Publicación: Efecto de un biofertilizante a base de Enterobacter cloacae sobre el desarrollo y rendimiento de plantas de yuca (Manihot esculenta Crantz) en el municipio de Montería, Departamento de Córdoba
dc.audience | ||
dc.contributor.advisor | Parado Plaza, Yuri Janio | |
dc.contributor.advisor | Cantero Guevara, Miriam Elena | |
dc.contributor.author | Betin Ruiz, Andres José | |
dc.contributor.jury | Oviedo Zumaqué, Luis Eliecer | |
dc.contributor.jury | Díaz Narváez, Lucía Candelaria | |
dc.date.accessioned | 2024-08-21T01:05:20Z | |
dc.date.available | 2025-08-18 | |
dc.date.available | 2024-08-21T01:05:20Z | |
dc.date.issued | 2024-08-18 | |
dc.description.abstract | El nitrógeno y el fósforo son esenciales para el crecimiento vegetal, pero su disponibilidad limitada en el suelo restringe el desarrollo de cultivos. La fijación biológica de nitrógeno y la solubilización de fósforo por bacterias son estrategias vitales para mejorar la disponibilidad de estos nutrientes. A pesar de su potencial, aún se requieren estudios para identificar y caracterizar cepas nativas con alto potencial biotecnológico. El objetivo de esta investigación fue evaluar el efecto de un biofertilizante a base de bacterias nativas solubilizadoras de fósforo y fijadoras de nitrógeno de vida libre sobre el desarrollo y rendimiento de un cultivo de yuca (Manihot esculenta Crantz) variedad MCOL 2066 (Chirosa). Las propiedades de promoción del crecimiento de las plantas se evaluaron mediante un bioensayo en condiciones de invernadero, utilizando un diseño experimental completamente al azar con un factor, cinco tratamientos y 15 repeticiones. Se realizó un análisis de varianza unidireccional (ANOVA) siguiendo la prueba post hoc de Tukey (p <0.05), con un nivel de significancia del 5%. La secuenciación del gen 16S rRNA revela la confirmación de aislamientos de Enterobacter cloacae (cepa S105E PP405613.1 y FG105B PP761660.1). En condiciones in vitro, se encontró que los aislados produjeron ácido indol acético, solubilizaron P y fijaron nitrógeno atmosférico en forma de amonio. La actividad solubilizadora de P coincidió con una disminución concomitante en el pH del medio (pH 7.0–<4.5). Se encontró que la inoculación bacteriana resultó en un incremento significativo en la altura de la planta, raíz y la biomasa. Por lo tanto, estos aislados de Enterobacter claocae podrían formularse y usarse aún más para aplicaciones de campo en cultivos de yuca. | spa |
dc.description.abstract | Nitrogen and phosphorus are essential for plant growth, yet their limited availability in soil restricts crop development. Biological nitrogen fixation and phosphorus solubilization by bacteria are crucial strategies to enhance the availability of these nutrients. Despite their potential, further studies are needed to identify and characterize native strains with high biotechnological potential. The purpose of this research was to assess the effect of a biofertilizer based on native phosphorus-solubilizing and free-living nitrogen-fixing bacteria on the development and yield of a cassava crop (Manihot esculenta Crantz) variety MCOL 2066 (Chirosa). The plant growth-promoting properties were evaluated through a bioassay under greenhouse conditions, using a completely randomized experimental design with one factor, five treatments, and 15 repetitions. A one-way analysis of variance (ANOVA) was conducted following Tukey's post hoc test (p < 0.05), with a significance level of 5%. Sequencing of the 16S rRNA gene confirmed isolations of Enterobacter cloacae (strain S105E PP405613.1 and FG105B PP761660.1). In vitro conditions revealed that the isolates produced indole acetic acid, solubilized phosphorus, and fixed atmospheric nitrogen as ammonia. The phosphorus solubilization activity coincided with a concomitant decrease in the medium's pH (pH 7.0–<4.5). Bacterial inoculation resulted in a significant increase in plant height, root, and biomass. Therefore, these Enterobacter cloacae isolates could be formulated and further used for field applications in cassava crops. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Biotecnología | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Introducción ...................................19 | |
dc.description.tableofcontents | Objetivos.......................................23 | |
dc.description.tableofcontents | Objetivo General.............................23 | |
dc.description.tableofcontents | Objetivos Específicos...............................23 | |
dc.description.tableofcontents | Marco Teórico.................................24 | |
dc.description.tableofcontents | La Yuca .......................................24 | |
dc.description.tableofcontents | Estado Actual.................24 | |
dc.description.tableofcontents | Clasificación Taxonómica..............................25 | |
dc.description.tableofcontents | Morfología de la Planta ....................26 | |
dc.description.tableofcontents | Formas Básicas y Ciclos del Fósforo en el Suelo..........................30 | |
dc.description.tableofcontents | Fósforo Orgánico en el Suelo.....................31 | |
dc.description.tableofcontents | Fósforo Inorgánico en el Suelo ................32 | |
dc.description.tableofcontents | Activador de Fósforo del Suelo: bacterias Solubilizadoras de Fosfato .........................33 | |
dc.description.tableofcontents | Biodiversidad y Aparición de Bacterias Solubilizadoras de Fósforo.....................34 | |
dc.description.tableofcontents | Mecanismo de Solubilización de Fósforo .............................................................35 | |
dc.description.tableofcontents | Aplicación de Bacterias Solubilizadoras de Fósforo en la Práctica Agrícola .......40 | |
dc.description.tableofcontents | Fijación Biológica de Nitrógeno..................42 | |
dc.description.tableofcontents | Metodología ..........................................45 | |
dc.description.tableofcontents | Tipo de Estudio........................45 | |
dc.description.tableofcontents | Área de Estudio............................45 | |
dc.description.tableofcontents | Caracterización de Bacterias Nativas Solubilizadoras de Fósforo (BNSF) y Fijadoras de Nitrógeno de Vida Libre (BFNVL) Aisladas a Partir de Muestras de Suelo del Medio Sinú...45 | |
dc.description.tableofcontents | Muestreo de Suelo...........................45 | |
dc.description.tableofcontents | Aislamiento de BNSF y BFNVL.......................................46 | |
dc.description.tableofcontents | Identificación Molecular de BNSF y BFNVL............................47 | |
dc.description.tableofcontents | Evaluación in vitro de la Actividad Solubilizadora de Fósforo, Fijadora de Nitrógeno y Productora de Ácido Indol Acético (AIA) de las Cepas Aisladas...........................................49 | |
dc.description.tableofcontents | Detección in vitro De La Actividad Solubilizadora De Fósforo ............................49 | |
dc.description.tableofcontents | Detección in vitro de la Actividad Fijadora de Nitrógeno................50 | |
dc.description.tableofcontents | Cuantificación in vitro de la Producción de AIA ..................51 | |
dc.description.tableofcontents | Evaluación del Efecto de un Biofertilizante a Base de BNSF y BFNVL Sobre el Desarrollo y Rendimiento de Plantas de Yuca Chirosa en Condiciones de Invernadero..........53 | |
dc.description.tableofcontents | Prueba De Antagonismo ....¿......................53 | |
dc.description.tableofcontents | Preparación del Biofertilizante con BNSF y BFNVL ..¿.............54 | |
dc.description.tableofcontents | Diseño Experimental........¿...............54 | |
dc.description.tableofcontents | Siembra del Material Vegetal en Condiciones de Invernadero .....¿..........55 | |
dc.description.tableofcontents | Fertilización Química ...............¿............56 | |
dc.description.tableofcontents | Evaluación de los Parámetros Biométricos de las Plantas ......¿......58 | |
dc.description.tableofcontents | Determinación del Porcentaje de Proteína en Hojas de Yuca........¿.........59 | |
dc.description.tableofcontents | Análisis Estadístico .............¿............59 | |
dc.description.tableofcontents | Resultados.............¿.............60 | |
dc.description.tableofcontents | Aislamiento de BNSF y BFNVL...............¿....60 | |
dc.description.tableofcontents | Evaluación in vitro de la Actividad Solubilizadora de Fósforo, Productora de AIA y Fijadora de Nitrógeno de las Poblaciones Bacterianas Aisladas .............................................61 | |
dc.description.tableofcontents | Detección in vitro de la Actividad Solubilizadora de Fósforo ...............................61 | |
dc.description.tableofcontents | Cuantificación in vitro de la Producción de Ácido Indol Acético (AIA) ................64 | |
dc.description.tableofcontents | Cuantificación in vitro de la Actividad Fijadora de Nitrógeno .............................65 | |
dc.description.tableofcontents | Identificación Molecular de BNSF y BFNVL........¿...........67 | |
dc.description.tableofcontents | Evaluación del Biofertilizante a Base de Enterobacter cloacae (Cepa S105E y FG105B) Sobre el Desarrollo y Rendimiento de Plantas de Yuca Chirosa en Condiciones de Invernadero Hasta los 120 DDS................................................................................................................69 | |
dc.description.tableofcontents | Evaluación de los Parámetros Biométricos de las Plantas de Yuca Chirosa.........69 | |
dc.description.tableofcontents | Determinación del Porcentaje de Proteína en Hojas de Plantas de Yuca Chirosa 83 | |
dc.description.tableofcontents | Discusión ........¿..............86 | |
dc.description.tableofcontents | Caracterización de BNSF y BFNVL..........¿............86 | |
dc.description.tableofcontents | Evaluación in vitro de la Actividad Solubilizadora de Fósforo, Fijadora de Nitrógeno y Productora de AIA de las Cepas Aisladas..............................................................................88 | |
dc.description.tableofcontents | Evaluación del Biofertilizante a Base de Enterobacter cloacae (Cepa S105E y FG105B) Sobre el Desarrollo y Rendimiento de Plantas de Yuca Chirosa en Condiciones de Invernadero Hasta los 120 DDS................................................................................................................91 | |
dc.description.tableofcontents | Conclusiones...¿................96 | |
dc.description.tableofcontents | Recomendaciones..............¿.................97 | |
dc.description.tableofcontents | Referencias Bibliográficas........¿..............98 | |
dc.description.tableofcontents | ANEXOS............¿..........140 | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Institucional Unicórdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8568 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Biotecnología | |
dc.relation.references | A Otekunrin, O., & Sawicka, B. (2019). Cassava, a 21st Century Staple Crop: How can Nigeria Harness Its Enormous Trade Potentials? Acta Scientific Agriculture, 3(8), 194-202. https://doi.org/10.31080/ASAG.2019.03.0586 | |
dc.relation.references | Abadi, V. A. J. M., Sepehri, M., Rahmani, H. A., Dolatabad, H. K., Shamshiripour, M., & Khatabi, B. (2021). Diversity and abundance of culturable nitrogen‐fixing bacteria in the phyllosphere of maize. Journal of Applied Microbiology, 131(2), 898-912. https://doi.org/10.1111/jam.14975 | |
dc.relation.references | Abo Elsoud, M. M., Hasan, S. F., & Elhateir, M. M. (2023). Optimization of Indole-3-acetic acid production by Bacillus velezensis isolated from Pyrus rhizosphere and its effect on plant growth. Biocatalysis and Agricultural Biotechnology, 50, 102714. https://doi.org/10.1016/j.bcab.2023.102714 | |
dc.relation.references | Al Dayel, M. F., & El Sherif, F. (2021). Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield and active compound compositions of Moringa oleifera under salinity stress. Saudi Journal of Biological Sciences, 28(3), 1687-1696. https://doi.org/10.1016/j.sjbs.2020.12.007 | |
dc.relation.references | Aliyat, F. Z., Maldani, M., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2022). Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms, 10(5), 980. https://doi.org/10.3390/microorganisms10050980 | |
dc.relation.references | Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971 | |
dc.relation.references | Amelework, A. B., Bairu, M. W., Maema, O., Venter, S. L., & Laing, M. (2021). Adoption and Promotion of Resilient Crops for Climate Risk Mitigation and Import Substitution: A Case Analysis of Cassava for South African Agriculture. Frontiers in Sustainable Food Systems, 5, 617783. https://doi.org/10.3389/fsufs.2021.617783 | |
dc.relation.references | Anand, K., Kumari, B., & Mallick, M. A. (2016). Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. 8(2). | |
dc.relation.references | Arenas, F., López-García, Á., Berná, L. M., Morte, A., & Navarro-Ródenas, A. (2022). Desert truffle mycorrhizosphere harbors organic acid releasing plant growth–promoting rhizobacteria, essentially during the truffle fruiting season. Mycorrhiza, 32(2), 193-202. https://doi.org/10.1007/s00572-021-01067-w | |
dc.relation.references | Asea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20(4), 459-464. https://doi.org/10.1016/0038-0717(88)90058-2 | |
dc.relation.references | Babu-Khan, S., Yeo, T., Martin, W., Duron, M., Rogers, R., & Goldstein, A. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3), 972-978. https://doi.org/10.1128/aem.61.3.972- 978.1995 | |
dc.relation.references | Banerjee, S., Palit, R., Sengupta, C., & Standing, D. (2010). Stress Induced Phosphate Solubilization by «Arthrobacter» Sp. And «Bacillus» Sp. Isolated from Tomato Rhizosphere. Australian Journal of Crop Science, 4(6), 378-383. https://doi.org/10.3316/informit.414789554792811 | |
dc.relation.references | Banik, S., & Dey, B. K. (1983). Phosphate-Solubilizing Potentiality of the Microorganisms Capable of Utilizing Aluminium Phosphate as a Sole Phosphate Source. Zentralblatt Für Mikrobiologie, 138(1), 17-23. https://doi.org/10.1016/S0232-4393(83)80060-2 | |
dc.relation.references | Barin, M., Asadzadeh, F., Hashemnejad, F., Vetukuri, R. R., & Kushwaha, S. (2022). Optimization of Culture Conditions for Zinc Phosphate Solubilization by Aspergillus sp. Using Response Surface Methodology. Journal of Soil Science and Plant Nutrition, 22(1), 1009-1018. https://doi.org/10.1007/s42729-021-00709-4 | |
dc.relation.references | Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia – Mediated Rock Phosphate Solubilization in Kaolinite and Montmorillonite Suspensions. Soil Science Society of America Journal, 63(6), 1703-1708. https://doi.org/10.2136/sssaj1999.6361703x | |
dc.relation.references | Behera, B. C., Singdevsachan, S. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2014). Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review. Biocatalysis and Agricultural Biotechnology, 3(2), 97-110. https://doi.org/10.1016/j.bcab.2013.09.008 | |
dc.relation.references | Bidondo, L. F., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J., & Godeas, A. (2011). Presymbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry, 43(9), 1866-1872. https://doi.org/10.1016/j.soilbio.2011.05.004 | |
dc.relation.references | Bose, A., Kher, M. M., Nataraj, M., & Keharia, H. (2016). Phytostimulatory effect of indole-3- acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatalysis and Agricultural Biotechnology, 6, 128-137. https://doi.org/10.1016/j.bcab.2016.03.005 | |
dc.relation.references | Bravo, R. C. (2023). Evaluación de la calidad del suelo en sistemas de uso de la tierra en el distrito de Padre Abad, región Ucayali. | |
dc.relation.references | Brito, L. F., López, M. G., Straube, L., Passaglia, L. M. P., & Wendisch, V. F. (2020). Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Frontiers in Microbiology, 11, 588605. https://doi.org/10.3389/fmicb.2020.588605 | |
dc.relation.references | Brown, S. P., Grillo, M. A., Podowski, J. C., & Heath, K. D. (2020). Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome, 8(1), 139. https://doi.org/10.1186/s40168-020-00915-9 | |
dc.relation.references | Buch, A., Archana, G., & Naresh Kumar, G. (2010). Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresource Technology, 101(2), 679-687. https://doi.org/10.1016/j.biortech.2009.08.075 | |
dc.relation.references | Bünemann, E. K. (2015). Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biology and Biochemistry, 89, 82-98. https://doi.org/10.1016/j.soilbio.2015.06.026 | |
dc.relation.references | Burén, S., Young, E. M., Sweeny, E. A., Lopez-Torrejón, G., Veldhuizen, M., Voigt, C. A., & Rubio, L. M. (2017). Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae. ACS Synthetic Biology, 6(6), 1043-1055. https://doi.org/10.1021/acssynbio.6b00371 | |
dc.relation.references | Camejo, D., Guzmán-Cedeño, Á., & Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiology and Biochemistry, 103, 10-23. https://doi.org/10.1016/j.plaphy.2016.02.035 | |
dc.relation.references | Campos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752. https://doi.org/10.3389/FPLS.2018.00752/BIBTEX | |
dc.relation.references | Canales, N., & Trujilo, M. (2021). La red de valor de la yuca y su potencial en la bioeconomía de Colombia. | |
dc.relation.references | Cardoso, P., Alves, A., Silveira, P., Sá, C., Fidalgo, C., Freitas, R., & Figueira, E. (2018). Bacteria from nodules of wild legume species: Phylogenetic diversity, plant growth promotion abilities and osmotolerance. Science of The Total Environment, 645, 1094-1102. https://doi.org/10.1016/j.scitotenv.2018.06.399 | |
dc.relation.references | Chakraborty, U., Chakraborty, B. N., Basnet, M., & Chakraborty, A. P. (2009). Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology, 107(2), 625-634. https://doi.org/10.1111/j.1365-2672.2009.04242.x | |
dc.relation.references | Chawngthu, L., Hnamte, R., & Lalfakzuala, R. (2020). Isolation and Characterization of Rhizospheric Phosphate Solubilizing Bacteria from Wetland Paddy Field of Mizoram, India. Geomicrobiology Journal, 37(4), 366-375. https://doi.org/10.1080/01490451.2019.1709108 | |
dc.relation.references | Chen, W., Yang, F., Zhang, L., & Wang, J. (2016). Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp . PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiology Journal, 33(10), 870-877. https://doi.org/10.1080/01490451.2015.1123329 | |
dc.relation.references | Chen, Y., Li, S., Liu, N., He, H., Cao, X., Lv, C., Zhang, K., & Dai, J. (2021). Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. Environmental Science and Pollution Research, 28(18), 23036-23047. https://doi.org/10.1007/s11356-020-12203-y | |
dc.relation.references | Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W.-A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002 | |
dc.relation.references | Choi, O., Kim, J., Kim, J.-G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2008). Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiology, 146(2), 657-668. https://doi.org/10.1104/pp.107.112748 | |
dc.relation.references | Choudhary, D. K., & Varma, A. (2017). Nitrogenase (a Key Enzyme): Structure and Function. En A. P. Hansen, D. K. Choudhary, P. K. Agrawal, & A. Varma (Eds.), Rhizobium Biology and Biotechnology (Vol. 50, pp. 293-307). Springer International Publishing. https://doi.org/10.1007/978-3-319-64982-5_14 | |
dc.relation.references | Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10), 1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025 | |
dc.relation.references | Cisneros R., C. A., & Sánchez de Prager, M. (2015). Solubilización de fosfatos por hongos asociados a un Andisol de tres agroecosistemas cafeteros de la región andina colombiana. Ingenium, 9(25), 37. https://doi.org/10.21774/ing.v9i25.586 | |
dc.relation.references | Cock, J. (1989). La yuca, nuevo potencial para un cultivo tradicional. CIAT. | |
dc.relation.references | Da Silva, J. S. A., De Medeiros, E. V., Da Costa, D. P., De Souza, C. A. F., De Oliveira, J. B., Da França, R. F., Souza-Motta, C. M., De Sousa Lima, J. R., & Hammecker, C. (2022). Biochar and Trichoderma aureoviride URM 5158 as alternatives for the management of cassava root rot. Applied Soil Ecology, 172, 104353. https://doi.org/10.1016/j.apsoil.2021.104353 | |
dc.relation.references | Darch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., & Chadwick, D. (2014). A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and Water: Implications for Water Quality. Critical Reviews in Environmental Science and Technology, 44(19), 2172-2202. https://doi.org/10.1080/10643389.2013.790752 | |
dc.relation.references | Davies‐Barnard, T., & Friedlingstein, P. (2020). The Global Distribution of Biological Nitrogen Fixation in Terrestrial Natural Ecosystems. Global Biogeochemical Cycles, 34(3), e2019GB006387. https://doi.org/10.1029/2019GB006387 | |
dc.relation.references | De Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 24(4), 358-364. https://doi.org/10.1007/s003740050258 | |
dc.relation.references | De Lima, J. D., Monteiro, P. H. R., Rivadavea, W. R., Barbosa, M., Cordeiro, R. D., Garboggini, F. F., Auer, C. G., & Da Silva, G. J. (2024). Potential of endophytic bacteria from Acacia mearnsii: Phosphate solubilization, indole acetic acid production, and application in wheat. Applied Soil Ecology, 196, 105315. https://doi.org/10.1016/j.apsoil.2024.105315 | |
dc.relation.references | Deepa, C. K., Dastager, S. G., & Pandey, A. (2010). Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World Journal of Microbiology and Biotechnology, 26(7), 1233-1240. https://doi.org/10.1007/s11274-009-0293-y | |
dc.relation.references | Devi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia, 77(10), 2933-2943. https://doi.org/10.1007/s11756-022-01127-2 | |
dc.relation.references | Dey, G., Maity, J. P., Banerjee, P., Sharma, R. K., Etesami, H., Bastia, T. K., Rath, P., Sukul, U., Huang, H.-B., Huang, K.-W., & Chen, C.-Y. (2024). Characterization of halotolerant phosphate-solubilizing rhizospheric bacteria from mangrove (Avicennia sp.) with biotechnological potential in agriculture and pollution mitigation. Biocatalysis and Agricultural Biotechnology, 55, 102960. https://doi.org/10.1016/j.bcab.2023.102960 | |
dc.relation.references | Din, I., Khan, H., Ahmad Khan, N., & Khil, A. (2021). Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. Journal of the Saudi Society of Agricultural Sciences, 20(7), 459-466. https://doi.org/10.1016/j.jssas.2021.05.008 | |
dc.relation.references | Do Carmo, T. S., Moreira, F. S., Cabral, B. V., Dantas, R. C. C., De Resende, M. M., Cardoso, V. L., & Ribeiro, E. J. (2019). Phosphorus Recovery from Phosphate Rocks Using PhosphateSolubilizing Bacteria. Geomicrobiology Journal, 36(3), 195-203. https://doi.org/10.1080/01490451.2018.1534901 | |
dc.relation.references | Domínguez, C. E. (1990). Yuca, investigacion, produccion y utilizacion. CIAT/PNUD. | |
dc.relation.references | Đorđević, S., Stanojević, D., Vidović, M., Mandić, V., & Trajković, I. (2017). The use of bacterial indole-3-acetic acid (IAA) for reduce of chemical fertilizers doses. HEMIJSKA INDUSTRIJA (Chemical Industry), 71(3), Article 3. https://doi.org/10.2298/HEMIND160317029D | |
dc.relation.references | Đorđević, S., Stanojević, D., Vidović, M., Mandić, V., & Trajković, I. (2017). The use of bacterial indole-3-acetic acid (IAA) for reduce of chemical fertilizers doses. HEMIJSKA INDUSTRIJA (Chemical Industry), 71(3), Article 3. https://doi.org/10.2298/HEMIND160317029D | |
dc.relation.references | Earl, C. D., Ronson, C. W., & Ausubel, F. M. (1987). Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. Journal of Bacteriology, 169(3), 1127-1136. https://doi.org/10.1128/jb.169.3.1127-1136.1987 | |
dc.relation.references | Edgren, T., & Nordlund, S. (2004). The fixABCX Genes in Rhodospirillum rubrum Encode a Putative Membrane Complex Participating in Electron Transfer to Nitrogenase. Journal of Bacteriology, 186(7), 2052-2060. https://doi.org/10.1128/JB.186.7.2052-2060.2004 | |
dc.relation.references | Elhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y., & Bargaz, A. (2022). Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. En Journal of Advanced Research (Vol. 38, pp. 13-28). Elsevier. https://doi.org/10.1016/j.jare.2021.08.014 | |
dc.relation.references | Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T., & Huang, J. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research, 22(7), 4907-4921. https://doi.org/10.1007/s11356-014-3754-2 | |
dc.relation.references | FAOSTAT. (2021). Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/faostat/es/#home | |
dc.relation.references | FAOSTAT. (2022). FAOSTAT. Organización de las Naciones Unidas para la Agricultura y la Alimentación, 2022. Producción de yuca en todos los países, 1961–2020. https://www.fao.org/faostat/en/#data/QCL | |
dc.relation.references | Ferreira, S. D. C., Nakasone, A. K., Do Nascimento, S. M. C., De Oliveira, D. A., Siqueira, A. S., Cunha, E. F. M., De Castro, G. L. S., & De Souza, C. R. B. (2021). Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium sp. Physiological and Molecular Plant Pathology, 116, 101709. https://doi.org/10.1016/j.pmpp.2021.101709 | |
dc.relation.references | Franco-Franklin, V., Moreno-Riascos, S., & Ghneim-Herrera, T. (2021). Are Endophytic Bacteria an Option for Increasing Heavy Metal Tolerance of Plants? A Meta-Analysis of the Effect Size. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.603668 | |
dc.relation.references | Fuchs, J. (2000). The laboratory medium used to grow biocontrol Pseudomonas sp. Pf153 influences its subsequent ability to protect cucumber from black root rot. Soil Biology and Biochemistry, 32(3), 421-424. https://doi.org/10.1016/S0038-0717(99)00169-8 | |
dc.relation.references | Gao, C., Zhang, M., Song, K., Wei, Y., & Zhang, S. (2020). Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137588 | |
dc.relation.references | Gao, Z., Li, P., Li, C., Tang, R., Wang, M., Chen, J., Yang, Y., He, Z., Xiao, Z., Ma, Y., & Chen, Y. (2024). Identification, functional annotation, and isolation of phosphorus-solubilizing bacteria in the rhizosphere soil of Swida wilsoniana (Wanger) Sojak. Applied Soil Ecology, 194, 105207. https://doi.org/10.1016/j.apsoil.2023.105207 | |
dc.relation.references | Garcia-Vallejo, M. C., & Alzate, C. A. C. (2024). Life cycle assessment of the cassava simplified value chain in Colombia and the use of cassava residues as energy carriers. Industrial Crops and Products, 210, 118135. https://doi.org/10.1016/j.indcrop.2024.118135 | |
dc.relation.references | Garofálo, L. I. (2017). “Respuesta del cultivo de girasol (Helianthus annuus L.) a la aplicación de dos bioestimulantes orgánicos en la zona de Pangua". | |
dc.relation.references | Garreto, F. G. S., Fernandes, A. M., Silva, J. A., Silva, R. M., Figueiredo, R. T., & Soratto, R. P. (2023). No-tillage and previous maize–palisadegrass intercropping reduce soil and water losses without decreasing root yield and quality of cassava. Soil and Tillage Research, 227, 105621. https://doi.org/10.1016/j.still.2022.105621 | |
dc.relation.references | Goldstein, A. H. (1995). Recent Progress in Understanding the Molecular Genetics and Biochemistry of Calcium Phosphate Solubilization by Gram Negative Bacteria. Biological Agriculture & Horticulture, 12(2), 185-193. https://doi.org/10.1080/01448765.1995.9754736 | |
dc.relation.references | Goldstein, A. H., & Liu, S. T. (1987). Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola. Nature Biotechnology, 5(1), 72-74. https://doi.org/10.1038/nbt0187-72 | |
dc.relation.references | Goswami, D., Dhandhukia, P., Patel, P., & Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169(1), 66-75. https://doi.org/10.1016/j.micres.2013.07.004 | |
dc.relation.references | Goyal, T., Mukherjee, A., Chouhan, G. K., Gaurav, A. K., Kumar, D., Abeysinghe, S., & Verma, J. P. (2024). Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling. Heliyon, 10(8), e29692. https://doi.org/10.1016/j.heliyon.2024.e29692 | |
dc.relation.references | Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant Growth-Promoting and RhizosphereCompetent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current Microbiology, 58(4), 371-377. https://doi.org/10.1007/s00284-008- 9339-x | |
dc.relation.references | Guo, K., Yang, J., Yu, N., Luo, L., & Wang, E. (2023). Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Communications, 4(2), 100499. https://doi.org/10.1016/j.xplc.2022.100499 | |
dc.relation.references | Gupta, R., Kumari, A., Sharma, S., Alzahrani, O. M., Noureldeen, A., & Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35-42. https://doi.org/10.1016/j.sjbs.2021.09.075 | |
dc.relation.references | Haile, F., G/Medhin, M. T., Kifle, Z. D., Dejenie, T. A., & Berhane, N. (2022). Synergetic antibacterial activity of Vernonia auriculifera Hiern and Buddleja polystachya Fresen on selected human pathogenic bacteria. Metabolism Open, 16, 100210. https://doi.org/10.1016/j.metop.2022.100210 | |
dc.relation.references | Hao, J., Knoll, A. H., Huang, F., Schieber, J., Hazen, R. M., & Daniel, I. (2020). Cycling phosphorus on the Archean Earth: Part II. Phosphorus limitation on primary production in Archean ecosystems. Geochimica et Cosmochimica Acta, 280, 360-377. https://doi.org/10.1016/j.gca.2020.04.005 | |
dc.relation.references | Hesterberg, D., Zhou, W., Hutchison, K. J., Beauchemin, S., & Sayers, D. E. (1999). XAFS study of adsorbed and mineral forms of phosphate. Journal of Synchrotron Radiation, 6(3), 636- 638. https://doi.org/10.1107/S0909049599000370 | |
dc.relation.references | Hk, P., Rv, V., & Hn, S. (2022). Selective Enrichment Method for Isolation of Efficient Phosphate Solubilizing Bacteria from Soil. Communications in Soil Science and Plant Analysis, 53(12), 1532-1541. https://doi.org/10.1080/00103624.2022.2055054 | |
dc.relation.references | Holland-Moritz, H., Stuart, J. E. M., Lewis, L. R., Miller, S. N., Mack, M. C., Ponciano, J. M., McDaniel, S. F., & Fierer, N. (2021). The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome, 9(1), 53. https://doi.org/10.1186/s40168- 021-01001-4 | |
dc.relation.references | Hong-xing, X., Ya-jun, Y., Yan-hui, L., Xu-song, Z., Jun-ce, T., Feng-xiang, L., Qiang, F., & Zhong-xian, L. (2017). Sustainable Management of Rice Insect Pests by Non-ChemicalInsecticide Technologies in China. En Rice Science (Vol. 24, Número 2, pp. 61-72). Elsevier. https://doi.org/10.1016/j.rsci.2017.01.001 | |
dc.relation.references | Hou, E., Chen, C., Luo, Y., Zhou, G., Kuang, Y., Zhang, Y., Heenan, M., Lu, X., & Wen, D. (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24(8), 3344-3356. https://doi.org/10.1111/gcb.14093 | |
dc.relation.references | Howeler, R., Lutaladio, N., & Thomas, G. (2013). Save and grow: Cassava: a guide to sustainable production intensification. (No Title). https://cir.nii.ac.jp/crid/1130000795968788864 | |
dc.relation.references | Husseiny, S., Dishisha, T., Soliman, H. A., Adeleke, R., & Raslan, M. (2021). Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L. South African Journal of Botany, 143, 238-247. https://doi.org/10.1016/j.sajb.2021.07.042 | |
dc.relation.references | Illmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biology and Biochemistry, 27(3), 257-263. https://doi.org/10.1016/0038- 0717(94)00190-C | |
dc.relation.references | ITIS. (2023). The Integrated Taxonomic Information System (Versión 2023-10-31) [dataset]. ITIS. https://doi.org/10.48580/DFGNM-4KY | |
dc.relation.references | Jalali, M., & Sajadi Tabar, S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science, 174(4), 523-531. https://doi.org/10.1002/jpln.201000217 | |
dc.relation.references | Jambhulkar, P. P., Sharma, P., & Yadav, R. (2016). Delivery systems for introduction of microbial inoculants in the field. En Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications (pp. 199-218). Springer India. https://doi.org/10.1007/978- 81-322-2644-4_13 | |
dc.relation.references | James, E. K. (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 65(2-3), 197-209. https://doi.org/10.1016/S0378-4290(99)00087-8 | |
dc.relation.references | Ji, C., Liu, Z., Hao, L., Song, X., Wang, C., Liu, Y., Li, H., Li, C., Gao, Q., & Liu, X. (2020). Effects of Enterobacter cloacae HG-1 on the Nitrogen-Fixing Community Structure of Wheat Rhizosphere Soil and on Salt Tolerance. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01094 | |
dc.relation.references | Jiao, H., Wang, R., Qin, W., & Yang, J. (2024). Screening of rhizosphere nitrogen fixing, phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.) Roem. And the effect on apple growth. Journal of Plant Physiology, 292, 154142. https://doi.org/10.1016/j.jplph.2023.154142 | |
dc.relation.references | Johansen, A., & Olsson, S. (2005). Using Phospholipid Fatty Acid Technique to Study Short-Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere. Microbial Ecology, 49(2), 272-281. https://doi.org/10.1007/s00248-004-0135-2 | |
dc.relation.references | Kallas, T., Coursin, T., & Rippka, R. (1985). Different organization of nif genes in nonheterocystous and heterocystous cyanobacteria. Plant Molecular Biology, 5(5), 321- 329. https://doi.org/10.1007/BF00020630 | |
dc.relation.references | Khalifa, A. Y. Z., Alsyeeh, A.-M., Almalki, M. A., & Saleh, F. A. (2016). Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of nonnodulating Medicago sativa. Saudi Journal of Biological Sciences, 23(1), 79-86. https://doi.org/10.1016/j.sjbs.2015.06.008 | |
dc.relation.references | Khan, M., Imran, Q. M., Shahid, M., Mun, B.-G., Lee, S.-U., Khan, M. A., Hussain, A., Lee, I.-J., & Yun, B.-W. (2019). Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC Plant Biology, 19(1), 602. https://doi.org/10.1186/s12870-019-2210-3 | |
dc.relation.references | Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 56(1), 73-98. https://doi.org/10.1080/03650340902806469 | |
dc.relation.references | Khourchi, S., Elhaissoufi, W., Loum, M., Ibnyasser, A., Haddine, M., Ghani, R., Barakat, A., Zeroual, Y., Rchiad, Z., Delaplace, P., & Bargaz, A. (2022). Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiological Research, 262, 127094. https://doi.org/10.1016/J.MICRES.2022.127094 | |
dc.relation.references | Khumairah, F. H., Setiawati, M. R., Fitriatin, B. N., Simarmata, T., Alfaraj, S., Ansari, M. J., Enshasy, H. A. E., Sayyed, R. Z., & Najafi, S. (2022). Halotolerant Plant GrowthPromoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Frontiers in Microbiology, 13, 905210. https://doi.org/10.3389/fmicb.2022.905210 | |
dc.relation.references | Khuong, N. Q., Tuong, N. V., Nhi, M. K., Xuan, L. N. T., Thu, L. T. M., Quang, L. T., & Phong, N. T. (2024). Potency of endophytic nitrogen-fixing bacteria Burkholderia tropica LVT08c and Enterobacter cloacae N-VT01 in improving soil fertility and pineapple yield on acid sulfate soil. Scientia Horticulturae, 331, 113153. https://doi.org/10.1016/j.scienta.2024.113153 | |
dc.relation.references | Kim, K. Y., Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., & Suh, J. S. (2003). 2-Ketogluconic Acid Production and Phosphate Solubilization by Enterobacter intermedium. Current Microbiology, 47(2), 87-92. https://doi.org/10.1007/s00284-002-3951-y | |
dc.relation.references | Kim, Y., Bae, B., & Choung, Y. (2005). Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Bioscience and Bioengineering, 99(1), 23-29. https://doi.org/10.1263/jbb.99.23 | |
dc.relation.references | Kumar, A., & Rai, L. C. (2017). Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain. 3 Biotech, 7(3), 199. https://doi.org/10.1007/s13205-017-0810-x | |
dc.relation.references | Kumar, C., Yadav, K., Archana, G., & Naresh Kumar, G. (2013). 2-Ketogluconic Acid Secretion by Incorporation of Pseudomonas putida KT 2440 Gluconate Dehydrogenase (gad) Operon in Enterobacter asburiae PSI3 Improves Mineral Phosphate Solubilization. Current Microbiology, 67(3), 388-394. https://doi.org/10.1007/s00284-013-0372-z | |
dc.relation.references | Kumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921. | |
dc.relation.references | Kumar, S., Diksha, Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094 | |
dc.relation.references | KUMAR, S., SUYAL, D. C., Dhauni, N., Bhoriyal, M., & Reeta, G. (2014). Relative plant growth promoting potential of Himalayan Psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. And Eleusine coracana (L.)Gaertn. MICROBIOLOGY RESEARCH. http://go7publish.com/id/eprint/2770/ | |
dc.relation.references | Lambers, H. (2022). Phosphorus Acquisition and Utilization in Plants. Annual Review of Plant Biology, 73(1), 17-42. https://doi.org/10.1146/annurev-arplant-102720-125738 | |
dc.relation.references | Lara, M. C., Villalba, A. M., & Oviedo, Z. L. E. (2008). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6-14. | |
dc.relation.references | Lee Díaz, A. S., Macheda, D., Saha, H., Ploll, U., Orine, D., & Biere, A. (2021). Tackling the Context-Dependency of Microbial-Induced Resistance. Agronomy, 11(7), 1293. https://doi.org/10.3390/agronomy11071293 | |
dc.relation.references | Lee, S., Reth, A., Meletzus, D., Sevilla, M., & Kennedy, C. (2000). Characterization of a Major Cluster of nif , fix , and Associated Genes in a Sugarcane Endophyte, Acetobacter diazotrophicus. Journal of Bacteriology, 182(24), 7088-7091. https://doi.org/10.1128/JB.182.24.7088-7091.2000 | |
dc.relation.references | Lehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. Routledge. | |
dc.relation.references | Li, C., Li, Q., Wang, Z., Ji, G., Zhao, H., Gao, F., Su, M., Jiao, J., Li, Z., & Li, H. (2019). Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 9(1), 15291. https://doi.org/10.1038/s41598- 019-51804-7 | |
dc.relation.references | Li, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.- L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375 | |
dc.relation.references | Li, H.-Z., Bi, Q., Yang, K., Zheng, B.-X., Pu, Q., & Cui, L. (2019). D 2 O-Isotope-Labeling Approach to Probing Phosphate-Solubilizing Bacteria in Complex Soil Communities by Single-Cell Raman Spectroscopy. Analytical Chemistry, 91(3), 2239-2246. https://doi.org/10.1021/acs.analchem.8b04820 | |
dc.relation.references | Li, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates. International Journal of Molecular Sciences, 18(7), 1253. https://doi.org/10.3390/ijms18071253 | |
dc.relation.references | Liang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. https://doi.org/10.1038/s41396-020-0632-4 | |
dc.relation.references | Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13(5), 1314-1335. https://doi.org/10.1111/1751-7915.13517 | |
dc.relation.references | Liu, F.-P., Liu, H.-Q., Zhou, H.-L., Dong, Z.-G., Bai, X.-H., Bai, P., & Qiao, J.-J. (2014). Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils, 50(6), 927-937. https://doi.org/10.1007/s00374-014-0913-z | |
dc.relation.references | Liu, Q., Liu, J., Zhang, P., & He, S. (2014). Root and Tuber Crops. En Encyclopedia of Agriculture and Food Systems (pp. 46-61). Elsevier. https://doi.org/10.1016/B978-0-444-52512- 3.00151-0 | |
dc.relation.references | Liu, X., Chen, C., Wang, J., Zou, S., & Long, X. (2021). Phosphorus solubilizing bacteria Bacillus thuringiensis and Pantoea ananatis simultaneously promote soil inorganic phosphate dissolution and soil Pb immobilization. Rhizosphere, 20, 100448. https://doi.org/10.1016/j.rhisph.2021.100448 | |
dc.relation.references | Liu, Y., He, P., He, P., Munir, S., Wu, Y., Wang, J., Kong, B., Lu, C., Li, X., Tian, Y., & He, Y. (2024). Potential rhizospheric bacteria benefit tobacco health during the incidence of tobacco black shank disease. Biological Control, 105448. https://doi.org/10.1016/j.biocontrol.2024.105448 | |
dc.relation.references | Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003 | |
dc.relation.references | Lourenco, S. O., Barbarino, E., De-Paula, J. C., Pereira, L. O. D. S., & Marquez, U. M. L. (2002). Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233-241. https://doi.org/10.1111/j.1440-1835.2002.tb00156.x | |
dc.relation.references | Luna-Castellanos, L. L., Espinosa-Carvajal, M. R., De-La-Ossa-Albis, V. A., Panza-Tapia, B. D., & Garcia-Peña, J. A. (2018). Selección de herbicidas para el control de arvenses en yuca (Manihot esculenta Crantz) en Bolívar, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(3), 621-631. https://doi.org/10.17584/rcch.2018v12i3.7895 | |
dc.relation.references | Machaca, M. L. (2017). Bacterias solubilizadoras de fosfato del género Bacillus en suelos de la provincia de El Collao (Puno) y su efecto en la germinación y crecimiento de quinua. | |
dc.relation.references | Madhaiyan, M., Alex, T. H. H., Ngoh, S. T., Prithiviraj, B., & Ji, L. (2015). Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnology for Biofuels, 8(1), 222. https://doi.org/10.1186/s13068- 015-0404-y | |
dc.relation.references | Maharana, R., & Dhal, N. K. (2022). Solubilization of rock phosphate by phosphate solubilizing bacteria isolated from effluent treatment plant sludge of a fertilizer plant. Folia Microbiologica, 67(4), 605-615. https://doi.org/10.1007/s12223-022-00953-w | |
dc.relation.references | Maitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J. B., Shah, M. M. R., Barek, V., Ondrisik, P., Skalický, M., & Hossain, A. (2021). Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms, 10(1), 51. https://doi.org/10.3390/microorganisms10010051 | |
dc.relation.references | Maltais-Landry, G., Scow, K., & Brennan, E. (2014). Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in California agricultural soils. Soil Biology and Biochemistry, 78, 255-262. https://doi.org/10.1016/j.soilbio.2014.08.013 | |
dc.relation.references | Mawarda, P. C., Le Roux, X., Dirk Van Elsas, J., & Salles, J. F. (2020). Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148, 107874. https://doi.org/10.1016/j.soilbio.2020.107874 | |
dc.relation.references | Mederos, V. (2006). Embriogénesis somática en yuca (Manihot esculenta Crantz). Ciego de Ávila, Cuba: Tesis en opción al grado científico de Doctor en Ciencias Agrícolas. Universidad de Ciego de Ávila. Centro de Bioplantas. | |
dc.relation.references | Meng, X., Wang, Z., He, S., Shi, L., Song, Y., Lou, X., & He, D. (2019). Endogenous hormone levels and activities of IAA-modifying enzymes during adventitious rooting of tree peony cuttings and grafted scions. Horticulture, Environment, and Biotechnology, 60(2), 187- 197. https://doi.org/10.1007/s13580-018-00121-5 | |
dc.relation.references | Meyer, G., Maurhofer, M., Frossard, E., Gamper, H. A., Mäder, P., Mészáros, É., SchönholzerMauclaire, L., Symanczik, S., & Oberson, A. (2019). Pseudomonas protegens CHA0 does not increase phosphorus uptake from 33P labeled synthetic hydroxyapatite by wheat grown on calcareous soil. Soil Biology and Biochemistry, 131, 217-228. https://doi.org/10.1016/j.soilbio.2019.01.015 | |
dc.relation.references | Meyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline Quinone Biosynthesis Gene pqqC , a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate-Solubilizing Pseudomonads. Applied and Environmental Microbiology, 77(20), 7345-7354. https://doi.org/10.1128/AEM.05434-11 | |
dc.relation.references | Minagricultura. (2019). Cifras sectoriales: Subsector productivo de la yuca. https://co.search.yahoo.com/search?fr=mcafee&type=E210CO91215G0&p=Parra%2C+J .+(2019).+Cifras+sectoriales%3A+Subsector+productivo+de+la+yuca.+https%3A%2F% 2Fsioc.minagricultura.gov.co%2FYuca%2F+Documentos%2F2019-06- 30%2520Cifras%2520Sectoriales.pdf | |
dc.relation.references | Minagricultura. (2021). Cadena Productiva de la Yuca. | |
dc.relation.references | Miranda, C. G., Speranza, P., & Sato, A. C. K. (2023). Evaluation of cassava leaves extract as a material to produce biopolymer-based films. Food Hydrocolloids, 144, 108944. https://doi.org/10.1016/j.foodhyd.2023.108944 | |
dc.relation.references | Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5, 606815. https://doi.org/10.3389/fsufs.2021.606815 | |
dc.relation.references | Morales, M. (2007). Los biorfertilizantes. Una alternativa productiva, económica y sustentable. Estudios agrarios, 36. https://biblat.unam.mx/es/revista/estudios-agrarios/articulo/losbiofertilizantes-una-alternativa-productiva-economica-y-sustentable | |
dc.relation.references | Moreira, J. C. F., Brum, M., De Almeida, L. C., Barrera-Berdugo, S., De Souza, A. A., De Camargo, P. B., Oliveira, R. S., Alves, L. F., Rosado, B. H. P., & Lambais, M. R. (2021). Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. Science of The Total Environment, 773, 145066. https://doi.org/10.1016/j.scitotenv.2021.145066 | |
dc.relation.references | Mosimann, C., Oberhänsli, T., Ziegler, D., Nassal, D., Kandeler, E., Boller, T., Mäder, P., & Thonar, C. (2017). Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02150 | |
dc.relation.references | Nacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T. W., & Boonlue, S. (2020). Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 10(1), 4916. https://doi.org/10.1038/s41598-020-61846-x | |
dc.relation.references | Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12(6), 567-572. https://doi.org/10.1007/BF00327716 | |
dc.relation.references | Nassar, N., Junior, O., Sousa, M., & Ortiz, R. (2009). Improving Carotenoids and Amino-Acids in Cassava. Recent Patents on Food, Nutrition & Agriculturee, 1(1), 32-38. https://doi.org/10.2174/2212798410901010032 | |
dc.relation.references | Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x | |
dc.relation.references | Negi, R., Kaur, T., Devi, R., Kour, D., & Yadav, A. N. (2022). Assessment of nitrogen-fixing endophytic and mineral solubilizing rhizospheric bacteria as multifunctional microbial consortium for growth promotion of wheat and wild wheat relative Aegilops kotschyi. Heliyon, 8(12), e12579. https://doi.org/10.1016/j.heliyon.2022.e12579 | |
dc.relation.references | Negrete, P. J. L., & Esquivel, A. L. M. (2018). AISLAMIENTO, IDENTIFICACIÓN Y EVALUACIÓN DE CEPAS NATIVAS SOLUBILIZADORAS DE FOSFATO EN ZONA RURAL DE MONTERÍA CÓRDOBA CORE View metadata, citation and similar papers at core.ac.uk provided by Repositorio de la Universidad de Córdoba [PhD Thesis]. | |
dc.relation.references | Nejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16, 101060. https://doi.org/10.1016/j.jafr.2024.101060 | |
dc.relation.references | Nyirakanani, C., Bizimana, J. P., Kwibuka, Y., Nduwumuremyi, A., Bigirimana, V. D. P., Bucagu, C., Lassois, L., Malice, E., Gengler, N., Massart, S., Bragard, C., Habtu, M., Brostaux, Y., Thonar, C., & Vanderschuren, H. (2021). Farmer and Field Survey in Cassava-Growing Districts of Rwanda Reveals Key Factors Associated With Cassava Brown Streak Disease Incidence and Cassava Productivity. Frontiers in Sustainable Food Systems, 5, 699655. https://doi.org/10.3389/fsufs.2021.699655 | |
dc.relation.references | Oliva, J. (2017). Evaluación del rendimiento de cultivares de yuca biofortificada Santa Rosalía Zacapa. Universidad Rafael Landívar, 1-13. | |
dc.relation.references | Orek, C. (2024). A review of management of major arthropod pests affecting cassava production in Sub-Saharan Africa. Crop Protection, 175, 106465. https://doi.org/10.1016/j.cropro.2023.106465 | |
dc.relation.references | Ortega-Ortega, Y., Sarmiento-López, L. G., Baylón-Palomino, A., Vázquez-Lee, J., MaldonadoBonilla, L. D., Flores-Olivas, A., & Valenzuela-Soto, J. H. (2024). Enterobacter sp. DBA51 produces ACC deaminase and promotes the growth of tomato (Solanum lycopersicum L.) and tobacco (Nicotiana tabacum L.) plants under greenhouse condition. Current Research in Microbial Sciences, 6, 100207. https://doi.org/10.1016/j.crmicr.2023.100207 | |
dc.relation.references | Ospina, B. (2002). La Yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización. CIAT. | |
dc.relation.references | Palladini, G., Garbarino, C., Luppi, A., Russo, S., Filippi, A., Arrigoni, N., Massella, E., & Ricchi, M. (2023). Comparison between broth microdilution and agar disk diffusion methods for antimicrobial susceptibility testing of bovine mastitis pathogens. Journal of Microbiological Methods, 212, 106796. https://doi.org/10.1016/j.mimet.2023.106796 | |
dc.relation.references | Panigrahi, S., Mohanty, S., & Rath, C. C. (2020). Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South African Journal of Botany, 134, 17-26. https://doi.org/10.1016/j.sajb.2019.09.017 | |
dc.relation.references | Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829-836. https://doi.org/10.1016/j.jhazmat.2010.09.095 | |
dc.relation.references | Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., & Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133. https://doi.org/10.1016/j.micres.2004.10.003 | |
dc.relation.references | Parmar, A., Sturm, B., & Hensel, O. (2017a). Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Security, 9(5), 907-927. https://doi.org/10.1007/s12571-017-0717-8 | |
dc.relation.references | Parmar, A., Sturm, B., & Hensel, O. (2017b). Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. En Food Security (Vol. 9, Número 5, pp. 907-927). Springer Netherlands. https://doi.org/10.1007/s12571-017-0717- 8 | |
dc.relation.references | Patel, D. K., Archana, G., & Kumar, G. N. (2008). Variation in the Nature of Organic Acid Secretion and Mineral Phosphate Solubilization by Citrobacter sp. DHRSS in the Presence of Different Sugars. Current Microbiology, 56(2), 168-174. https://doi.org/10.1007/s00284-007-9053-0 | |
dc.relation.references | Patrick, O. R., Abimbola, O. A., & Adeniyi, A. O. (2018). Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. African Journal of Microbiology Research, 12(34), 829-834. https://doi.org/10.5897/AJMR2018.8957 | |
dc.relation.references | Pérez, F. L. P., & Oviedo, Z. L. E. (2019). CARACTERIZACIÓN DE BACTERIAS NATIVAS CON POTENCIAL BIOFERTILIZANTE AISLADAS DE SUELOS DEL DEPARTAMENTO DE SUCRE. En Biotecnología aplicada al sector agropecuario en el departamento de Sucre. https://doi.org/10.21892/9789585547063.11 | |
dc.relation.references | Pineda-Rodriguez, Y. Y., Pompelli, M. F., Jarma-Orozco, A., Rodríguez, N. V., & RodriguezPaez, L. A. (2023). A New and Profitable Protocol to DNA Extraction in Limnospira maxima. Methods and Protocols, 6(4), Article 4. https://doi.org/10.3390/mps6040062 | |
dc.relation.references | Pompelli, M. F., Mendes, K. R., Ramos, M. V., Santos, J. N. B., Youssef, D. T. A., Pereira, J. D., Endres, L., Jarma-Orozco, A., Solano-Gomes, R., Jarma-Arroyo, B., Silva, A. L. J., Santos, M. A., & Antunes, W. C. (2019). Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. Journal of Arid Land, 11(6), 795-810. https://doi.org/10.1007/s40333-019-0016-7 | |
dc.relation.references | Postma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46(3), 464-469. https://doi.org/10.1016/j.apsoil.2010.08.016 | |
dc.relation.references | Prietzel, J., Harrington, G., Häusler, W., Heister, K., Werner, F., & Klysubun, W. (2016). Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K -edge XANES spectroscopy. Journal of Synchrotron Radiation, 23(2), 532-544. https://doi.org/10.1107/S1600577515023085 | |
dc.relation.references | Qin, S., Zhang, H., He, Y., Chen, Z., Yao, L., & Han, H. (2023). Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. Science of the Total Environment, 868. https://doi.org/10.1016/j.scitotenv.2023.161685 | |
dc.relation.references | Rafi, M. M., Krishnaveni, M. S., & Charyulu, P. B. B. N. (2019). Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. En Recent Developments in Applied Microbiology and Biochemistry (pp. 223-233). Elsevier. https://doi.org/10.1016/B978-0-12-816328-3.00017-9 | |
dc.relation.references | Rahman, A., Sitepu, I. R., Tang, S.-Y., & Hashidoko, Y. (2010). Salkowski’s Reagent Test as a Primary Screening Index for Functionalities of Rhizobacteria Isolated from Wild Dipterocarp Saplings Growing Naturally on Medium-Strongly Acidic Tropical Peat Soil. Bioscience, Biotechnology, and Biochemistry, 74(11), 2202-2208. https://doi.org/10.1271/bbb.100360 | |
dc.relation.references | Raymond, N. S., Gómez‐Muñoz, B., Van Der Bom, F. J. T., Nybroe, O., Jensen, L. S., Müller‐ Stöver, D. S., Oberson, A., & Richardson, A. E. (2021). Phosphate‐solubilising microorganisms for improved crop productivity: A critical assessment. New Phytologist, 229(3), 1268-1277. https://doi.org/10.1111/nph.16924 | |
dc.relation.references | Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125, 107460. https://doi.org/10.1016/j.ecolind.2021.107460 | |
dc.relation.references | Reis, C. R. G., Pacheco, F. S., Reed, S. C., Tejada, G., Nardoto, G. B., Forti, M. C., & Ometto, J. P. (2020). Biological nitrogen fixation across major biomes in Latin America: Patterns and global change effects. Science of The Total Environment, 746, 140998. https://doi.org/10.1016/j.scitotenv.2020.140998 | |
dc.relation.references | Rfaki, A., Zennouhi, O., Aliyat, F. Z., Nassiri, L., & Ibijbijen, J. (2020). Isolation, Selection and Characterization of Root-Associated Rock Phosphate Solubilizing Bacteria in Moroccan Wheat ( Triticum aestivum L.). Geomicrobiology Journal, 37(3), 230-241. https://doi.org/10.1080/01490451.2019.1694106 | |
dc.relation.references | Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897. https://doi.org/10.1071/PP01093 | |
dc.relation.references | Roberts, T. L., & Johnston, A. E. (2015). Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling, 105, 275-281. https://doi.org/10.1016/j.resconrec.2015.09.013 | |
dc.relation.references | Robinson, W. D., Park, J., Tran, H. T., Del Vecchio, H. A., Ying, S., Zins, J. L., Patel, K., McKnight, T. D., & Plaxton, W. C. (2012). The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany, 63(18), 6531-6542. https://doi.org/10.1093/jxb/ers309 | |
dc.relation.references | Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287(1-2), 15-21. https://doi.org/10.1007/s11104-006-9056-9 | |
dc.relation.references | Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-w | |
dc.relation.references | Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441-448. https://doi.org/10.1016/0022-2836(75)90213-2 | |
dc.relation.references | Sano, H., Wakui, A., Kawachi, M., Washio, J., Abiko, Y., Mayanagi, G., Yamaki, K., Tanaka, K., Takahashi, N., & Sato, T. (2021). Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. Journal of Oral Biosciences, 63(3), 292-297. https://doi.org/10.1016/j.job.2021.05.003 | |
dc.relation.references | Sashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2(4), 521-529. https://doi.org/10.1111/j.1751- 7915.2009.00119.x | |
dc.relation.references | Savary, S., Horgan, F., Willocquet, L., & Heong, K. L. (2012). A review of principles for sustainable pest management in rice. En Crop Protection (Vol. 32, pp. 54-63). Elsevier. https://doi.org/10.1016/j.cropro.2011.10.012 | |
dc.relation.references | Sawada, H., Kuykendall, L. D., & Young, J. M. (2003). Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. The Journal of General and Applied Microbiology, 49(3), 155-179. https://doi.org/10.2323/jgam.49.155 | |
dc.relation.references | Secco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A. K., & Rouached, H. (2017). Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 37(7), 898-910. https://doi.org/10.1080/07388551.2016.1268089 | |
dc.relation.references | Shah, V. K., & Brill, W. J. (1977). Isolation of an iron-molybdenum cofactor from nitrogenase. Proceedings of the National Academy of Sciences, 74(8), 3249-3253. https://doi.org/10.1073/pnas.74.8.3249 | |
dc.relation.references | Shameem M, R., Sonali J, M. I., Kumar, P. S., Rangasamy, G., Gayathri, K. V., & Parthasarathy, V. (2023). Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogenfixing bacteria isolated from rhizosphere soil. Environmental Research, 220, 115200. https://doi.org/10.1016/j.envres.2022.115200 | |
dc.relation.references | Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587 | |
dc.relation.references | Singh, A., Parmar, N., Kuhad, R. C., & Ward, O. P. (2011). Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (Vol. 108, pp. 1-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_1 | |
dc.relation.references | Singh, R. P., Pandey, D. M., Jha, P. N., & Ma, Y. (2022). ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant. PLOS ONE, 17(5), e0267127. https://doi.org/10.1371/journal.pone.0267127 | |
dc.relation.references | Singh, V., & Kumar, B. (2024). A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere, 29, 100843. https://doi.org/10.1016/j.rhisph.2023.100843 | |
dc.relation.references | Smil, V. (2000). P HOSPHORUS IN THE E NVIRONMENT: Natural Flows and Human Interferences. Annual Review of Energy and the Environment, 25(1), 53-88. https://doi.org/10.1146/annurev.energy.25.1.53 | |
dc.relation.references | Son, H.-J., Park, G.-T., Cha, M.-S., & Heo, M.-S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204-210. https://doi.org/10.1016/j.biortech.2005.02.021 | |
dc.relation.references | Song, O.-R., Lee, S.-J., Lee, Y.-S., Lee, S.-C., Kim, K.-K., & Choi, Y.-L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39, 151-156. https://doi.org/10.1590/S1517- 83822008000100030 | |
dc.relation.references | Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). Efficacy of phosphate solubilizing Actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere, 17, 100284. https://doi.org/10.1016/j.rhisph.2020.100284 | |
dc.relation.references | Stanton, D. E., Batterman, S. A., Von Fischer, J. C., & Hedin, L. O. (2019). Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology, 100(9), e02795. https://doi.org/10.1002/ecy.2795 | |
dc.relation.references | Suárez, L., & Mederos, V. (2011). Apuntes sobre el cultivo de la yuca (Manihot esculenta Crantz). Tendencias actuales. Cultivos Tropicales, 32(3), 27-35. | |
dc.relation.references | Sullivan, B. W., Smith, W. K., Townsend, A. R., Nasto, M. K., Reed, S. C., Chazdon, R. L., & Cleveland, C. C. (2014). Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Sciences, 111(22), 8101-8106. https://doi.org/10.1073/pnas.1320646111 | |
dc.relation.references | Sun, S., DeLuca, T. H., Zhang, J., Wang, G., Sun, X., Hu, Z., Wang, W., & Zhang, W. (2022). Evidence of endophytic nitrogen fixation as a potential mechanism supporting colonization of non-nodulating pioneer plants on a glacial foreland. Biology and Fertility of Soils, 58(5), 527-539. https://doi.org/10.1007/s00374-022-01640-1 | |
dc.relation.references | Sunarpi, H., Nikmatullah, A., Sunarwidhi, A. L., Sapitri, I., Ilhami, B. T. K., Widyastuti, S., & Prasedya, E. S. (2020). Growth and yield of rice plants (Oryza sativa) grown in soil media containing several doses of inorganic fertilizers and sprayed with lombok brown algae extracts. IOP Conference Series: Earth and Environmental Science, 594(1), 012032. https://doi.org/10.1088/1755-1315/594/1/012032 | |
dc.relation.references | Tang, A., Haruna, A. O., Majid, N. M. A., & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030442 | |
dc.relation.references | Tejera-Hernández, B., Heydrich-Pérez, M., & Rojas-Badía, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357. https://doi.org/10.15517/am.v24i2.12535 | |
dc.relation.references | Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158 | |
dc.relation.references | Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A.-C. (2017). Perspectives and Challenges of Microbial Application for Crop Improvement. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00049 | |
dc.relation.references | Tsegaye, Z., Alemu, T., Desta, F. A., & Assefa, F. (2022). Plant growth-promoting rhizobacterial inoculation to improve growth, yield, and grain nutrient uptake of teff varieties. Frontiers in Microbiology, 13, 896770. https://doi.org/10.3389/fmicb.2022.896770 | |
dc.relation.references | Udoh, L. I., Agogbua, J. U., Keyagha, E. R., Nkanga, I. I., Udoh, L. I., Agogbua, J. U., Keyagha, E. R., & Nkanga, I. I. (2022). Carotenoids in Cassava (<em>Manihot esculenta</em> Crantz). En Carotenoids—New Perspectives and Application. IntechOpen. https://doi.org/10.5772/intechopen.105210 | |
dc.relation.references | Vacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. Annual Review of Ecology, Evolution, and Systematics, 47(1), 1-24. https://doi.org/10.1146/annurev-ecolsys-121415- 032238 | |
dc.relation.references | Valverde, A., Burgos, A., Fiscella, T., Rivas, R., Velázquez, E., Rodríguez-Barrueco, C., Cervantes, E., Chamber, M., & Igual, J.-M. (2007). Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. En E. Velázquez & C. Rodríguez-Barrueco (Eds.), First International Meeting on Microbial Phosphate Solubilization (Vol. 102, pp. 43-50). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5765-6_5 | |
dc.relation.references | Van Deynze, A., Zamora, P., Delaux, P.-M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H.-Y., … Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilageassociated diazotrophic microbiota. PLOS Biology, 16(8), e2006352. https://doi.org/10.1371/journal.pbio.2006352 | |
dc.relation.references | Vasseur-Coronado, M., Vlassi, A., Boulois, H. D. D., Schuhmacher, R., Parich, A., Pertot, I., & Puopolo, G. (2021). Ecological Role of Volatile Organic Compounds Emitted by Pantoea agglomerans as Interspecies and Interkingdom Signals. Microorganisms, 9(6), 1186. https://doi.org/10.3390/microorganisms9061186 | |
dc.relation.references | Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphatesolubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5-6), 460-468. https://doi.org/10.1007/s003740050024 | |
dc.relation.references | Vitousek, P. M., Menge, D. N. L., Reed, S. C., & Cleveland, C. C. (2013). Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621). https://doi.org/10.1098/rstb.2013.0119 | |
dc.relation.references | Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1 | |
dc.relation.references | Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828-840. https://doi.org/10.1038/nrmicro2910 | |
dc.relation.references | Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1), 174. https://doi.org/10.1186/1471-2180-9-174 | |
dc.relation.references | Wagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. N. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 98(11), 5117-5129. https://doi.org/10.1007/s00253-014-5610-1 | |
dc.relation.references | Walpola, B., & Yoon, M.-H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African journal of microbiology research, 6, 6600-6605. https://doi.org/10.5897/AJMR12.889 | |
dc.relation.references | Wang, Q., Xiao, C., Feng, B., & Chi, R. (2020). Phosphate rock solubilization and the potential for lead immobilization by a phosphate-solubilizing bacterium ( Pseudomonas sp.). Journal of Environmental Science and Health, Part A, 55(4), 411-420. https://doi.org/10.1080/10934529.2019.1704134 | |
dc.relation.references | Wang, S., Li, Y., Zhang, J., Wang, X., Hong, J., Qiu, C., & Meng, H. (2022). Transcriptome Profiling Analysis of Phosphate-Solubilizing Mechanism of Pseudomonas Strain W134. Microorganisms, 10(10), 1998. https://doi.org/10.3390/microorganisms10101998 | |
dc.relation.references | Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166 | |
dc.relation.references | Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092 | |
dc.relation.references | White, J. F., Crawford, H., Torres, M. S., Mattera, R., Irizarry, I., & Bergen, M. (2012). A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis, 57(3), 161-171. https://doi.org/10.1007/s13199-012-0189-8 | |
dc.relation.references | White, J. F., Kingsley, K. L., Zhang, Q., Verma, R., Obi, N., Dvinskikh, S., Elmore, M. T., Verma, S. K., Gond, S. K., & Kowalski, K. P. (2019). Review: Endophytic microbes and their potential applications in crop management. Pest Management Science, 75(10), 2558-2565. https://doi.org/10.1002/ps.5527 | |
dc.relation.references | Wooding, S. P., & Payahua, C. N. (2022). Ethnobotanical Diversity of Cassava (Manihot esculenta Crantz) in the Peruvian Amazon. Diversity, 14(4), Article 4. https://doi.org/10.3390/d14040252 | |
dc.relation.references | Yi, Y., Huang, W., & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24(7), 1059-1065. https://doi.org/10.1007/s11274-007-9575-4 | |
dc.relation.references | Zaidi, A., Ahmad, E., & Khan, Md. S. (2014). Role of Phosphate-Solubilizing Microbes in the Management of Plant Diseases. En M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology (pp. 225-256). Springer International Publishing. https://doi.org/10.1007/978-3-319-08216- 5_10 | |
dc.relation.references | Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56(3), 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6 | |
dc.relation.references | Zainuddin, I. M., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2018). Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 142, 115-123. https://doi.org/10.1016/j.postharvbio.2017.09.004 | |
dc.relation.references | Zhang, L., Zhang, M., Huang, S., Li, L., Gao, Q., Wang, Y., Zhang, S., Huang, S., Yuan, L., Wen, Y., Liu, K., Yu, X., Li, D., Zhang, L., Xu, X., Wei, H., He, P., Zhou, W., Philippot, L., & Ai, C. (2022). A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 13(1), 3361. https://doi.org/10.1038/s41467-022-31113-w | |
dc.relation.references | Zhang, X., Zhi, X., Chen, L., & Shen, Z. (2020). Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. Water Research, 178, 115835. https://doi.org/10.1016/j.watres.2020.115835 | |
dc.relation.references | Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. https://doi.org/10.1016/j.micres.2013.07.003 | |
dc.relation.references | Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269-278. https://doi.org/10.1016/j.bjm.2017.06.007 | |
dc.relation.references | Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522- 537. https://doi.org/10.1016/j.scitotenv.2017.08.095 | |
dc.relation.references | Zhu, J., Qu, B., & Li, M. (2017). Phosphorus mobilization in the Yeyahu Wetland: Phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils. International Biodeterioration & Biodegradation, 124, 304-313. https://doi.org/10.1016/j.ibiod.2017.05.010 | |
dc.relation.references | Zhu, Y., Xiong, C., Wei, Z., Chen, Q., Ma, B., Zhou, S., Tan, J., Zhang, L., Cui, H., & Duan, G. (2022). Impacts of global change on the phyllosphere microbiome. New Phytologist, 234(6), 1977-1986. https://doi.org/10.1111/nph.17928 | |
dc.relation.references | Zhu, Y.-G., Peng, J., Chen, C., Xiong, C., Li, S., Ge, A., Wang, E., & Liesack, W. (2023). Harnessing biological nitrogen fixation in plant leaves. Trends in Plant Science, 28(12), 1391-1405. https://doi.org/10.1016/j.tplants.2023.05.009 | |
dc.relation.references | Zúñiga-Silgado, D., Rivera-Leyva, J. C., Coleman, J. J., Sánchez-Reyez, A., Valencia-Díaz, S., Serrano, M., de-Bashan, L. E., & Folch-Mallol, J. L. (2020). Soil Type Affects Organic Acid Production and Phosphorus Solubilization Efficiency Mediated by Several Native Fungal Strains from Mexico. Microorganisms, 8(9), 1337. https://doi.org/10.3390/microorganisms8091337 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Indole acetic acid | |
dc.subject.keywords | Phosphorus-solubilizing bacteria | |
dc.subject.keywords | Nitrogen-fixing bacteria | |
dc.subject.keywords | Colombia | |
dc.subject.proposal | Ácido indol acético | |
dc.subject.proposal | Bacterias solubilizadoras de fósforo | |
dc.subject.proposal | Bacterias fijadoras de nitrógeno | |
dc.subject.proposal | Colombia | |
dc.title | Efecto de un biofertilizante a base de Enterobacter cloacae sobre el desarrollo y rendimiento de plantas de yuca (Manihot esculenta Crantz) en el municipio de Montería, Departamento de Córdoba | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- Trabajo De Grado Maestria En Biotecnologia-Betin Ruiz 2024.Pdf
- Tamaño:
- 2.36 MB
- Formato:
- Adobe Portable Document Format
No hay miniatura disponible
- Nombre:
- Formato repositorio diligenciado.pdf
- Tamaño:
- 1.75 MB
- Formato:
- Adobe Portable Document Format