcterms.referencesFern ndez, A., Sanchez, A. and Font, X. (2005). Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem. Eng.26: pp. 22-29.spa
dcterms.referencesForster-Carneiro, T., M. Perez, L., Romero. and Sales, D. (2007). Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculums sources. Bioresour. Technol. 98:3195-3203.spa
dcterms.referencesFrandsen, F., Van, S., Lith, R., Korbee, P., Yrjas, R., Backman, I., Obernberger, T., Brunner, M. (2007). Quantification of the release of inorganic elements from biofuels, Fuel Process. Technol. 88: pp. 1118–1128.spa
dcterms.referencesFulford, D. (1988). Running a biogas programme, a handbook. Intermediate technology Publications, London. 123pp.spa
dcterms.referencesFulton, L., Lynd, L., K rner, A., Greene, N., Tonachel, L. (2015). The need for biofuels as part of a low carbon energy future, Biofuels Bioprod. Biorefin. 9: pp. 476-483.spa
dcterms.referencesGerardi, M. (2003). La microbiología de digestores anaeróbicos. A John Wiley and Sons. pp. 99- 103.spa
dcterms.referencesGhosh, M. Singh, S. A review on phytoremediation of heavy metals and utilization Ghosh, M., S. Singh. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products, Asian J. Energy Environ. 6: 18.spa
dcterms.referencesGomez CDC. Biogas as an energy option: an overview. The Biogas Handbook: Science, Production and Applications; Wellinger A, Murphy J, Baxter D, Eds: p. 1; 2013.spa
dcterms.referencesGonsalvesh, L., Yperman, J., Carleer, R., Mench, M., Herzig, R., Vangronsveld, J. (2015). Valorisation of heavy metals enriched tobacco biomass through slow pyrolysis and Latinwo GK, Agarry SE. Modelling the kinetics of biogas production from mesophilic anaerobic co-digestion of cow dung with plantain peels. Int J Renew Energy Dev; 4(1):55.spa
dcterms.referencesGopalaiah, N., & Nageswara, T., Venkatesh, S, Sameer, S. (2021). Effects of Process Variables on Biomethane Productivity in Anaerobic Digestion of Market waste co-fermented with Food Waste. International Journal of Engineering Trends and Technology. 69. 109-118. 10.14445/22315381/IJETT-V69I5P216.spa
dcterms.referencesGray, K. and Biddlestone, A. A review of composting-part 1. Process Biochem. (1971), pp. 32-36.spa
dcterms.referencesGuerrero, C. (2014). Biogas. Alternativa Ambiental En El Manejo De Residuos Para Su Uso Como Energético Sustentable. España: Academia Espa ola, ISBN. 145978-3-659-07190-4.spa
dcterms.referencesGuo, F., Zhong, Z. (2018). Pollution emission and heavy metal speciation from co-combustion of sedum plumbizincicola and sludge in fluidized bed, J. Cleaner Prod. 179: pp. 317-324.spa
dcterms.referencesGuo, F., Zhong, Z., Xue, H., Zhong, D. (2017). Migration and distribution of heavy metals during co-combustion of sedum plumbizincicola and coal, Waste Biomass Valorization, pp. 1-8.spa
dcterms.referencesGuo, M., Song, W., Buhain, J. (2015). Bioenergy and biofuels: history, status, and perspective, Renew. Sustain. Energy Rev. 42: pp. 712-725.spa
dcterms.referencesGuo, Z., Liu, Y., Wang, F., Xiao, X. (2014). Liquefaction of metal-contaminated giant reed biomass in acidified ethylene glycol system: batch experiments, J. Central South Univ. 21: pp. 1756-1762.spa
dcterms.referencesHan, Z., Guo, Z., Zhang, Y., Xiao, X., Xu, Z., Sun, Y. (2014). Pyrolysis characteristics of biomass impregnated with cadmium, copper and lead: influence and distribution, Int. J. Phytorem. 34: pp.34-38.spa
dcterms.referencesHern ndez, E., Samayoas, V.,  lvarez, E., Talavera, C. (2012). Estudio sobre potencial de desarrollo de iniciativas de biogás a nivel productivo en honduras. pp. 21-188.spa
dcterms.referencesHetland, M., Gallagher, J., Daly, D., Hassett, D., Heebink, L. (2001). Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson, A., Foote, E.A., Banks, M.K., Magar, V.S. (Eds.), Phytoremediation, Wetlands, and Sediments, – The Sixth International in situ and on-site Bioremediation Symposium, San Diego, California, 4–7 June. Battelle Press, Columbus, Richland: pp. 129–136.spa
dcterms.referencesHills, D. and Roberts, D. (1981). Anaerobic digestion of dairy manure and field crop residues. Agric. Wastes 3: pp. 179–189.spa
dcterms.referencesHuang, H., Yuan, X., Zhu, H., Li, H., Liu, Y., Wang, X., Zeng, G. (2013). Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge, Energy 56: pp. 52-60.spa
dcterms.referencesHuang, X., Yun, S., Zhu, J., Du, T., Zhang, C., Li, X. (2016). Mesophilic anaerobic codigestion of aloe peel waste with dairy manure in the batch digester: focusing on mixing ratios and digestate stability. Bioresour. Technol. 218 : pp. 62–68.spa
dcterms.referencesItodo, I., Lucas, E. and Kucha, E. (1992). The Effect of Media Materials and its Quality on Biogas Yield. Niger. J. Renew energ. 3(1): pp. 45-49.spa
dcterms.referencesJagustyn, B., Kmieć, M., Smędowski, Ł., Sajdak, M. (2017). The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards, J. Energy Inst. 99: pp. 704–714.spa
dcterms.referencesJing, G. (2013). Effect of Ionic Liquid Pretreatment on the Composition, Structure and Biogas Production of Water Hyacinth (Eichhornia crassipes),  Bioresource Technology, vol. 132: pp. 361-364.spa
dcterms.referencesJones, K. (1991). Contaminant trends in soils and crops, Environ. Pollut. 69, pp. 311–325.spa
dcterms.referencesJoung, D., Sung, E., Ki-Cheol, S. Shihwu, P. SangWon, K. Hyunook, M. (2008). Predicting Methane Production Potential of Anaerobic Co-digestion of Swine Manure and Food Waste. Environ. Eng. Res, 13(2): pp. 93-97.spa
dcterms.referencesKnottier, M., (2003). Integration of biogas technology, organic farming and energy crops. The future of biogas in Europe II, European biogas workshop. University of Southern Denmark.spa
dcterms.referencesKovacs, H., Szemmelveisz, K. (2014). Disposal options for polluted plants grown on heavy, 23: pp. 12-16.spa
dcterms.referencesKovacs, H., Szemmelveisz, K. (2017). Disposal options for polluted plants grown on heavy metal contaminated brownfield lands–A review, Chemosphere 166: pp. 8-20.spa
dcterms.referencesKovacs, H., Szemmelveisz, K., Palotas, A. (2013). Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area, Environ. Sci. Pollut. Res. 20: pp. 7917–7925.spa
dcterms.referencesKovacs, H., Szemmelveisz, K., Ko s, T. (2016). Theoretical and experimental metals flow calculations during biomass combustion, Fuel 185: pp. 524-531.spa
dcterms.referencesKythreotou, N., Florides, G., Tassou, S. (2014). A review of simple to scientific models for anaerobic digestion. Renew Energy 71: pp 701-714.spa
dcterms.referencesLaval-Gilly, P., Henry, S., Mazziotti, M., Bonnefoy, A., Comel, A., Falla, J. (2017). Miscanthus x Giganteus composition in metals and potassium after culture on polluted soil and its use as biofuel, Bioenergy Res. 10: 846-852.spa
dcterms.referencesLeijenhorst, E., Wolters, W., Van de Beld, L., Prins, W. (2016). Inorganic element transfer from biomass to fast pyrolysis oil: review and experiments, Fuel Process. Technol. 149: pp. 96-111.spa
dcterms.referencesLi, Y., Zhang, R., Chen, C., Liu, G., He, Y., Liu, X. (2013). Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol; 149: pp. 406–12.spa
dcterms.referencesLin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Gan, H., 2011. Efectos de la relación de mezcla en codigestión anaeróbica con desperdicios de frutas y verduras y desperdicios de alimentos de China. J. Environ. Sci. 23, 1403–1408.spa
dcterms.referencesLiu, W., Tian, K., Jiang, H., Zhang, X., Ding, H., Yu, H. (2012). Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example, Environ. Sci. Technol. 46: pp. 7849-7856.spa
dcterms.referencesLuning, L., Van, E., Brinkmann. (2003). A.Comparison of dry and wet digestion for solid waste, Water Sci. Technol. 48: pp. 15 - 20.spa
dcterms.referencesMacias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H. and Longworth, J. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect.spa
dcterms.referencesMahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review, Ecotoxicol. Environ. Saf. 126: pp. 111–121.spa
dcterms.referencesMantilla, J., Duque, C., Galeano, C. (2007). Diseño y estudio económico preliminar de una planta productora de biogas utilizando residuos orgánicos de ganado vacuno. Ing. Investig, vol.27 no.3.spa
dcterms.referencesMarin-Batista, J., Castro, L., Escalante, H. (2015). Efecto de la carga orgánica de la gallinaza de jaula en el potencial de biometanización Effect of chicken manure organic load on biomethane potential. Rev. Colomb. Biotecnol. Vol. XVII No. 1: pp. 18-23. DOI: 10.15446/rev.colomb.biote.v17n1.39971spa
dcterms.referencesMarrugo. J., Pinedo-Hern ndez. J., Paternina–Uribe. R., Quiroz-Aguas, L., Pacheco-Fl rez, S. (2018). Distribuci n espacial y evaluaci n de la contaminaci n ambiental por mercurio en la regi n de la Mojana, Colombia. Rev. MVZ 23:7062-7075, ISSN: 0122-0268.spa
dcterms.referencesMarrugo-Negrete J, Pinedo-Hern ndez J, D ez S. (2015). Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere. 134: pp. 44–51.spa
dcterms.referencesMarrugo-Negrete, J., Ben tez, L., Olivero-Verbel, J., Lans, E. and Gutierrez, F. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia, International Journal of Environmental Health Research, 20: 6, pp. 451-459: DOI: 10.1080/09603123.2010.499451.spa
dcterms.referencesMartelo, J., Lara, J. (2012). Macrófitas flotantes en el tratamiento de aguas residuales; 8(15):243 221.spa
dcterms.referencesMart n-Lara, M., Bl zquez, G., Ronda, M., Calero, M. (2016). Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: effect of heavy metals incorporated by biosorption, Renewable Energy 96:613-624.spa
dcterms.referencesMatheri, A., Belaid, M., Seodigeng, T., Ngila, J. (2017). The Role of Trace Elements on Anaerobic Co-digestion in Biogas Production. in Proceedings of the World Congress on Engineering, London, U.K; 2016.metal contaminated brownfield lands–A review, Chemosphere 166, pp. 8-20.spa
dcterms.referencesMiller, J., Miller, J. (2010). Exactitud. In Estadástica y Quimiometría para Química Analítica. London: Prentice Hall.spa
dcterms.referencesMinisterio de Energías. (2011). Programa de las Naciones Unidas para la Alimentación y la Agricultura, Global Environment Facility. MANUAL DE BIOGÁS. Santiago de Chile: p.19. ISBN, 119978-95-306892.spa
dcterms.referencesMiranda, C. (2016). Generación de Biogás con plantas de digestión anaeróbicas. Recuperado el 04 de 06 de 2018, de https://twenergy.com/co/a/generacion-biogas-plantas-digestionanaerobicas.spa
dcterms.referencesMishra, S., Maiti, A. (2017). The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res Int. 2017 Mar;24(9): pp. 7921-7937. doi: 10.1007/s11356-016-8357-7. Epub Jan 16. PMID: 28092006.spa
dcterms.referencesMladenovska, Z., Hartmann, T., Kvist, M., Sales-Cruz, R., Gani, B. and Ahring, B. (2006). Thermal pre-treatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. Water Sci. Technol. 53 (8): pp. 59-67.spa
dcterms.referencesMontenegro, A. (2010). Diseño, Construcción y Puesta en Marcha de un Biodigestor Con Biomasa Obtenida Del Jacinto De Agua (Eichornia crassipes).spa
dcterms.referencesMontenegro, K., Rojas, A., Cabeza, I., Hernandez, M. Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. Revista ION DOI, (2016), 3.Vol. 29 N m. 2: https://doi.org/10.18273/revion.v29n2-2016002.spa
dcterms.referencesMullen, C., Boateng, A. (2013). Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass, Ind. Eng. Chem. Res. 52: pp. 17156 -17161.spa
dcterms.referencesMu oz, D., Pantoja, M., Cuatin-Guarin, M. (2013). Aprovechamiento de residuos agroindustriales como biocombustible y biorefiner a utilization of agroindustriales residues as biofuels and biorefinery utilisation des residus agro-industriels comme les biocarburants et bioraffinerie, pp. 10-19.spa
dcterms.referencesNiee, L., Liew, B. (2011). Solid- State Anaerobic Digestion of Lignocellulosic Biomass for Biogas Production.An MSc Thesis Presented to the School of Graduate Studies ofthe Ohio State University. 44pp.spa
dcterms.referencesOudenhoven, S., Van der Ham, A., Van den Berg, H., Westerhof, R., Kersten, S. (2016). Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: process design and economic evaluation, Biomass Bioenergy 95: pp. 388–404.spa
dcterms.referencesPanagos, P., Van, M., Liedekerke, Y., Yigini, L. (2013). Montanarella, Contaminated sites in Europe: review of the current situation based on data collected through a European network, J. Environ. Public Health.spa
dcterms.referencesPandey, B., Suthar, S., Singh, V. (2016). Accumulation and health risk of heavy metals in sugarcane irrigated with industrial effluent in some rural areas of Uttarakhand, India, Process Saf. Environ. Prot. 102: pp. 655–666.spa
dcterms.referencesPavi, S., Kramer, L., Gomes, L., Schiavo, L. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology 228: pp. 362–367.spa
dcterms.referencesPromoenerg a. (2015). Peque as plantas de biogás – sistema biodigestor biobolsa Colombia. Recuperado el 04 de 06 de 2018, de http://www.promoenergia.co/biodigestores/index.html.spa
dcterms.referencesPudasainee, D., Paur, H., Fleck, S., Seifert, H. (2014). Trace metals emission in syngas from biomass gasification, Fuel Process. Technol. 120: pp. 54–60.spa
dcterms.referencesQuintero, M., Castro, L., Ortiza, C., Guzm n, C., Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresource Technology Volume 108, pp. 8-13 https://doi.org/10.1016/j.biortech.2011.12.052.spa
dcterms.referencesReales, J. (2013). Acid Hydrolisys of Water Hyacinth to Obtain Fermentable Sugars. CT&F - Ciencia, Tecnolog a y Futuro, vol. 5, n.  2, pp. 101-102.spa
dcterms.referencesRen, W., Xue, B., Geng, Y., Sun, L., Ma, Z., Zhang, Y., Mitchell, B., Zhang, L. (2014). Inventorying heavy metal pollution in redeveloped brownfield and its policy contribution: case study from Tiexi District, Shenyang, China, Land Use Policy 38: pp. 138–146.spa
dcterms.referencesRilling, N. (2005). Anaerobic Fermentation of Wet and Semidry Garbage Waste Fractions. pp. 355-373: H. J rdening and J. Winter (eds.). Environmental Biotechnology. Concepts and Applications. WILEY-VCH Verlag GmbH and Co.spa
dcterms.referencesRodríguez, D., García, A. (2013). Diseño y construcción de un biodigestor para la producción de biogás a partir de heces caninas. Universidad distrital francisco jos  de caldas facultad tecnol gica tecnolog a mec nica bogot , d.c.spa
dcterms.referencesRomero, S., Marrugo, J., Arias, J., Hadad, H., Maine, M. (2011). Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands. Water Air Soil Pollut, 216:361–373. DOI 10.1007/s11270-010-0538-2.spa
dcterms.referencesRotimi, M. et al. (2013). Combustion Characteristics of Traditional Energy Sources and Water Hyacinth Briquettes. Enviromental Science (ijsres), vol. 1.spa
dcterms.referencesSadaka, S., Dan, C. (2003). Effect of initial total solids on composting of raw manure with biogas recovery. Compost Sci. Utilizat. 11: pp. 361-369.spa
dcterms.referencesSahu, S., Chakraborty, N. y Sarkar, P. (2014). Cocombustión carbón-biomasa: una visión general, Renewable and Sustainable Energy Reviews, 39, n mero C, pp. 575-586.spa
dcterms.referencesSahu, S., Sarkar, P., Chakraborty, N., Adak, A. (2010). Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars, Fuel Process. Technol. 91: 369-378.spa
dcterms.referencesSanint, S. (2010). Modelado de especies invasoras, caso de estudio: pérdida del espejo de agua en la laguna de Bogotá  D.C, Bogotá  D.C: Pontificia Universidad Javeriana.spa
dcterms.referencesSarabia, L., Ortiz, M. (2009). Response surface methodology, in: S.D. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics, Elsevier, Oxford, pp. 345–390.spa
dcterms.referencesSas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J.M., Kryński, K. (2004). Phytoextraction crop disposal an unsolved problem, Environ. Pollut. 128: pp. 373–379.spa
dcterms.referencesScano, E., Asquer, C., Pistis, A., Ortu, L., Demontis, V., Cocco, D. (2014). Bioás de digestión anaeróbica de desechos de frutas y verduras: resultados experimentales a escala piloto y evaluación preliminar del rendimiento de una planta de energía a gran escala. Convers de energ a, Administrar 77, 22-30.spa
dcterms.referencesShahabaldin, R., Mohanadoss, P., Mohd, F., Ahmad, R., Fadzlin, M., Shreeshivadasan, C. (2015). The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview. Renewable and Sustainable Energy Reviews 41: pp. 943954. http://dx.doi.org/10.1016/j.rser.2014.09.006.spa
dcterms.referencesShukla, O., Rai, U., Dubey, S. (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L, Bioresour. Technol. 100: 2198-2203.spa
dcterms.referencesShukla, O., Rai, U., Dubey, S. (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L, Bioresour. Technol. 100: pp. 2198-2203.spa
dcterms.referencesSingh, J., Kalamdhad, A. (2013). Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth, Bioresour. Technol. 138, 148-155.spa
dcterms.referencesSingh, J., Kalamdhad, A. (2013). Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth, Bioresour. Technol. 138: pp. 148–155.spa
dcterms.referencesStals, M., Thijssen, E., Vangronsveld, J., Carleer, R., Schreurs, S., Yperman, J. (2010). Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals, J. Anal. Appl. Pyrol. 87: pp. 1-7.spa
dcterms.referencesSuer, P., Andersson-Sk ld, Y. (2011). Biofuel or excavation, Life cycle assessment (LCA) of soil remediation options, Biomass Bioenergy 35: 969-981.spa
dcterms.referencesSuer, P., Andersson-Sk ld, Y. (2011). Biofuel or excavation?-Life cycle assessment (LCA) of soil remediation options, Biomass Bioenergy 35: pp. 969–981.spa
dcterms.referencesSun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol. 83: pp. 1–11.spa
dcterms.referencesSunarso, S., Johari, Z., Widiasa, I. and Budiyono, N. (2012). The Effect of Feed to Inoculums Ratio on Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums.Internat. J. of Waste Resources 2(1): pp. 1-4.spa
dcterms.referencesTchobanoglous, G., Theisen, H. and Vigil, S. (1993). Integrated Solid Waste Management engineering: Principle and Management Issue, McGraw-Hill U.S. Singapore.spa
dcterms.referencesTeame, G. (2014). La producci n de biog s a partir de Cactus Peel co-digesti n con esti rcol de vaca en experimento discontinuo. Un MSC tesis presentada a la Escuela de Estudios de Posgrado de la Universidad Haramaya, pp. 62.spa
dcterms.referencesTripathi, V., Edrisi, S., Abhilash, P. (2016). Towards the coupling of phytoremediation with bioenergy production, Renew. Sustain. Energy Rev. 57: pp. 1386-1389.spa
dcterms.referencesV.C. Pandey, O. Bajpai, N. Singh, Energy crops in sustainable phytoremediation, Renew. Sustain. Energy Rev. 54 (2016) 58–73.spa
dcterms.referencesVanegas, M. (2015). Aislamiento de levaduras capaces de producir alcohol a partir de macrófitas acuáticas extraídas mecánicamente de la laguna de Fúquene, Bogotá, Pontificia Universidad Javeriana.spa
dcterms.referencesWafa, D., Abdul, R., Jun, H., Ming, Z. (2019). Biofuel Production Using Thermochemical Conversion of Heavy Metal- Contaminated Biomass (HMCB) Harvested from Phytoextraction Process. Chemical Engineering Journal 358: pp. 759–785.spa
dcterms.referencesWerle, S., Bisorca, D., Katelbach-Woźniak, A., Pogrzeba, M., Krzyżak, J. (2016). Ratman metals from contaminated area–TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops, J. Energy Inst.spa
dcterms.referencesWiinikka, H., Carlsson, P., Johansson, A., Gullberg, M., Ylip  , C., Lundgren, M., Sandstr m, L. (2015). Fast pyrolysis of stem wood in a pilot-scale cyclone reactor, Energy Fuels 29: pp. 3158-3167.spa
dcterms.referencesXiao, Z., Yuan, X., Jiang, L., Chen, X., Li, H., Zeng, G., Leng, L., Wang, H., Huang, H. (2015). Energy recovery and secondary pollutant emission from the combustion of copelletized fuel from municipal sewage sludge and wood sawdust, Energy 91: pp. 441–450.spa
dcterms.referencesXie, J., Weng, Q., Ye, G., Luo, S., Zhu, R., Zhang, A., Chen, X., Lin, C. (2014). Bioethanol production from sugarcane grown in heavy metal-contaminated soils, BioResources 9: pp. 2509–2520.spa
dcterms.referencesXuan, J., Junshe, S., Li, L., Liping, K. (2009). Promotive effect of acid pretreatment of corn stalk using metal cations, Trans. Chin. Soc. Agric. Eng: pp. 23-28.spa
dcterms.referencesYadvika, T., Sreekrishnan, S., Kohli, R. (2004). Enhancement of biogas production from solid substrates using different technique. Bioresour. Technol. 95: pp. 1–10.spa
dcterms.referencesZhang, H., Tian, Y., Wang, L., Zhang, L., Dai, L. (2013). Ecophysiological characteristics and biogas production of cadmium-contaminated crops, Bioresour. Technol. 146: pp. 628–636.spa
dcterms.referencesZhang, L. Loh, K., Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports, 5 pp. 280-296.spa
dcterms.referencesZhang, S., Dong, Q., Chen, T., Xiong, Y. (2016). Combination of light bio-oil washing and torrefaction pretreatment of rice husk: its effects on physicochemical characteristics and fast pyrolysis behavior, Energy Fuels 30: pp. 3030–3037.spa
dcterms.referencesZhang, S., Xiong, Y. (2016). Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar, RSC Adv. 6: pp. 5270–5277.spa
dcterms.referencesZhang, T., Mao, C., Zhai, N., Wang, X., Yang, G. (2015). Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag, 35: pp. 119 - 126.spa
dcterms.referencesZhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W. and Xiao, M. (2011). Effect of biological pre-treatments in enhancing corn straw biogas production. Bioresour. Technol. 102: pp. 11177-11182.spa
dcterms.referencesZhou, Q. (2014). Impacts of Eichhornia Crassipes (Mart.) Solms Stress on The Physiological Characteristics, Microcystin Production and Release of Microcystis Aeruginosa. Biochemical Systematics and Ecology, vol. 55.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
bossiosanchezamaury.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Grado
No hay miniatura disponible
Nombre:
Autorización publicación de documentos Amaury.pdf
Tamaño:
631.61 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización para publicar documentos Firmada
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones