Publicación: Efecto y bioacumulación del cadmio en cuatro especies forestales (Tabebuia rosea (Bertol.) DC, Terminalia superba Engl. & Diels, Albizia guachapele (Kunth) Dugand, Cariniana pyriformis Miers) y nueve genotipos de cacao (Theobroma cacao L.)
dc.contributor.advisor | Ruiz Vega, Rosalba | |
dc.contributor.advisor | Jaimes Suárez, Yeirme Yaneth | |
dc.contributor.author | Galvis Neira, Donald Adrián | |
dc.date.accessioned | 2021-09-24T23:50:14Z | |
dc.date.available | 2021-09-24T23:50:14Z | |
dc.date.issued | 2021-09-22 | |
dc.description.abstract | El cadmio (Cd) es un metal pesado biológicamente no esencial que puede causar efectos tóxicos en plantas, animales y humanos. En el cultivo de cacao de Latinoamérica se han reportado altas concentraciones de este elemento, superando los niveles aceptados por la Unión Europea, comprometiendo la inocuidad de los productos finales y las exportaciones del cultivo. En Colombia, el cultivo de cacao se desarrolla principalmente bajo sistemas agroforestales (SAF), siendo importante identificar y cuantificar el aporte de las especies acompañantes de los SAF y su contribución al ciclo natural del cadmio, por lo que se evaluó el efecto y la acumulación del Cd sobre el crecimiento de cuatro especies de maderables asociadas al SAF del cacao (Tabebuia rosea, Terminalia superba, Pseudosamanea guachapele, Cariniana pyriformis) y nueve genotipos de cacao (Theobroma cacao L.) usados comúnmente como portainjertos. Este trabajo se desarrolló en el Centro de Investigación La Suiza – Agrosavia, usando sustrato hidropónico bajo condiciones de invernadero, estableciendo un experimento por especie estudiada, bajo un diseño completamente al azar con tres repeticiones, se aplicaron tres tratamientos con dosis crecientes de cadmio (0, 6 y 12 ppm). Variables de crecimiento fueron registradas y se hicieron muestreos destructivos de tejidos para la cuantificación de la concentración de Cd a los 120, 150 y 180 días después de la siembra. | spa |
dc.description.abstract | Cadmium (Cd) is a biologically nonessential heavy metal that can cause toxic effects in plants, animals, and humans. In the cultivation of cocoa in Latin America, high concentrations of this element have been reported, exceeding the levels accepted by the European Union, compromising the safety of the final products and exports of the crop. In Colombia, cocoa cultivation is developed mainly under agroforestry systems (SAF), being important to identify and quantify the contribution of the companion species of the SAF and its contribution to the natural cycle of cadmium, for which the effect and accumulation were evaluated. of cadmium on the growth of four timber species associated with cocoa SAF (Tabebuia rosea, Terminalia superba, Pseudosamanea guachapele, Cariniana pyriformis) and nine cocoa genotypes (Theobroma cacao L.) used as rootstocks. This work was developed at the La Suiza - Agrosavia Research Center, using hydroponic substrate under greenhouse conditions, establishing one experiment per species studied, under a completely randomized design with three repetitions, three treatments were applied with increasing doses of cadmium (0, 6 and 12 ppm). Growth variables were recorded, and destructive tissue samples were made to quantify the Cd concentration at 120, 150 and 180 days after sowing. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Biotecnología | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.tableofcontents | LISTA DE TABLAS ............................................................................................................... VI | spa |
dc.description.tableofcontents | LISTA DE FIGURAS ............................................................................................................ VII | spa |
dc.description.tableofcontents | RESUMEN ............................................................................................................................. 1 | spa |
dc.description.tableofcontents | ABSTRACT ............................................................................................................................ 3 | spa |
dc.description.tableofcontents | INTRODUCCION GENERAL ................................................................................................. 5 | spa |
dc.description.tableofcontents | MARCO TEÓRICO ................................................................................................................ 8 | spa |
dc.description.tableofcontents | Origen e importancia del cultivo del cacao ......................................................................... 8 | spa |
dc.description.tableofcontents | Metales pesados ...............................................................................................................10 | spa |
dc.description.tableofcontents | El cadmio en la interfaz suelo-planta .................................................................................11 | spa |
dc.description.tableofcontents | El cadmio en los alimentos y en la salud humana .............................................................14 | spa |
dc.description.tableofcontents | Tecnologías de fitorremediación ........................................................................................15 | spa |
dc.description.tableofcontents | Especies forestales usadas en la fitorremediación ............................................................18 | spa |
dc.description.tableofcontents | Mecanismo de absorción del cadmio.................................................................................19 | spa |
dc.description.tableofcontents | Partición de cadmio dentro de la planta .............................................................................20 | spa |
dc.description.tableofcontents | Diferencias genotípicas en la absorción y partición de cadmio ..........................................21 | spa |
dc.description.tableofcontents | Tolerancia de plantas al cadmio ........................................................................................21 | spa |
dc.description.tableofcontents | REFERENCIAS.....................................................................................................................22 | spa |
dc.description.tableofcontents | Capítulo 1 Dinámica en la acumulación de cadmio en nueve genotipos de cacao (Theobroma cacao L.) ................................................................................................................................... 36 | spa |
dc.description.tableofcontents | RESUMEN ............................................................................................................................37 | spa |
dc.description.tableofcontents | ABSTRACT ...........................................................................................................................39 | spa |
dc.description.tableofcontents | INTRODUCCIÓN ..................................................................................................................40 | spa |
dc.description.tableofcontents | MATERIALES Y MÉTODOS .................................................................................................44 | spa |
dc.description.tableofcontents | Localización del área experimental ...................................................................................44 | spa |
dc.description.tableofcontents | Establecimiento de los experimentos ................................................................................44 | spa |
dc.description.tableofcontents | Variables de crecimiento y contenido de cadmio ...............................................................45 | spa |
dc.description.tableofcontents | Diseño experimental y análisis estadístico ........................................................................47 | spa |
dc.description.tableofcontents | RESULTADOS ......................................................................................................................47 | spa |
dc.description.tableofcontents | DISCUSIÓN ..........................................................................................................................52 | spa |
dc.description.tableofcontents | CONCLUSIONES .................................................................................................................56 | spa |
dc.description.tableofcontents | RECOMENDACIONES .........................................................................................................57 | spa |
dc.description.tableofcontents | REFERENCIAS.....................................................................................................................58 | spa |
dc.description.tableofcontents | Capítulo 2 Dinámica de la acumulación y potencial para fitorremediación de cadmio de las especies Tabebuia rosea (Bertol.) DC, Terminalia superba Engl. & Diels, Albizia guachapele (Kunth) Dugand, Cariniana pyriformis Miers asociadas al cultivo de cacao. .............................. 81 | spa |
dc.description.tableofcontents | RESUMEN ............................................................................................................................82 | spa |
dc.description.tableofcontents | ABSTRACT ...........................................................................................................................84 | spa |
dc.description.tableofcontents | INTRODUCCIÓN ..................................................................................................................86 | spa |
dc.description.tableofcontents | MATERIALES Y MÉTODOS .................................................................................................90 | spa |
dc.description.tableofcontents | Localización del área experimental ...................................................................................90 | spa |
dc.description.tableofcontents | Desarrollo del experimento hidropónico ............................................................................90 | spa |
dc.description.tableofcontents | Variables de crecimiento y contenido de cadmio ...............................................................91 | spa |
dc.description.tableofcontents | Diseño experimental y análisis estadístico ........................................................................92 | spa |
dc.description.tableofcontents | RESULTADOS ......................................................................................................................93 | spa |
dc.description.tableofcontents | DISCUSIÓN ..........................................................................................................................98 | spa |
dc.description.tableofcontents | CONCLUSIONES ............................................................................................................... 101 | spa |
dc.description.tableofcontents | REFERENCIAS................................................................................................................... 103 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4553 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Biotecnología | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Phytoremediation | eng |
dc.subject.keywords | Cadmium | eng |
dc.subject.keywords | Rootstock | eng |
dc.subject.keywords | AFS | eng |
dc.subject.proposal | Fitorremediación | spa |
dc.subject.proposal | SAF | spa |
dc.subject.proposal | Theobroma cacao | spa |
dc.subject.proposal | Portainjertos | spa |
dc.title | Efecto y bioacumulación del cadmio en cuatro especies forestales (Tabebuia rosea (Bertol.) DC, Terminalia superba Engl. & Diels, Albizia guachapele (Kunth) Dugand, Cariniana pyriformis Miers) y nueve genotipos de cacao (Theobroma cacao L.) | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Agudelo-Castañeda, G. A., Cadena-Torres, J., Almanza-Merchán, P. J., & Pinzón-Sandoval, E. H. (2018). Desempeño fisiológico de nueve genotipos de cacao (Theobroma cacao L.) bajo la sombra de tres especies forestales en Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(1), 223–232. https://doi.org/10.17584/rcch.2018v12i1.7341 | spa |
dcterms.references | Amadi, C. N., Igweze, Z. N., & Orisakwe, O. E. (2017). Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertility Society Journal, 22(2), 91–100. https://doi.org/10.1016/j.mefs.2017.03.003 | spa |
dcterms.references | Antoine, J. M. R., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4(March), 181–187. https://doi.org/10.1016/j.toxrep.2017.03.006 | spa |
dcterms.references | Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605–606(2017), 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122 | spa |
dcterms.references | Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292 | spa |
dcterms.references | Baker, A. J. M., & Reeves, R. D. (2000). Phytoremediation of Toxic Metals: Using Plants to Clean 104 the Environment. Journal of Plant Biotechnology, 1(1), 304. | spa |
dcterms.references | Barraza, F., Schreck, E., Lévêque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080 | spa |
dcterms.references | Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34. https://doi.org/10.1590/S1677-04202005000100003 | spa |
dcterms.references | Bertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46–53. https://doi.org/10.1016/j.foodcont.2016.01.013 | spa |
dcterms.references | Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy, 11(4), 761. https://doi.org/10.3390/agronomy11040761 | spa |
dcterms.references | Broadley, M. R., Willey, N. J., Wilkins, J. C., Baker, A. J. M., Mead, A., & White, P. J. (2001). Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist, 152(1), 9–27. https://doi.org/10.1046/j.0028-646x.2001.00238 | spa |
dcterms.references | Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003 | spa |
dcterms.references | Contam EFSA. (2014). Statement on tolerable weekly intake for cadmium. EFSA Journal, 9(2), 10–14. https://doi.org/10.2903/j.efsa.2011.1975 | spa |
dcterms.references | Dahmani-Muller, H., Van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109(2), 231–238. https://doi.org/10.1016/S0269-7491(99)00262-6 | spa |
dcterms.references | Dickinson, N. M., & Pulford, I. D. (2005). Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail. Environment International, 31(4), 609–613. https://doi.org/10.1016/j.envint.2004.10.013 | spa |
dcterms.references | El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M. G., Sebastian, A., & Rinklebe, J. (2020). Technology Cadmium stress in plants : A critical review of the effects , mechanisms , and tolerance strategies. Critical Reviews in Environmental Science and Technology, 0(0), 1–52. https://doi.org/10.1080/10643389.2020.1835435 | spa |
dcterms.references | Fan, K. C., Hsi, H. C., Chen, C. W., Lee, H. L., & Hseu, Z. Y. (2011). Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. Journal of Environmental Management, 92(10), 2818–2822. https://doi.org/10.1016/j.jenvman.2011.06.032 | spa |
dcterms.references | Fedecacao, F. N. D. C. (2020). fedecacao, 2020 El cultivo del cacao y su contribución al medio ambiente (p. http://www.fedecacao.com.co/portal/index.php/es/20). | spa |
dcterms.references | Fischerová, Z., Tlustoš, P., Jiřina Száková, & Kornelie Šichorová. (2006a). A comparison of phytoremediation capability of selected plant species for given trace elements. In Environmental Pollution (Vol. 144, Issue 1, pp. 93–100). https://doi.org/10.1016/j.envpol.2006.01.005 | spa |
dcterms.references | Fischerová, Z., Tlustoš, P., Jiřina Száková, & Kornelie Šichorová. (2006b). A comparison of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 144(1), 93–100. https://doi.org/10.1016/j.envpol.2006.01.005 | spa |
dcterms.references | Greger, M., & Landberg, T. (1999). Use of willow in phytoexfraction. International Journal of Phytoremediation, 1(2), 115–123. https://doi.org/10.1080/15226519908500010 | spa |
dcterms.references | Hoagland, D. R. ., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, 347(2), 32. https://www.cabdirect.org/cabdirect/abstract/19500302257 | spa |
dcterms.references | Huamaní-Yupanqui, H. A., Huauya-Rojas, M. Á., Mansilla-Minaya, L. G., Florida-Rofner, N., & Neira-Trujillo, G. M. (2012). Presencia de metales pesados en cultivo de cacao [Theobroma cacao L.) orgánico. Acta Agronomica, 61(4), 339–344. | spa |
dcterms.references | Klang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249(1), 127–137. https://doi.org/10.1023/A:1022585404481 | spa |
dcterms.references | Küpper, H., & Andresen, E. (2016). Mechanisms of metal toxicity in plants. Metallomics, 8(3), 269–285. https://doi.org/10.1039/c5mt00244c | spa |
dcterms.references | Kuzovkina, Y. A., & Quigley, M. F. (2005). Willows beyond wetlands: Uses of salix L. species for environmental projects. Water, Air, and Soil Pollution, 162(1–4), 183–204. https://doi.org/10.1007/s11270-005-6272-5 | spa |
dcterms.references | Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. 107 Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131(3), 485–494. https://doi.org/10.1016/j.envpol.2004.02.009 | spa |
dcterms.references | Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365 | spa |
dcterms.references | Liang, T., Ding, H., Wang, G., Kang, J., Pang, H., & Lv, J. (2016). Ecotoxicology and Environmental Safety Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L . Ecotoxicology and Environmental Safety, 124, 129–137. https://doi.org/10.1016/j.ecoenv.2015.10.011 | spa |
dcterms.references | Lux, A., Šottníková, A., Opatrná, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120(4), 537–545. https://doi.org/10.1111/j.0031-9317.2004.0275.x | spa |
dcterms.references | MADR. (2020). Ministerio de Agricultura y Desarrollo Rural.Cadena de valor de Cacao. In Direccion de cadenas agrícolas y forestales. https://sioc.minagricultura.gov.co | spa |
dcterms.references | Marín Q, M. del P., Andrade, H. J., & Sandoval, A. P. (2016). Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 351–360. https://doi.org/10.31910/rudca.v19.n2.2016.89 | spa |
dcterms.references | Mejía, L. A., & Palencia, G. E. (2003). Una aproximacion a los sistemas agroforestales. In Programa nacional de transferencia de tecnología agropecuaria. | spa |
dcterms.references | Mercedes Ordoñez, C., & Rangel-Ch, J. O. (2020). Composición florística y aspectos de la estructura de la vegetación en sistemas agroforestales con cacao (Theobroma cacao L. - Malvaceae) en el departamento del Huila, Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(173), 1033–1046. https://doi.org/10.18257/raccefyn.1183 | spa |
dcterms.references | Mertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: Limitations and possibilities for phytoextraction and phytostabilisation. Science of the Total Environment, 326(1–3), 209–215. https://doi.org/10.1016/j.scitotenv.2003.12.010 | spa |
dcterms.references | Pabón, M. G., Sepúlveda, W., & Herrera Roa, L. (2014). Caracterización de la producción de cacao en Santander y análisis de la presencia de cadmio en suelos y cultivos. http://repositorio.colciencias.gov.co:80/handle/11146/2441 | spa |
dcterms.references | Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5 | spa |
dcterms.references | Pietrini, F., Iannelli, M. A., Pasqualini, S., & Massacci, A. (2003). Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology, 133(2), 829–837. https://doi.org/10.1104/pp.103.026518 | spa |
dcterms.references | Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214 | spa |
dcterms.references | Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees 109 - A review. Environment International, 29(4), 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6 | spa |
dcterms.references | Punshon, T., & Dickinson, N. (1999). Heavy metal resistance and accumulation characteristics in willows. International Journal of Phytoremediation, 1(4), 361–385. https://doi.org/10.1080/15226519908500025 | spa |
dcterms.references | Raskin, L., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment Abbreviation EDTA ethylenediaminetetraacetic acid. Current Opinion in Biotechnology, 8221–8226. | spa |
dcterms.references | Sánchez Fonseca, C., Lama, D., & Suatunce Cunuhay, P. (2008). Hojas Caídas Y Aporte De Nutrientes De Diez Especies Forestales Tropicales. Ciencia y Tecnología, 1(2), 73. https://doi.org/10.18779/cyt.v1i2.105 | spa |
dcterms.references | Santos, B., & Ríos, D. (2016). Cálculo de Soluciones Nutritivas En suelo y sin suelo. http://www.agrocabildo.org/publica/Publicaciones/otro_622_soluciones_nutritivas.pdf | spa |
dcterms.references | Sonwa, D. J., Nkongmeneck, B. A., Weise, S. F., Tchatat, M., Adesina, A. A., & Janssens, M. J. J. (2007). Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodiversity and Conservation, 16(8), 2385–2400. https://doi.org/10.1007/s10531-007-9187-1 | spa |
dcterms.references | U.S EPA, (United States Environmental Protection Agency). (2018). “Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry,”: Vol. Revision 5. https://www.epa.gov/esam/epa-method-6010d-sw-846-inductively-coupled-plasma-atomic-emission-spectrometry | spa |
dcterms.references | Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of heavy metal hyperaccumulation in plants. Phytoremediation of Environmental Pollutants, 99–116. https://doi.org/10.4324/9781315161549 | spa |
dcterms.references | Vysloužilová, M., Tlustoš, P., & Száková, J. (2003). Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant, Soil and Environment, 49(12), 542–547. https://doi.org/10.17221/4191-pse | spa |
dcterms.references | Wieshammer, G., Unterbrunner, R., García, T. B., Zivkovic, M. F., Puschenreiter, M., & Wenzel, W. W. (2007). Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298(1–2), 255–264. https://doi.org/10.1007/s11104-007-9363-9 | spa |
dcterms.references | Wilkins, D. A. (1978). the Measurement of Tolerance To Edaphic Factors By Means of Root Growth. New Phytologist, 80(3), 623–633. https://doi.org/10.1111/j.1469-8137.1978.tb01595.x | spa |
dcterms.references | Yadav, S. K., Juwarkar, A. A., Kumar, G. P., Thawale, P. R., Singh, S. K., & Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology, 100(20), 4616–4622. https://doi.org/10.1016/j.biortech.2009.04.062 | spa |
dcterms.references | Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants : I. Duckweed. Journal of Environmental Quality, 27(3), 715–721. http://www.refdoc.fr/Detailnotice?idarticle=14140782 | spa |
dcterms.references | Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives and Contaminants: Part B Surveillance, 11(2), 92–102. https://doi.org/10.1080/19393210.2017.1420700 | spa |
dcterms.references | Albacete, A., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C., & Pérez-Alfocea, F. (2015). Unravelling rootstock×scion interactions to improve food security. https://doi.org/10.1093/jxb/erv027 | spa |
dcterms.references | Alkorta, I., & Garbisu, C. (2001). Phytoremediation of Organic Contaminants in Soils. Bioresource Technology, 79, 273–276. https://doi.org/10.1016/S0960-8524(01)00016-5 | spa |
dcterms.references | Alloway, B. J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability,Environmental Pollution 22. In Archives of Dermatology (Vol. 114, Issue 11). https://doi.org/10.1001/archderm.1978.01640230053014 | spa |
dcterms.references | Almeida, A.-A., & Valle, R. R. (2008). Ecophysiology of the cacao tree . Braz J Plant Physiol Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(December), 425–448. | spa |
dcterms.references | Andosch, A., Affenzeller, M. J., Lütz, C., & Lütz-Meindl, U. (2012). A freshwater green alga under 23 cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. Journal of Plant Physiology, 169(15), 1489–1500. https://doi.org/10.1016/j.jplph.2012.06.002 | spa |
dcterms.references | Antoine, J. M. R., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4(March), 181–187. https://doi.org/10.1016/j.toxrep.2017.03.006 | spa |
dcterms.references | Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605–606(2017), 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122 | spa |
dcterms.references | Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292 | spa |
dcterms.references | Arunakumara, K., Walpola, B. C., & Yoon, M.-H. (2013). Agricultural Methods for Toxicity Alleviation in Metal Contaminated Soils: A Review. Korean Journal of Soil Science and Fertilizer, 46(2), 73–80. https://doi.org/10.7745/kjssf.2013.46.2.073 | spa |
dcterms.references | Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2020). Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. Phytoremediation of Contaminated Soil and Water, January, 85–107. https://doi.org/10.1201/9780367803148-5 | spa |
dcterms.references | Barton, C. D., Marx, D. H., Adriano, D. C., Koo, B. J., Newman, L., Czapka, S. J., & Blake, J. (2005). Phytostabilization of a landfill containing coal combustion waste. Environmental Geosciences, 12(4), 251–265. https://doi.org/10.1306/eg.06210404021 | spa |
dcterms.references | Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34. https://doi.org/10.1590/S1677-04202005000100003 | spa |
dcterms.references | Bonomelli, C., Bonilla, C., & Valenzuela, A. (2003). Efecto de la fertilización fosforada sobre el contenido de cadmio en cuatro suelos de Chile. Pesquisa Agropecuária Brasileira, 38(10), 1179–1186. https://doi.org/10.1590/s0100-204x2003001000007 | spa |
dcterms.references | Brady, N. C., & Weil, R. R. (2002). The Nature and Properties of Soils, 13th Edition.By N. C. Brady and R. R. Weil. In Agroforestry Systems (Vol. 54, Issue 3). Pearson. https://doi.org/10.1023/A:1016012810895 | spa |
dcterms.references | Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy, 11(4), 761. https://doi.org/10.3390/agronomy11040761 | spa |
dcterms.references | Castro, A. V., de Almeida, A. A. F., Pirovani, C. P., Reis, G. S. M., Almeida, N. M., & Mangabeira, P. A. O. (2015). Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. In Ecotoxicology and Environmental Safety (Vol. 115, pp. 174–186). https://doi.org/10.1016/j.ecoenv.2015.02.003 | spa |
dcterms.references | Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106 | spa |
dcterms.references | Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92–99. https://doi.org/10.1016/j.tplants.2012.08.003 | spa |
dcterms.references | Cortés-Martínez, R., Solache-Ríos, M., Martínez-Miranda, V., & Alfaro-Cuevas, R. (2009). Removal of cadmium by natural and surfactant-modified mexican zeolitic rocks in fixed bed columns. Water, Air, and Soil Pollution, 196(1–4), 199–210. https://doi.org/10.1007/s11270-008-9769-x | spa |
dcterms.references | Cuatrecasas, J. (1964). Cacao and its Allies A taxonomic revision of the genus Theobroma. National Herbarium, 35(6), 379–607. https://repository.si.edu/handle/10088/27110?show=full | spa |
dcterms.references | Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y., Liu, Y., Yin, C., Wei, C., Yang, Y., & Hussain, Q. (2016). Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 93, 1–8. https://doi.org/10.1016/j.ecoleng.2016.05.007 | spa |
dcterms.references | De Oliveira, V. H., & Tibbett, M. (2018). Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. In Environmental and Experimental Botany (Vol. 155, pp. 281–292). https://doi.org/10.1016/j.envexpbot.2018.07.011 | spa |
dcterms.references | Delgadillo, A., Gonzalez, C., Prieto, F., Villagómez, J., & Acevedo, O. (2011). Fitorremediación: Una alternativa para eliminar la contaminación. Tropical and Subtropical Agroecosystems, 14(2), 597–612. | spa |
dcterms.references | Denys, S., Tack, K., Caboche, J., Delalain, P., Denys, S., Tack, K., Caboche, J., Delalain, P., Denys, S., & Halatte, V. (2014). Assessing metals bioaccessibility to man in human health risk assessment of contaminated site To cite this version : HAL Id : ineris-00973245 Assessing metals bioaccessibility to Man in human health risk assessment of contaminated sites. | spa |
dcterms.references | Dushenkov, V., Kumar, P., Motto, H., & Raskin, I. (1995). Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams. Environmental Science & Technology, 29, 1239–1245. https://doi.org/10.1021/es00005a015 | spa |
dcterms.references | EFSA. (2012). Cadmium dietary exposure in the European population. EFSA Journal, 10(1), 1– 27 37. https://doi.org/10.2903/j.efsa.2012.2551 | spa |
dcterms.references | Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660–670. https://doi.org/10.1016/j.scitotenv.2019.05.001 | spa |
dcterms.references | FAOStat. (2021). FAOSTAT. Food and Agriculture Organization. http://www.fao.org/faostat/en/#data%0D | spa |
dcterms.references | Fischerová, Z., Tlustoš, P., Jiřina Száková, & Kornelie Šichorová. (2006). A comparison of phytoremediation capability of selected plant species for given trace elements. In Environmental Pollution (Vol. 144, Issue 1, pp. 93–100). https://doi.org/10.1016/j.envpol.2006.01.005 | spa |
dcterms.references | Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014 | spa |
dcterms.references | Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2007). Selection and breeding of plant cultivars to minimize cadmium accumulation. 0. https://doi.org/10.1016/j.scitotenv.2007.10.038 | spa |
dcterms.references | Greger, M., & Landberg, T. (1999). Use of willow in phytoexfraction. International Journal of Phytoremediation, 1(2), 115–123. https://doi.org/10.1080/15226519908500010 | spa |
dcterms.references | Hannink, N., Rosser, S. J., French, C. E., Basran, A., Murray, J. A. H., Nicklin, S., & Bruce, N. C. (2001). Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. 19(December). | spa |
dcterms.references | Hernández-Martínez, R., & Navarro, I. (2012). Estimation of dietary intake and content of lead and cadmium in infant cereals marketed in Spain. Food Control, 26, 6–14. https://doi.org/10.1016/j.foodcont.2011.12.024 | spa |
dcterms.references | ICCO. (2013). Growing Cocoa, International Cocoa Organization -ICCO. Origins Of Cocoa And Its Spread Around The World; International Cocoa Organization. https://www.icco.org/growing-cocoa/ | spa |
dcterms.references | ILAC. (2018, July). Iniciativa Latinoamericana del Cacao.Observatorio del cacao fino y de aroma para america latina. Boletin N°3. | spa |
dcterms.references | Ishikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N. K., & Nakanishi, H. (2012). Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 109(47), 19166–19171. https://doi.org/10.1073/pnas.1211132109 | spa |
dcterms.references | Järup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208. https://doi.org/10.1016/j.taap.2009.04.020 | spa |
dcterms.references | Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1–2), 19–32. https://doi.org/10.1016/j.geoderma.2006.08.024 | spa |
dcterms.references | Kumar, P., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The Use of Plants To Remove Heavy Metals from Soils. Environmental Science & Technology, 29, 1232–1238. https://doi.org/10.1021/es00005a014 | spa |
dcterms.references | Lasat, M. (2001). Phytoextraction of Toxic Metals: A Review of Biological Mechanisms. Journal of Environmental Quality, 31, 109–120. https://doi.org/10.2134/jeq2002.1090 | spa |
dcterms.references | Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365 | spa |
dcterms.references | Li, Q. S., Cai, S. S., Mo, C. H., Chu, B., Peng, L. H., & Yang, F. B. (2010). Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicology and Environmental Safety, 73(1), 84–88. https://doi.org/10.1016/j.ecoenv.2009.09.002 | spa |
dcterms.references | MADR. (2005). La cadena del cacao en Colombia una mirada global de su estructura y dinámica 1991-2005 Documento de Trabajo No. 58. Min. Agricultura y Desarrollo Rural, Obs. Agrocadenas Colombia, 1(61), 51. http://bibliotecadigital.agronet.gov.co/bitstream/11348/5890/1/2005112145659_caracterizacion_cacao.pdf | spa |
dcterms.references | Mendez, M. O., & Maier, R. M. (2008). Phytoestabilization of mine Tailings in Arid and Semiarid Environments-An Emergin Remediation Technology. Environmental Health Perspectives, 116. | spa |
dcterms.references | Miranda, F. (1962). Wild Cacao in the Lacandona Forest, Chiapas, Mexico. CATIE: Costa Rica., 7. | spa |
dcterms.references | Mite, F. (2015). Metales Pesados en Cacao , Perspectivas y Posible Manejo. http://nla.ipni.net/ipniweb/region/nla.nsf/e0f085ed5f091b1b852579000057902e/049b3f076c63e02705257e0e005767b1 | spa |
dcterms.references | Mite, F., Carrillo, M., & Durando, W. (2010). Avances del monitoreo de presencia de cadmio en almendras de cacao, suelos y aguas de ecuador. Xii Congreso Ecuatoriano de La Ciencia Del Suelo, 17–19. | spa |
dcterms.references | Miteva, E., Hristova, D., Nenova, V., & Maneva, S. (2005). Arsenic as a factor affecting virus infection in tomato plants: Changes in plant growth, peroxidase activity and chloroplast pigments. Scientia Horticulturae, 105(3), 343–358. https://doi.org/10.1016/j.scienta.2005.01.026 | spa |
dcterms.references | Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311 | spa |
dcterms.references | Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., & Bie, Z. (2016). Grafting: A technique to modify ion accumulation in horticultural crops. In Frontiers in Plant Science (Vol. 7, Issue OCTOBER2016). https://doi.org/10.3389/fpls.2016.01457 | spa |
dcterms.references | Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5 | spa |
dcterms.references | Palencia, G. E. (2005). Establecimiento y manejo de sistemas agroforestales con cacao [Manual técnico]. In Manual técnico.Corporacion Colombiana de Investigacion Agropecuaria. Corpoica. | spa |
dcterms.references | Pereira, M. P., Corrêa, F. F., & Castro, E. M. De. (2017). Leaf ontogeny of Schinus molle L . plants under cadmium contamination : the meristematic origin of leaf structural changes. https://doi.org/10.1007/s00709-017-1103-2 | spa |
dcterms.references | Poelmans, E., & Swinnen, J. (2019). A Brief Economic History of Chocolate. LICOS - Centre for Institutions and Economic Performance, KU Leuven. https://ideas.repec.org/p/lic/licosd/41219.html | spa |
dcterms.references | Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees - A review. Environment International, 29(4), 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6 | spa |
dcterms.references | Ramesh, S. A., Shin, R., Eide, D. J., & Schachtman, D. P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133(1), 126–134. https://doi.org/10.1104/pp.103.026815 | spa |
dcterms.references | Ramírez-Ortiz, J., & Monreal, J. (2009). Study of Soil Contaminated with Arsenic, Cadmium and Lead in Ancient Tailings in Zacatecas, México. International Journal of Chemical and Biological Engineering, 2(3), 120–124. http://www.waset.ac.nz/journals/ijcbe/v2/v2-3-23.pdf | spa |
dcterms.references | Rodríguez-Ortíz, J. C., Valdez-Cepeda, R. D., Lara-Mireles, J. L., Rodríguez-Fuentes, H., Vázquez-Alvarado, R. E., Magallanes-Quintanar, R., & García-Hernández, J. L. (2006). Soil nitrogen fertilization effects on phytoextraction of cadmium and lead by tobacco (Nicotiana tabacum L.). Bioremediation Journal, 10(3), 105–114. https://doi.org/10.1080/10889860600939815 | spa |
dcterms.references | Sasaki, A., Yamaji, N., & Yokosho, K. (2012). Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. 24(May), 2155–2167. https://doi.org/10.1105/tpc.112.096925 | spa |
dcterms.references | Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156–161. https://doi.org/10.1016/j.scienta.2010.09.011 | spa |
dcterms.references | Savvas, D., Savva, A., Ntatsi, G., Ropokis, A., Karapanos, I., Krumbein, A., & Olympios, C. (2011). Effects of three commercial rootstocks on mineral nutrition, fruit yield, and quality of salinized tomato. Journal of Plant Nutrition and Soil Science, 174(1), 154–162. https://doi.org/10.1002/jpln.201000099 | spa |
dcterms.references | Sekara, A., Poniedziałek, M., Ciura, J., & Jedrszczyk, E. (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: Implications for phytoremediation. In Polish Journal of Environmental Studies (Vol. 14, Issue 4, pp. 509–516). | spa |
dcterms.references | Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Paula, M. C. A. (2016). Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Springer International Publishing, Cham, 241 Review(December), 73–137. https://doi.org/10.1007/398 | spa |
dcterms.references | Singh, O. V., Labana, S., Jain, G. P., & K., R. B. · R. (2003). Phytoremediation : an overview of 33 metallic ion decontamination from soil. 405–412. https://doi.org/10.1007/s00253-003-1244-4 | spa |
dcterms.references | Thangavel, P., & Subbhuraam, C. V. (2004). Phytoextraction: Role of Hyperaccumulators in Metal Contaminated Soils. Proceedings of the Indian National Science Academy. Part B, 70, 109–130. | spa |
dcterms.references | Thyssen, G. M., Keil, C., Wolff, M., Sperling, M., Kadow, D., Haase, H., & Karst, U. (2018). Bioimaging of the elemental distribution in cocoa beans by means of LA-ICP-TQMS. Journal of Analytical Atomic Spectrometry, 33(2), 187–194. https://doi.org/10.1039/c7ja00354d | spa |
dcterms.references | Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16500–16505. https://doi.org/10.1073/pnas.1005396107 | spa |
dcterms.references | Ullah, I., Wang, Y., Eide, D. J., & Dunwell, J. M. (2019). Evolution , and functional analysis of Natural Resistance-Associated Macrophage Proteins ( NRAMPs ) from Theobroma cacao and their role in cadmium accumulation. August 2018, 1–15. https://doi.org/10.1038/s41598-018-32819-y | spa |
dcterms.references | UNEP. (2010). Final review of scientific information on cadmium. UNEP Chemicals Branch, Geneva, Switzerland, December, pp.324. | spa |
dcterms.references | Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677–2688. https://doi.org/10.1093/jxb/erp119 | spa |
dcterms.references | Van Hall, C. J. J. (1914). Cocoa (London : Macmillan (ed.)). | spa |
dcterms.references | Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of heavy metal hyperaccumulation in plants. Phytoremediation of Environmental Pollutants, 99–116. https://doi.org/10.4324/9781315161549 | spa |
dcterms.references | Wang, C., Ji, J., Yang, Z., Chen, L., Browne, P., & Yu, R. (2012). Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River Delta Region, China - A typical industry-agriculture transition area. Biological Trace Element Research, 148(2), 264–274. https://doi.org/10.1007/s12011-012-9367-z | spa |
dcterms.references | Wieshammer, G., Unterbrunner, R., García, T. B., Zivkovic, M. F., Puschenreiter, M., & Wenzel, W. W. (2007). Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298(1–2), 255–264. https://doi.org/10.1007/s11104-007-9363-9 | spa |
dcterms.references | Wood, G. A. R., & Lass, R. A. (1985). Cocoa. Wiley. https://books.google.com.co/books?id=urs9QCMKOw4C | spa |
dcterms.references | Zarrillo, S., Gaikwad, N., Lanaud, C., Powis, T., Viot, C., Lesur, I., Fouet, O., Argout, X., Guichoux, E., Salin, F., Solorzano, R. L., Bouchez, O., Vignes, H., Severts, P., Hurtado, J., Yepez, A., Grivetti, L., Blake, M., & Valdez, F. (2018). The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology & Evolution, 2(12), 1879–1888. https://doi.org/10.1038/s41559-018-0697-x | spa |
dcterms.references | Zhang, X., Peng, L. I. U., Yue-suo, Y., & Wen-ren, C. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. 19, 902–909. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- GalvisNeiraDonald.pdf
- Tamaño:
- 1.47 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de tesis de maestria
Cargando...
- Nombre:
- AutorizaciónPublicación. Donald Galvis.pdf
- Tamaño:
- 434.73 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: