Publicación:
Efecto y bioacumulación del cadmio en cuatro especies forestales (Tabebuia rosea (Bertol.) DC, Terminalia superba Engl. & Diels, Albizia guachapele (Kunth) Dugand, Cariniana pyriformis Miers) y nueve genotipos de cacao (Theobroma cacao L.)

dc.contributor.advisorRuiz Vega, Rosalba
dc.contributor.advisorJaimes Suárez, Yeirme Yaneth
dc.contributor.authorGalvis Neira, Donald Adrián
dc.date.accessioned2021-09-24T23:50:14Z
dc.date.available2021-09-24T23:50:14Z
dc.date.issued2021-09-22
dc.description.abstractEl cadmio (Cd) es un metal pesado biológicamente no esencial que puede causar efectos tóxicos en plantas, animales y humanos. En el cultivo de cacao de Latinoamérica se han reportado altas concentraciones de este elemento, superando los niveles aceptados por la Unión Europea, comprometiendo la inocuidad de los productos finales y las exportaciones del cultivo. En Colombia, el cultivo de cacao se desarrolla principalmente bajo sistemas agroforestales (SAF), siendo importante identificar y cuantificar el aporte de las especies acompañantes de los SAF y su contribución al ciclo natural del cadmio, por lo que se evaluó el efecto y la acumulación del Cd sobre el crecimiento de cuatro especies de maderables asociadas al SAF del cacao (Tabebuia rosea, Terminalia superba, Pseudosamanea guachapele, Cariniana pyriformis) y nueve genotipos de cacao (Theobroma cacao L.) usados comúnmente como portainjertos. Este trabajo se desarrolló en el Centro de Investigación La Suiza – Agrosavia, usando sustrato hidropónico bajo condiciones de invernadero, estableciendo un experimento por especie estudiada, bajo un diseño completamente al azar con tres repeticiones, se aplicaron tres tratamientos con dosis crecientes de cadmio (0, 6 y 12 ppm). Variables de crecimiento fueron registradas y se hicieron muestreos destructivos de tejidos para la cuantificación de la concentración de Cd a los 120, 150 y 180 días después de la siembra.spa
dc.description.abstractCadmium (Cd) is a biologically nonessential heavy metal that can cause toxic effects in plants, animals, and humans. In the cultivation of cocoa in Latin America, high concentrations of this element have been reported, exceeding the levels accepted by the European Union, compromising the safety of the final products and exports of the crop. In Colombia, cocoa cultivation is developed mainly under agroforestry systems (SAF), being important to identify and quantify the contribution of the companion species of the SAF and its contribution to the natural cycle of cadmium, for which the effect and accumulation were evaluated. of cadmium on the growth of four timber species associated with cocoa SAF (Tabebuia rosea, Terminalia superba, Pseudosamanea guachapele, Cariniana pyriformis) and nine cocoa genotypes (Theobroma cacao L.) used as rootstocks. This work was developed at the La Suiza - Agrosavia Research Center, using hydroponic substrate under greenhouse conditions, establishing one experiment per species studied, under a completely randomized design with three repetitions, three treatments were applied with increasing doses of cadmium (0, 6 and 12 ppm). Growth variables were recorded, and destructive tissue samples were made to quantify the Cd concentration at 120, 150 and 180 days after sowing. eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Biotecnologíaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.tableofcontentsLISTA DE TABLAS ............................................................................................................... VIspa
dc.description.tableofcontentsLISTA DE FIGURAS ............................................................................................................ VIIspa
dc.description.tableofcontentsRESUMEN ............................................................................................................................. 1spa
dc.description.tableofcontentsABSTRACT ............................................................................................................................ 3spa
dc.description.tableofcontentsINTRODUCCION GENERAL ................................................................................................. 5spa
dc.description.tableofcontentsMARCO TEÓRICO ................................................................................................................ 8spa
dc.description.tableofcontentsOrigen e importancia del cultivo del cacao ......................................................................... 8spa
dc.description.tableofcontentsMetales pesados ...............................................................................................................10spa
dc.description.tableofcontentsEl cadmio en la interfaz suelo-planta .................................................................................11spa
dc.description.tableofcontentsEl cadmio en los alimentos y en la salud humana .............................................................14spa
dc.description.tableofcontentsTecnologías de fitorremediación ........................................................................................15spa
dc.description.tableofcontentsEspecies forestales usadas en la fitorremediación ............................................................18spa
dc.description.tableofcontentsMecanismo de absorción del cadmio.................................................................................19spa
dc.description.tableofcontentsPartición de cadmio dentro de la planta .............................................................................20spa
dc.description.tableofcontentsDiferencias genotípicas en la absorción y partición de cadmio ..........................................21spa
dc.description.tableofcontentsTolerancia de plantas al cadmio ........................................................................................21spa
dc.description.tableofcontentsREFERENCIAS.....................................................................................................................22spa
dc.description.tableofcontentsCapítulo 1 Dinámica en la acumulación de cadmio en nueve genotipos de cacao (Theobroma cacao L.) ................................................................................................................................... 36spa
dc.description.tableofcontentsRESUMEN ............................................................................................................................37spa
dc.description.tableofcontentsABSTRACT ...........................................................................................................................39spa
dc.description.tableofcontentsINTRODUCCIÓN ..................................................................................................................40spa
dc.description.tableofcontentsMATERIALES Y MÉTODOS .................................................................................................44spa
dc.description.tableofcontentsLocalización del área experimental ...................................................................................44spa
dc.description.tableofcontentsEstablecimiento de los experimentos ................................................................................44spa
dc.description.tableofcontentsVariables de crecimiento y contenido de cadmio ...............................................................45spa
dc.description.tableofcontentsDiseño experimental y análisis estadístico ........................................................................47spa
dc.description.tableofcontentsRESULTADOS ......................................................................................................................47spa
dc.description.tableofcontentsDISCUSIÓN ..........................................................................................................................52spa
dc.description.tableofcontentsCONCLUSIONES .................................................................................................................56spa
dc.description.tableofcontentsRECOMENDACIONES .........................................................................................................57spa
dc.description.tableofcontentsREFERENCIAS.....................................................................................................................58spa
dc.description.tableofcontentsCapítulo 2 Dinámica de la acumulación y potencial para fitorremediación de cadmio de las especies Tabebuia rosea (Bertol.) DC, Terminalia superba Engl. & Diels, Albizia guachapele (Kunth) Dugand, Cariniana pyriformis Miers asociadas al cultivo de cacao. .............................. 81spa
dc.description.tableofcontentsRESUMEN ............................................................................................................................82spa
dc.description.tableofcontentsABSTRACT ...........................................................................................................................84spa
dc.description.tableofcontentsINTRODUCCIÓN ..................................................................................................................86spa
dc.description.tableofcontentsMATERIALES Y MÉTODOS .................................................................................................90spa
dc.description.tableofcontentsLocalización del área experimental ...................................................................................90spa
dc.description.tableofcontentsDesarrollo del experimento hidropónico ............................................................................90spa
dc.description.tableofcontentsVariables de crecimiento y contenido de cadmio ...............................................................91spa
dc.description.tableofcontentsDiseño experimental y análisis estadístico ........................................................................92spa
dc.description.tableofcontentsRESULTADOS ......................................................................................................................93spa
dc.description.tableofcontentsDISCUSIÓN ..........................................................................................................................98spa
dc.description.tableofcontentsCONCLUSIONES ............................................................................................................... 101spa
dc.description.tableofcontentsREFERENCIAS................................................................................................................... 103spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4553
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Biotecnologíaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsPhytoremediationeng
dc.subject.keywordsCadmiumeng
dc.subject.keywordsRootstockeng
dc.subject.keywordsAFSeng
dc.subject.proposalFitorremediaciónspa
dc.subject.proposalSAFspa
dc.subject.proposalTheobroma cacaospa
dc.subject.proposalPortainjertosspa
dc.titleEfecto y bioacumulación del cadmio en cuatro especies forestales (Tabebuia rosea (Bertol.) DC, Terminalia superba Engl. & Diels, Albizia guachapele (Kunth) Dugand, Cariniana pyriformis Miers) y nueve genotipos de cacao (Theobroma cacao L.)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAgudelo-Castañeda, G. A., Cadena-Torres, J., Almanza-Merchán, P. J., & Pinzón-Sandoval, E. H. (2018). Desempeño fisiológico de nueve genotipos de cacao (Theobroma cacao L.) bajo la sombra de tres especies forestales en Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(1), 223–232. https://doi.org/10.17584/rcch.2018v12i1.7341spa
dcterms.referencesAmadi, C. N., Igweze, Z. N., & Orisakwe, O. E. (2017). Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertility Society Journal, 22(2), 91–100. https://doi.org/10.1016/j.mefs.2017.03.003spa
dcterms.referencesAntoine, J. M. R., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4(March), 181–187. https://doi.org/10.1016/j.toxrep.2017.03.006spa
dcterms.referencesArévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605–606(2017), 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122spa
dcterms.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292spa
dcterms.referencesBaker, A. J. M., & Reeves, R. D. (2000). Phytoremediation of Toxic Metals: Using Plants to Clean 104 the Environment. Journal of Plant Biotechnology, 1(1), 304.spa
dcterms.referencesBarraza, F., Schreck, E., Lévêque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080spa
dcterms.referencesBenavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34. https://doi.org/10.1590/S1677-04202005000100003spa
dcterms.referencesBertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46–53. https://doi.org/10.1016/j.foodcont.2016.01.013spa
dcterms.referencesBravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy, 11(4), 761. https://doi.org/10.3390/agronomy11040761spa
dcterms.referencesBroadley, M. R., Willey, N. J., Wilkins, J. C., Baker, A. J. M., Mead, A., & White, P. J. (2001). Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist, 152(1), 9–27. https://doi.org/10.1046/j.0028-646x.2001.00238spa
dcterms.referencesClemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003spa
dcterms.referencesContam EFSA. (2014). Statement on tolerable weekly intake for cadmium. EFSA Journal, 9(2), 10–14. https://doi.org/10.2903/j.efsa.2011.1975spa
dcterms.referencesDahmani-Muller, H., Van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109(2), 231–238. https://doi.org/10.1016/S0269-7491(99)00262-6spa
dcterms.referencesDickinson, N. M., & Pulford, I. D. (2005). Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail. Environment International, 31(4), 609–613. https://doi.org/10.1016/j.envint.2004.10.013spa
dcterms.referencesEl Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M. G., Sebastian, A., & Rinklebe, J. (2020). Technology Cadmium stress in plants : A critical review of the effects , mechanisms , and tolerance strategies. Critical Reviews in Environmental Science and Technology, 0(0), 1–52. https://doi.org/10.1080/10643389.2020.1835435spa
dcterms.referencesFan, K. C., Hsi, H. C., Chen, C. W., Lee, H. L., & Hseu, Z. Y. (2011). Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. Journal of Environmental Management, 92(10), 2818–2822. https://doi.org/10.1016/j.jenvman.2011.06.032spa
dcterms.referencesFedecacao, F. N. D. C. (2020). fedecacao, 2020 El cultivo del cacao y su contribución al medio ambiente (p. http://www.fedecacao.com.co/portal/index.php/es/20).spa
dcterms.referencesFischerová, Z., Tlustoš, P., Jiřina Száková, & Kornelie Šichorová. (2006a). A comparison of phytoremediation capability of selected plant species for given trace elements. In Environmental Pollution (Vol. 144, Issue 1, pp. 93–100). https://doi.org/10.1016/j.envpol.2006.01.005spa
dcterms.referencesFischerová, Z., Tlustoš, P., Jiřina Száková, & Kornelie Šichorová. (2006b). A comparison of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 144(1), 93–100. https://doi.org/10.1016/j.envpol.2006.01.005spa
dcterms.referencesGreger, M., & Landberg, T. (1999). Use of willow in phytoexfraction. International Journal of Phytoremediation, 1(2), 115–123. https://doi.org/10.1080/15226519908500010spa
dcterms.referencesHoagland, D. R. ., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, 347(2), 32. https://www.cabdirect.org/cabdirect/abstract/19500302257spa
dcterms.referencesHuamaní-Yupanqui, H. A., Huauya-Rojas, M. Á., Mansilla-Minaya, L. G., Florida-Rofner, N., & Neira-Trujillo, G. M. (2012). Presencia de metales pesados en cultivo de cacao [Theobroma cacao L.) orgánico. Acta Agronomica, 61(4), 339–344.spa
dcterms.referencesKlang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249(1), 127–137. https://doi.org/10.1023/A:1022585404481spa
dcterms.referencesKüpper, H., & Andresen, E. (2016). Mechanisms of metal toxicity in plants. Metallomics, 8(3), 269–285. https://doi.org/10.1039/c5mt00244cspa
dcterms.referencesKuzovkina, Y. A., & Quigley, M. F. (2005). Willows beyond wetlands: Uses of salix L. species for environmental projects. Water, Air, and Soil Pollution, 162(1–4), 183–204. https://doi.org/10.1007/s11270-005-6272-5spa
dcterms.referencesLaureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. 107 Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131(3), 485–494. https://doi.org/10.1016/j.envpol.2004.02.009spa
dcterms.referencesLewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365spa
dcterms.referencesLiang, T., Ding, H., Wang, G., Kang, J., Pang, H., & Lv, J. (2016). Ecotoxicology and Environmental Safety Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L . Ecotoxicology and Environmental Safety, 124, 129–137. https://doi.org/10.1016/j.ecoenv.2015.10.011spa
dcterms.referencesLux, A., Šottníková, A., Opatrná, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120(4), 537–545. https://doi.org/10.1111/j.0031-9317.2004.0275.xspa
dcterms.referencesMADR. (2020). Ministerio de Agricultura y Desarrollo Rural.Cadena de valor de Cacao. In Direccion de cadenas agrícolas y forestales. https://sioc.minagricultura.gov.cospa
dcterms.referencesMarín Q, M. del P., Andrade, H. J., & Sandoval, A. P. (2016). Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 351–360. https://doi.org/10.31910/rudca.v19.n2.2016.89spa
dcterms.referencesMejía, L. A., & Palencia, G. E. (2003). Una aproximacion a los sistemas agroforestales. In Programa nacional de transferencia de tecnología agropecuaria.spa
dcterms.referencesMercedes Ordoñez, C., & Rangel-Ch, J. O. (2020). Composición florística y aspectos de la estructura de la vegetación en sistemas agroforestales con cacao (Theobroma cacao L. - Malvaceae) en el departamento del Huila, Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(173), 1033–1046. https://doi.org/10.18257/raccefyn.1183spa
dcterms.referencesMertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: Limitations and possibilities for phytoextraction and phytostabilisation. Science of the Total Environment, 326(1–3), 209–215. https://doi.org/10.1016/j.scitotenv.2003.12.010spa
dcterms.referencesPabón, M. G., Sepúlveda, W., & Herrera Roa, L. (2014). Caracterización de la producción de cacao en Santander y análisis de la presencia de cadmio en suelos y cultivos. http://repositorio.colciencias.gov.co:80/handle/11146/2441spa
dcterms.referencesPadmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5spa
dcterms.referencesPietrini, F., Iannelli, M. A., Pasqualini, S., & Massacci, A. (2003). Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology, 133(2), 829–837. https://doi.org/10.1104/pp.103.026518spa
dcterms.referencesPilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214spa
dcterms.referencesPulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees 109 - A review. Environment International, 29(4), 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6spa
dcterms.referencesPunshon, T., & Dickinson, N. (1999). Heavy metal resistance and accumulation characteristics in willows. International Journal of Phytoremediation, 1(4), 361–385. https://doi.org/10.1080/15226519908500025spa
dcterms.referencesRaskin, L., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment Abbreviation EDTA ethylenediaminetetraacetic acid. Current Opinion in Biotechnology, 8221–8226.spa
dcterms.referencesSánchez Fonseca, C., Lama, D., & Suatunce Cunuhay, P. (2008). Hojas Caídas Y Aporte De Nutrientes De Diez Especies Forestales Tropicales. Ciencia y Tecnología, 1(2), 73. https://doi.org/10.18779/cyt.v1i2.105spa
dcterms.referencesSantos, B., & Ríos, D. (2016). Cálculo de Soluciones Nutritivas En suelo y sin suelo. http://www.agrocabildo.org/publica/Publicaciones/otro_622_soluciones_nutritivas.pdfspa
dcterms.referencesSonwa, D. J., Nkongmeneck, B. A., Weise, S. F., Tchatat, M., Adesina, A. A., & Janssens, M. J. J. (2007). Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodiversity and Conservation, 16(8), 2385–2400. https://doi.org/10.1007/s10531-007-9187-1spa
dcterms.referencesU.S EPA, (United States Environmental Protection Agency). (2018). “Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry,”: Vol. Revision 5. https://www.epa.gov/esam/epa-method-6010d-sw-846-inductively-coupled-plasma-atomic-emission-spectrometryspa
dcterms.referencesVerbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of heavy metal hyperaccumulation in plants. Phytoremediation of Environmental Pollutants, 99–116. https://doi.org/10.4324/9781315161549spa
dcterms.referencesVysloužilová, M., Tlustoš, P., & Száková, J. (2003). Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant, Soil and Environment, 49(12), 542–547. https://doi.org/10.17221/4191-psespa
dcterms.referencesWieshammer, G., Unterbrunner, R., García, T. B., Zivkovic, M. F., Puschenreiter, M., & Wenzel, W. W. (2007). Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298(1–2), 255–264. https://doi.org/10.1007/s11104-007-9363-9spa
dcterms.referencesWilkins, D. A. (1978). the Measurement of Tolerance To Edaphic Factors By Means of Root Growth. New Phytologist, 80(3), 623–633. https://doi.org/10.1111/j.1469-8137.1978.tb01595.xspa
dcterms.referencesYadav, S. K., Juwarkar, A. A., Kumar, G. P., Thawale, P. R., Singh, S. K., & Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: Impact of dairy sludge and biofertilizer. Bioresource Technology, 100(20), 4616–4622. https://doi.org/10.1016/j.biortech.2009.04.062spa
dcterms.referencesZayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants : I. Duckweed. Journal of Environmental Quality, 27(3), 715–721. http://www.refdoc.fr/Detailnotice?idarticle=14140782spa
dcterms.referencesAbt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives and Contaminants: Part B Surveillance, 11(2), 92–102. https://doi.org/10.1080/19393210.2017.1420700spa
dcterms.referencesAlbacete, A., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C., & Pérez-Alfocea, F. (2015). Unravelling rootstock×scion interactions to improve food security. https://doi.org/10.1093/jxb/erv027spa
dcterms.referencesAlkorta, I., & Garbisu, C. (2001). Phytoremediation of Organic Contaminants in Soils. Bioresource Technology, 79, 273–276. https://doi.org/10.1016/S0960-8524(01)00016-5spa
dcterms.referencesAlloway, B. J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability,Environmental Pollution 22. In Archives of Dermatology (Vol. 114, Issue 11). https://doi.org/10.1001/archderm.1978.01640230053014spa
dcterms.referencesAlmeida, A.-A., & Valle, R. R. (2008). Ecophysiology of the cacao tree . Braz J Plant Physiol Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(December), 425–448.spa
dcterms.referencesAndosch, A., Affenzeller, M. J., Lütz, C., & Lütz-Meindl, U. (2012). A freshwater green alga under 23 cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. Journal of Plant Physiology, 169(15), 1489–1500. https://doi.org/10.1016/j.jplph.2012.06.002spa
dcterms.referencesAntoine, J. M. R., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4(March), 181–187. https://doi.org/10.1016/j.toxrep.2017.03.006spa
dcterms.referencesArévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605–606(2017), 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122spa
dcterms.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292spa
dcterms.referencesArunakumara, K., Walpola, B. C., & Yoon, M.-H. (2013). Agricultural Methods for Toxicity Alleviation in Metal Contaminated Soils: A Review. Korean Journal of Soil Science and Fertilizer, 46(2), 73–80. https://doi.org/10.7745/kjssf.2013.46.2.073spa
dcterms.referencesBaker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2020). Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. Phytoremediation of Contaminated Soil and Water, January, 85–107. https://doi.org/10.1201/9780367803148-5spa
dcterms.referencesBarton, C. D., Marx, D. H., Adriano, D. C., Koo, B. J., Newman, L., Czapka, S. J., & Blake, J. (2005). Phytostabilization of a landfill containing coal combustion waste. Environmental Geosciences, 12(4), 251–265. https://doi.org/10.1306/eg.06210404021spa
dcterms.referencesBenavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34. https://doi.org/10.1590/S1677-04202005000100003spa
dcterms.referencesBonomelli, C., Bonilla, C., & Valenzuela, A. (2003). Efecto de la fertilización fosforada sobre el contenido de cadmio en cuatro suelos de Chile. Pesquisa Agropecuária Brasileira, 38(10), 1179–1186. https://doi.org/10.1590/s0100-204x2003001000007spa
dcterms.referencesBrady, N. C., & Weil, R. R. (2002). The Nature and Properties of Soils, 13th Edition.By N. C. Brady and R. R. Weil. In Agroforestry Systems (Vol. 54, Issue 3). Pearson. https://doi.org/10.1023/A:1016012810895spa
dcterms.referencesBravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy, 11(4), 761. https://doi.org/10.3390/agronomy11040761spa
dcterms.referencesCastro, A. V., de Almeida, A. A. F., Pirovani, C. P., Reis, G. S. M., Almeida, N. M., & Mangabeira, P. A. O. (2015). Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. In Ecotoxicology and Environmental Safety (Vol. 115, pp. 174–186). https://doi.org/10.1016/j.ecoenv.2015.02.003spa
dcterms.referencesChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106spa
dcterms.referencesClemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92–99. https://doi.org/10.1016/j.tplants.2012.08.003spa
dcterms.referencesCortés-Martínez, R., Solache-Ríos, M., Martínez-Miranda, V., & Alfaro-Cuevas, R. (2009). Removal of cadmium by natural and surfactant-modified mexican zeolitic rocks in fixed bed columns. Water, Air, and Soil Pollution, 196(1–4), 199–210. https://doi.org/10.1007/s11270-008-9769-xspa
dcterms.referencesCuatrecasas, J. (1964). Cacao and its Allies A taxonomic revision of the genus Theobroma. National Herbarium, 35(6), 379–607. https://repository.si.edu/handle/10088/27110?show=fullspa
dcterms.referencesCui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y., Liu, Y., Yin, C., Wei, C., Yang, Y., & Hussain, Q. (2016). Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological Engineering, 93, 1–8. https://doi.org/10.1016/j.ecoleng.2016.05.007spa
dcterms.referencesDe Oliveira, V. H., & Tibbett, M. (2018). Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. In Environmental and Experimental Botany (Vol. 155, pp. 281–292). https://doi.org/10.1016/j.envexpbot.2018.07.011spa
dcterms.referencesDelgadillo, A., Gonzalez, C., Prieto, F., Villagómez, J., & Acevedo, O. (2011). Fitorremediación: Una alternativa para eliminar la contaminación. Tropical and Subtropical Agroecosystems, 14(2), 597–612.spa
dcterms.referencesDenys, S., Tack, K., Caboche, J., Delalain, P., Denys, S., Tack, K., Caboche, J., Delalain, P., Denys, S., & Halatte, V. (2014). Assessing metals bioaccessibility to man in human health risk assessment of contaminated site To cite this version : HAL Id : ineris-00973245 Assessing metals bioaccessibility to Man in human health risk assessment of contaminated sites.spa
dcterms.referencesDushenkov, V., Kumar, P., Motto, H., & Raskin, I. (1995). Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams. Environmental Science & Technology, 29, 1239–1245. https://doi.org/10.1021/es00005a015spa
dcterms.referencesEFSA. (2012). Cadmium dietary exposure in the European population. EFSA Journal, 10(1), 1– 27 37. https://doi.org/10.2903/j.efsa.2012.2551spa
dcterms.referencesEngbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment, 678, 660–670. https://doi.org/10.1016/j.scitotenv.2019.05.001spa
dcterms.referencesFAOStat. (2021). FAOSTAT. Food and Agriculture Organization. http://www.fao.org/faostat/en/#data%0Dspa
dcterms.referencesFischerová, Z., Tlustoš, P., Jiřina Száková, & Kornelie Šichorová. (2006). A comparison of phytoremediation capability of selected plant species for given trace elements. In Environmental Pollution (Vol. 144, Issue 1, pp. 93–100). https://doi.org/10.1016/j.envpol.2006.01.005spa
dcterms.referencesGramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014spa
dcterms.referencesGrant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2007). Selection and breeding of plant cultivars to minimize cadmium accumulation. 0. https://doi.org/10.1016/j.scitotenv.2007.10.038spa
dcterms.referencesGreger, M., & Landberg, T. (1999). Use of willow in phytoexfraction. International Journal of Phytoremediation, 1(2), 115–123. https://doi.org/10.1080/15226519908500010spa
dcterms.referencesHannink, N., Rosser, S. J., French, C. E., Basran, A., Murray, J. A. H., Nicklin, S., & Bruce, N. C. (2001). Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. 19(December).spa
dcterms.referencesHernández-Martínez, R., & Navarro, I. (2012). Estimation of dietary intake and content of lead and cadmium in infant cereals marketed in Spain. Food Control, 26, 6–14. https://doi.org/10.1016/j.foodcont.2011.12.024spa
dcterms.referencesICCO. (2013). Growing Cocoa, International Cocoa Organization -ICCO. Origins Of Cocoa And Its Spread Around The World; International Cocoa Organization. https://www.icco.org/growing-cocoa/spa
dcterms.referencesILAC. (2018, July). Iniciativa Latinoamericana del Cacao.Observatorio del cacao fino y de aroma para america latina. Boletin N°3.spa
dcterms.referencesIshikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N. K., & Nakanishi, H. (2012). Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 109(47), 19166–19171. https://doi.org/10.1073/pnas.1211132109spa
dcterms.referencesJärup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208. https://doi.org/10.1016/j.taap.2009.04.020spa
dcterms.referencesKirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1–2), 19–32. https://doi.org/10.1016/j.geoderma.2006.08.024spa
dcterms.referencesKumar, P., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The Use of Plants To Remove Heavy Metals from Soils. Environmental Science & Technology, 29, 1232–1238. https://doi.org/10.1021/es00005a014spa
dcterms.referencesLasat, M. (2001). Phytoextraction of Toxic Metals: A Review of Biological Mechanisms. Journal of Environmental Quality, 31, 109–120. https://doi.org/10.2134/jeq2002.1090spa
dcterms.referencesLewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 640–641, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365spa
dcterms.referencesLi, Q. S., Cai, S. S., Mo, C. H., Chu, B., Peng, L. H., & Yang, F. B. (2010). Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicology and Environmental Safety, 73(1), 84–88. https://doi.org/10.1016/j.ecoenv.2009.09.002spa
dcterms.referencesMADR. (2005). La cadena del cacao en Colombia una mirada global de su estructura y dinámica 1991-2005 Documento de Trabajo No. 58. Min. Agricultura y Desarrollo Rural, Obs. Agrocadenas Colombia, 1(61), 51. http://bibliotecadigital.agronet.gov.co/bitstream/11348/5890/1/2005112145659_caracterizacion_cacao.pdfspa
dcterms.referencesMendez, M. O., & Maier, R. M. (2008). Phytoestabilization of mine Tailings in Arid and Semiarid Environments-An Emergin Remediation Technology. Environmental Health Perspectives, 116.spa
dcterms.referencesMiranda, F. (1962). Wild Cacao in the Lacandona Forest, Chiapas, Mexico. CATIE: Costa Rica., 7.spa
dcterms.referencesMite, F. (2015). Metales Pesados en Cacao , Perspectivas y Posible Manejo. http://nla.ipni.net/ipniweb/region/nla.nsf/e0f085ed5f091b1b852579000057902e/049b3f076c63e02705257e0e005767b1spa
dcterms.referencesMite, F., Carrillo, M., & Durando, W. (2010). Avances del monitoreo de presencia de cadmio en almendras de cacao, suelos y aguas de ecuador. Xii Congreso Ecuatoriano de La Ciencia Del Suelo, 17–19.spa
dcterms.referencesMiteva, E., Hristova, D., Nenova, V., & Maneva, S. (2005). Arsenic as a factor affecting virus infection in tomato plants: Changes in plant growth, peroxidase activity and chloroplast pigments. Scientia Horticulturae, 105(3), 343–358. https://doi.org/10.1016/j.scienta.2005.01.026spa
dcterms.referencesMotamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311spa
dcterms.referencesNawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., & Bie, Z. (2016). Grafting: A technique to modify ion accumulation in horticultural crops. In Frontiers in Plant Science (Vol. 7, Issue OCTOBER2016). https://doi.org/10.3389/fpls.2016.01457spa
dcterms.referencesPadmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5spa
dcterms.referencesPalencia, G. E. (2005). Establecimiento y manejo de sistemas agroforestales con cacao [Manual técnico]. In Manual técnico.Corporacion Colombiana de Investigacion Agropecuaria. Corpoica.spa
dcterms.referencesPereira, M. P., Corrêa, F. F., & Castro, E. M. De. (2017). Leaf ontogeny of Schinus molle L . plants under cadmium contamination : the meristematic origin of leaf structural changes. https://doi.org/10.1007/s00709-017-1103-2spa
dcterms.referencesPoelmans, E., & Swinnen, J. (2019). A Brief Economic History of Chocolate. LICOS - Centre for Institutions and Economic Performance, KU Leuven. https://ideas.repec.org/p/lic/licosd/41219.htmlspa
dcterms.referencesPulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees - A review. Environment International, 29(4), 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6spa
dcterms.referencesRamesh, S. A., Shin, R., Eide, D. J., & Schachtman, D. P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133(1), 126–134. https://doi.org/10.1104/pp.103.026815spa
dcterms.referencesRamírez-Ortiz, J., & Monreal, J. (2009). Study of Soil Contaminated with Arsenic, Cadmium and Lead in Ancient Tailings in Zacatecas, México. International Journal of Chemical and Biological Engineering, 2(3), 120–124. http://www.waset.ac.nz/journals/ijcbe/v2/v2-3-23.pdfspa
dcterms.referencesRodríguez-Ortíz, J. C., Valdez-Cepeda, R. D., Lara-Mireles, J. L., Rodríguez-Fuentes, H., Vázquez-Alvarado, R. E., Magallanes-Quintanar, R., & García-Hernández, J. L. (2006). Soil nitrogen fertilization effects on phytoextraction of cadmium and lead by tobacco (Nicotiana tabacum L.). Bioremediation Journal, 10(3), 105–114. https://doi.org/10.1080/10889860600939815spa
dcterms.referencesSasaki, A., Yamaji, N., & Yokosho, K. (2012). Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. 24(May), 2155–2167. https://doi.org/10.1105/tpc.112.096925spa
dcterms.referencesSavvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156–161. https://doi.org/10.1016/j.scienta.2010.09.011spa
dcterms.referencesSavvas, D., Savva, A., Ntatsi, G., Ropokis, A., Karapanos, I., Krumbein, A., & Olympios, C. (2011). Effects of three commercial rootstocks on mineral nutrition, fruit yield, and quality of salinized tomato. Journal of Plant Nutrition and Soil Science, 174(1), 154–162. https://doi.org/10.1002/jpln.201000099spa
dcterms.referencesSekara, A., Poniedziałek, M., Ciura, J., & Jedrszczyk, E. (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: Implications for phytoremediation. In Polish Journal of Environmental Studies (Vol. 14, Issue 4, pp. 509–516).spa
dcterms.referencesShahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Paula, M. C. A. (2016). Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Springer International Publishing, Cham, 241 Review(December), 73–137. https://doi.org/10.1007/398spa
dcterms.referencesSingh, O. V., Labana, S., Jain, G. P., & K., R. B. · R. (2003). Phytoremediation : an overview of 33 metallic ion decontamination from soil. 405–412. https://doi.org/10.1007/s00253-003-1244-4spa
dcterms.referencesThangavel, P., & Subbhuraam, C. V. (2004). Phytoextraction: Role of Hyperaccumulators in Metal Contaminated Soils. Proceedings of the Indian National Science Academy. Part B, 70, 109–130.spa
dcterms.referencesThyssen, G. M., Keil, C., Wolff, M., Sperling, M., Kadow, D., Haase, H., & Karst, U. (2018). Bioimaging of the elemental distribution in cocoa beans by means of LA-ICP-TQMS. Journal of Analytical Atomic Spectrometry, 33(2), 187–194. https://doi.org/10.1039/c7ja00354dspa
dcterms.referencesUeno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16500–16505. https://doi.org/10.1073/pnas.1005396107spa
dcterms.referencesUllah, I., Wang, Y., Eide, D. J., & Dunwell, J. M. (2019). Evolution , and functional analysis of Natural Resistance-Associated Macrophage Proteins ( NRAMPs ) from Theobroma cacao and their role in cadmium accumulation. August 2018, 1–15. https://doi.org/10.1038/s41598-018-32819-yspa
dcterms.referencesUNEP. (2010). Final review of scientific information on cadmium. UNEP Chemicals Branch, Geneva, Switzerland, December, pp.324.spa
dcterms.referencesUraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677–2688. https://doi.org/10.1093/jxb/erp119spa
dcterms.referencesVan Hall, C. J. J. (1914). Cocoa (London : Macmillan (ed.)).spa
dcterms.referencesVerbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of heavy metal hyperaccumulation in plants. Phytoremediation of Environmental Pollutants, 99–116. https://doi.org/10.4324/9781315161549spa
dcterms.referencesWang, C., Ji, J., Yang, Z., Chen, L., Browne, P., & Yu, R. (2012). Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River Delta Region, China - A typical industry-agriculture transition area. Biological Trace Element Research, 148(2), 264–274. https://doi.org/10.1007/s12011-012-9367-zspa
dcterms.referencesWieshammer, G., Unterbrunner, R., García, T. B., Zivkovic, M. F., Puschenreiter, M., & Wenzel, W. W. (2007). Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298(1–2), 255–264. https://doi.org/10.1007/s11104-007-9363-9spa
dcterms.referencesWood, G. A. R., & Lass, R. A. (1985). Cocoa. Wiley. https://books.google.com.co/books?id=urs9QCMKOw4Cspa
dcterms.referencesZarrillo, S., Gaikwad, N., Lanaud, C., Powis, T., Viot, C., Lesur, I., Fouet, O., Argout, X., Guichoux, E., Salin, F., Solorzano, R. L., Bouchez, O., Vignes, H., Severts, P., Hurtado, J., Yepez, A., Grivetti, L., Blake, M., & Valdez, F. (2018). The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology & Evolution, 2(12), 1879–1888. https://doi.org/10.1038/s41559-018-0697-xspa
dcterms.referencesZhang, X., Peng, L. I. U., Yue-suo, Y., & Wen-ren, C. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. 19, 902–909.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
GalvisNeiraDonald.pdf
Tamaño:
1.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de tesis de maestria
Cargando...
Miniatura
Nombre:
AutorizaciónPublicación. Donald Galvis.pdf
Tamaño:
434.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones