Publicación:
Efecto de un biofertilizante a base de Enterobacter cloacae sobre el desarrollo y rendimiento de plantas de yuca (Manihot esculenta Crantz) en el municipio de Montería, Departamento de Córdoba

dc.audience
dc.contributor.advisorParado Plaza, Yuri Janio
dc.contributor.advisorCantero Guevara, Miriam Elena
dc.contributor.authorBetin Ruiz, Andres José
dc.contributor.juryOviedo Zumaqué, Luis Eliecer
dc.contributor.juryDíaz Narváez, Lucía Candelaria
dc.date.accessioned2024-08-21T01:05:20Z
dc.date.available2025-08-18
dc.date.available2024-08-21T01:05:20Z
dc.date.issued2024-08-18
dc.description.abstractEl nitrógeno y el fósforo son esenciales para el crecimiento vegetal, pero su disponibilidad limitada en el suelo restringe el desarrollo de cultivos. La fijación biológica de nitrógeno y la solubilización de fósforo por bacterias son estrategias vitales para mejorar la disponibilidad de estos nutrientes. A pesar de su potencial, aún se requieren estudios para identificar y caracterizar cepas nativas con alto potencial biotecnológico. El objetivo de esta investigación fue evaluar el efecto de un biofertilizante a base de bacterias nativas solubilizadoras de fósforo y fijadoras de nitrógeno de vida libre sobre el desarrollo y rendimiento de un cultivo de yuca (Manihot esculenta Crantz) variedad MCOL 2066 (Chirosa). Las propiedades de promoción del crecimiento de las plantas se evaluaron mediante un bioensayo en condiciones de invernadero, utilizando un diseño experimental completamente al azar con un factor, cinco tratamientos y 15 repeticiones. Se realizó un análisis de varianza unidireccional (ANOVA) siguiendo la prueba post hoc de Tukey (p <0.05), con un nivel de significancia del 5%. La secuenciación del gen 16S rRNA revela la confirmación de aislamientos de Enterobacter cloacae (cepa S105E PP405613.1 y FG105B PP761660.1). En condiciones in vitro, se encontró que los aislados produjeron ácido indol acético, solubilizaron P y fijaron nitrógeno atmosférico en forma de amonio. La actividad solubilizadora de P coincidió con una disminución concomitante en el pH del medio (pH 7.0–<4.5). Se encontró que la inoculación bacteriana resultó en un incremento significativo en la altura de la planta, raíz y la biomasa. Por lo tanto, estos aislados de Enterobacter claocae podrían formularse y usarse aún más para aplicaciones de campo en cultivos de yuca.spa
dc.description.abstractNitrogen and phosphorus are essential for plant growth, yet their limited availability in soil restricts crop development. Biological nitrogen fixation and phosphorus solubilization by bacteria are crucial strategies to enhance the availability of these nutrients. Despite their potential, further studies are needed to identify and characterize native strains with high biotechnological potential. The purpose of this research was to assess the effect of a biofertilizer based on native phosphorus-solubilizing and free-living nitrogen-fixing bacteria on the development and yield of a cassava crop (Manihot esculenta Crantz) variety MCOL 2066 (Chirosa). The plant growth-promoting properties were evaluated through a bioassay under greenhouse conditions, using a completely randomized experimental design with one factor, five treatments, and 15 repetitions. A one-way analysis of variance (ANOVA) was conducted following Tukey's post hoc test (p < 0.05), with a significance level of 5%. Sequencing of the 16S rRNA gene confirmed isolations of Enterobacter cloacae (strain S105E PP405613.1 and FG105B PP761660.1). In vitro conditions revealed that the isolates produced indole acetic acid, solubilized phosphorus, and fixed atmospheric nitrogen as ammonia. The phosphorus solubilization activity coincided with a concomitant decrease in the medium's pH (pH 7.0–<4.5). Bacterial inoculation resulted in a significant increase in plant height, root, and biomass. Therefore, these Enterobacter cloacae isolates could be formulated and further used for field applications in cassava crops.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Biotecnología
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsIntroducción ...................................19
dc.description.tableofcontentsObjetivos.......................................23
dc.description.tableofcontentsObjetivo General.............................23
dc.description.tableofcontentsObjetivos Específicos...............................23
dc.description.tableofcontentsMarco Teórico.................................24
dc.description.tableofcontentsLa Yuca .......................................24
dc.description.tableofcontentsEstado Actual.................24
dc.description.tableofcontentsClasificación Taxonómica..............................25
dc.description.tableofcontentsMorfología de la Planta ....................26
dc.description.tableofcontentsFormas Básicas y Ciclos del Fósforo en el Suelo..........................30
dc.description.tableofcontentsFósforo Orgánico en el Suelo.....................31
dc.description.tableofcontentsFósforo Inorgánico en el Suelo ................32
dc.description.tableofcontentsActivador de Fósforo del Suelo: bacterias Solubilizadoras de Fosfato .........................33
dc.description.tableofcontentsBiodiversidad y Aparición de Bacterias Solubilizadoras de Fósforo.....................34
dc.description.tableofcontentsMecanismo de Solubilización de Fósforo .............................................................35
dc.description.tableofcontentsAplicación de Bacterias Solubilizadoras de Fósforo en la Práctica Agrícola .......40
dc.description.tableofcontentsFijación Biológica de Nitrógeno..................42
dc.description.tableofcontentsMetodología ..........................................45
dc.description.tableofcontentsTipo de Estudio........................45
dc.description.tableofcontentsÁrea de Estudio............................45
dc.description.tableofcontentsCaracterización de Bacterias Nativas Solubilizadoras de Fósforo (BNSF) y Fijadoras de Nitrógeno de Vida Libre (BFNVL) Aisladas a Partir de Muestras de Suelo del Medio Sinú...45
dc.description.tableofcontentsMuestreo de Suelo...........................45
dc.description.tableofcontentsAislamiento de BNSF y BFNVL.......................................46
dc.description.tableofcontentsIdentificación Molecular de BNSF y BFNVL............................47
dc.description.tableofcontentsEvaluación in vitro de la Actividad Solubilizadora de Fósforo, Fijadora de Nitrógeno y Productora de Ácido Indol Acético (AIA) de las Cepas Aisladas...........................................49
dc.description.tableofcontentsDetección in vitro De La Actividad Solubilizadora De Fósforo ............................49
dc.description.tableofcontentsDetección in vitro de la Actividad Fijadora de Nitrógeno................50
dc.description.tableofcontentsCuantificación in vitro de la Producción de AIA ..................51
dc.description.tableofcontentsEvaluación del Efecto de un Biofertilizante a Base de BNSF y BFNVL Sobre el Desarrollo y Rendimiento de Plantas de Yuca Chirosa en Condiciones de Invernadero..........53
dc.description.tableofcontentsPrueba De Antagonismo ....¿......................53
dc.description.tableofcontentsPreparación del Biofertilizante con BNSF y BFNVL ..¿.............54
dc.description.tableofcontentsDiseño Experimental........¿...............54
dc.description.tableofcontentsSiembra del Material Vegetal en Condiciones de Invernadero .....¿..........55
dc.description.tableofcontentsFertilización Química ...............¿............56
dc.description.tableofcontentsEvaluación de los Parámetros Biométricos de las Plantas ......¿......58
dc.description.tableofcontentsDeterminación del Porcentaje de Proteína en Hojas de Yuca........¿.........59
dc.description.tableofcontentsAnálisis Estadístico .............¿............59
dc.description.tableofcontentsResultados.............¿.............60
dc.description.tableofcontentsAislamiento de BNSF y BFNVL...............¿....60
dc.description.tableofcontentsEvaluación in vitro de la Actividad Solubilizadora de Fósforo, Productora de AIA y Fijadora de Nitrógeno de las Poblaciones Bacterianas Aisladas .............................................61
dc.description.tableofcontentsDetección in vitro de la Actividad Solubilizadora de Fósforo ...............................61
dc.description.tableofcontentsCuantificación in vitro de la Producción de Ácido Indol Acético (AIA) ................64
dc.description.tableofcontentsCuantificación in vitro de la Actividad Fijadora de Nitrógeno .............................65
dc.description.tableofcontentsIdentificación Molecular de BNSF y BFNVL........¿...........67
dc.description.tableofcontentsEvaluación del Biofertilizante a Base de Enterobacter cloacae (Cepa S105E y FG105B) Sobre el Desarrollo y Rendimiento de Plantas de Yuca Chirosa en Condiciones de Invernadero Hasta los 120 DDS................................................................................................................69
dc.description.tableofcontentsEvaluación de los Parámetros Biométricos de las Plantas de Yuca Chirosa.........69
dc.description.tableofcontentsDeterminación del Porcentaje de Proteína en Hojas de Plantas de Yuca Chirosa 83
dc.description.tableofcontentsDiscusión ........¿..............86
dc.description.tableofcontentsCaracterización de BNSF y BFNVL..........¿............86
dc.description.tableofcontentsEvaluación in vitro de la Actividad Solubilizadora de Fósforo, Fijadora de Nitrógeno y Productora de AIA de las Cepas Aisladas..............................................................................88
dc.description.tableofcontentsEvaluación del Biofertilizante a Base de Enterobacter cloacae (Cepa S105E y FG105B) Sobre el Desarrollo y Rendimiento de Plantas de Yuca Chirosa en Condiciones de Invernadero Hasta los 120 DDS................................................................................................................91
dc.description.tableofcontentsConclusiones...¿................96
dc.description.tableofcontentsRecomendaciones..............¿.................97
dc.description.tableofcontentsReferencias Bibliográficas........¿..............98
dc.description.tableofcontentsANEXOS............¿..........140
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Institucional Unicórdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8568
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Biotecnología
dc.relation.referencesA Otekunrin, O., & Sawicka, B. (2019). Cassava, a 21st Century Staple Crop: How can Nigeria Harness Its Enormous Trade Potentials? Acta Scientific Agriculture, 3(8), 194-202. https://doi.org/10.31080/ASAG.2019.03.0586
dc.relation.referencesAbadi, V. A. J. M., Sepehri, M., Rahmani, H. A., Dolatabad, H. K., Shamshiripour, M., & Khatabi, B. (2021). Diversity and abundance of culturable nitrogen‐fixing bacteria in the phyllosphere of maize. Journal of Applied Microbiology, 131(2), 898-912. https://doi.org/10.1111/jam.14975
dc.relation.referencesAbo Elsoud, M. M., Hasan, S. F., & Elhateir, M. M. (2023). Optimization of Indole-3-acetic acid production by Bacillus velezensis isolated from Pyrus rhizosphere and its effect on plant growth. Biocatalysis and Agricultural Biotechnology, 50, 102714. https://doi.org/10.1016/j.bcab.2023.102714
dc.relation.referencesAl Dayel, M. F., & El Sherif, F. (2021). Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield and active compound compositions of Moringa oleifera under salinity stress. Saudi Journal of Biological Sciences, 28(3), 1687-1696. https://doi.org/10.1016/j.sjbs.2020.12.007
dc.relation.referencesAliyat, F. Z., Maldani, M., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2022). Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms, 10(5), 980. https://doi.org/10.3390/microorganisms10050980
dc.relation.referencesAlori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971
dc.relation.referencesAmelework, A. B., Bairu, M. W., Maema, O., Venter, S. L., & Laing, M. (2021). Adoption and Promotion of Resilient Crops for Climate Risk Mitigation and Import Substitution: A Case Analysis of Cassava for South African Agriculture. Frontiers in Sustainable Food Systems, 5, 617783. https://doi.org/10.3389/fsufs.2021.617783
dc.relation.referencesAnand, K., Kumari, B., & Mallick, M. A. (2016). Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. 8(2).
dc.relation.referencesArenas, F., López-García, Á., Berná, L. M., Morte, A., & Navarro-Ródenas, A. (2022). Desert truffle mycorrhizosphere harbors organic acid releasing plant growth–promoting rhizobacteria, essentially during the truffle fruiting season. Mycorrhiza, 32(2), 193-202. https://doi.org/10.1007/s00572-021-01067-w
dc.relation.referencesAsea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20(4), 459-464. https://doi.org/10.1016/0038-0717(88)90058-2
dc.relation.referencesBabu-Khan, S., Yeo, T., Martin, W., Duron, M., Rogers, R., & Goldstein, A. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3), 972-978. https://doi.org/10.1128/aem.61.3.972- 978.1995
dc.relation.referencesBanerjee, S., Palit, R., Sengupta, C., & Standing, D. (2010). Stress Induced Phosphate Solubilization by «Arthrobacter» Sp. And «Bacillus» Sp. Isolated from Tomato Rhizosphere. Australian Journal of Crop Science, 4(6), 378-383. https://doi.org/10.3316/informit.414789554792811
dc.relation.referencesBanik, S., & Dey, B. K. (1983). Phosphate-Solubilizing Potentiality of the Microorganisms Capable of Utilizing Aluminium Phosphate as a Sole Phosphate Source. Zentralblatt Für Mikrobiologie, 138(1), 17-23. https://doi.org/10.1016/S0232-4393(83)80060-2
dc.relation.referencesBarin, M., Asadzadeh, F., Hashemnejad, F., Vetukuri, R. R., & Kushwaha, S. (2022). Optimization of Culture Conditions for Zinc Phosphate Solubilization by Aspergillus sp. Using Response Surface Methodology. Journal of Soil Science and Plant Nutrition, 22(1), 1009-1018. https://doi.org/10.1007/s42729-021-00709-4
dc.relation.referencesBar-Yosef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia – Mediated Rock Phosphate Solubilization in Kaolinite and Montmorillonite Suspensions. Soil Science Society of America Journal, 63(6), 1703-1708. https://doi.org/10.2136/sssaj1999.6361703x
dc.relation.referencesBehera, B. C., Singdevsachan, S. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2014). Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review. Biocatalysis and Agricultural Biotechnology, 3(2), 97-110. https://doi.org/10.1016/j.bcab.2013.09.008
dc.relation.referencesBidondo, L. F., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J., & Godeas, A. (2011). Presymbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry, 43(9), 1866-1872. https://doi.org/10.1016/j.soilbio.2011.05.004
dc.relation.referencesBose, A., Kher, M. M., Nataraj, M., & Keharia, H. (2016). Phytostimulatory effect of indole-3- acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatalysis and Agricultural Biotechnology, 6, 128-137. https://doi.org/10.1016/j.bcab.2016.03.005
dc.relation.referencesBravo, R. C. (2023). Evaluación de la calidad del suelo en sistemas de uso de la tierra en el distrito de Padre Abad, región Ucayali.
dc.relation.referencesBrito, L. F., López, M. G., Straube, L., Passaglia, L. M. P., & Wendisch, V. F. (2020). Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Frontiers in Microbiology, 11, 588605. https://doi.org/10.3389/fmicb.2020.588605
dc.relation.referencesBrown, S. P., Grillo, M. A., Podowski, J. C., & Heath, K. D. (2020). Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome, 8(1), 139. https://doi.org/10.1186/s40168-020-00915-9
dc.relation.referencesBuch, A., Archana, G., & Naresh Kumar, G. (2010). Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresource Technology, 101(2), 679-687. https://doi.org/10.1016/j.biortech.2009.08.075
dc.relation.referencesBünemann, E. K. (2015). Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biology and Biochemistry, 89, 82-98. https://doi.org/10.1016/j.soilbio.2015.06.026
dc.relation.referencesBurén, S., Young, E. M., Sweeny, E. A., Lopez-Torrejón, G., Veldhuizen, M., Voigt, C. A., & Rubio, L. M. (2017). Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae. ACS Synthetic Biology, 6(6), 1043-1055. https://doi.org/10.1021/acssynbio.6b00371
dc.relation.referencesCamejo, D., Guzmán-Cedeño, Á., & Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiology and Biochemistry, 103, 10-23. https://doi.org/10.1016/j.plaphy.2016.02.035
dc.relation.referencesCampos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752. https://doi.org/10.3389/FPLS.2018.00752/BIBTEX
dc.relation.referencesCanales, N., & Trujilo, M. (2021). La red de valor de la yuca y su potencial en la bioeconomía de Colombia.
dc.relation.referencesCardoso, P., Alves, A., Silveira, P., Sá, C., Fidalgo, C., Freitas, R., & Figueira, E. (2018). Bacteria from nodules of wild legume species: Phylogenetic diversity, plant growth promotion abilities and osmotolerance. Science of The Total Environment, 645, 1094-1102. https://doi.org/10.1016/j.scitotenv.2018.06.399
dc.relation.referencesChakraborty, U., Chakraborty, B. N., Basnet, M., & Chakraborty, A. P. (2009). Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology, 107(2), 625-634. https://doi.org/10.1111/j.1365-2672.2009.04242.x
dc.relation.referencesChawngthu, L., Hnamte, R., & Lalfakzuala, R. (2020). Isolation and Characterization of Rhizospheric Phosphate Solubilizing Bacteria from Wetland Paddy Field of Mizoram, India. Geomicrobiology Journal, 37(4), 366-375. https://doi.org/10.1080/01490451.2019.1709108
dc.relation.referencesChen, W., Yang, F., Zhang, L., & Wang, J. (2016). Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp . PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiology Journal, 33(10), 870-877. https://doi.org/10.1080/01490451.2015.1123329
dc.relation.referencesChen, Y., Li, S., Liu, N., He, H., Cao, X., Lv, C., Zhang, K., & Dai, J. (2021). Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. Environmental Science and Pollution Research, 28(18), 23036-23047. https://doi.org/10.1007/s11356-020-12203-y
dc.relation.referencesChen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W.-A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
dc.relation.referencesChoi, O., Kim, J., Kim, J.-G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2008). Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiology, 146(2), 657-668. https://doi.org/10.1104/pp.107.112748
dc.relation.referencesChoudhary, D. K., & Varma, A. (2017). Nitrogenase (a Key Enzyme): Structure and Function. En A. P. Hansen, D. K. Choudhary, P. K. Agrawal, & A. Varma (Eds.), Rhizobium Biology and Biotechnology (Vol. 50, pp. 293-307). Springer International Publishing. https://doi.org/10.1007/978-3-319-64982-5_14
dc.relation.referencesChung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10), 1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025
dc.relation.referencesCisneros R., C. A., & Sánchez de Prager, M. (2015). Solubilización de fosfatos por hongos asociados a un Andisol de tres agroecosistemas cafeteros de la región andina colombiana. Ingenium, 9(25), 37. https://doi.org/10.21774/ing.v9i25.586
dc.relation.referencesCock, J. (1989). La yuca, nuevo potencial para un cultivo tradicional. CIAT.
dc.relation.referencesDa Silva, J. S. A., De Medeiros, E. V., Da Costa, D. P., De Souza, C. A. F., De Oliveira, J. B., Da França, R. F., Souza-Motta, C. M., De Sousa Lima, J. R., & Hammecker, C. (2022). Biochar and Trichoderma aureoviride URM 5158 as alternatives for the management of cassava root rot. Applied Soil Ecology, 172, 104353. https://doi.org/10.1016/j.apsoil.2021.104353
dc.relation.referencesDarch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., & Chadwick, D. (2014). A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and Water: Implications for Water Quality. Critical Reviews in Environmental Science and Technology, 44(19), 2172-2202. https://doi.org/10.1080/10643389.2013.790752
dc.relation.referencesDavies‐Barnard, T., & Friedlingstein, P. (2020). The Global Distribution of Biological Nitrogen Fixation in Terrestrial Natural Ecosystems. Global Biogeochemical Cycles, 34(3), e2019GB006387. https://doi.org/10.1029/2019GB006387
dc.relation.referencesDe Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 24(4), 358-364. https://doi.org/10.1007/s003740050258
dc.relation.referencesDe Lima, J. D., Monteiro, P. H. R., Rivadavea, W. R., Barbosa, M., Cordeiro, R. D., Garboggini, F. F., Auer, C. G., & Da Silva, G. J. (2024). Potential of endophytic bacteria from Acacia mearnsii: Phosphate solubilization, indole acetic acid production, and application in wheat. Applied Soil Ecology, 196, 105315. https://doi.org/10.1016/j.apsoil.2024.105315
dc.relation.referencesDeepa, C. K., Dastager, S. G., & Pandey, A. (2010). Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World Journal of Microbiology and Biotechnology, 26(7), 1233-1240. https://doi.org/10.1007/s11274-009-0293-y
dc.relation.referencesDevi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia, 77(10), 2933-2943. https://doi.org/10.1007/s11756-022-01127-2
dc.relation.referencesDey, G., Maity, J. P., Banerjee, P., Sharma, R. K., Etesami, H., Bastia, T. K., Rath, P., Sukul, U., Huang, H.-B., Huang, K.-W., & Chen, C.-Y. (2024). Characterization of halotolerant phosphate-solubilizing rhizospheric bacteria from mangrove (Avicennia sp.) with biotechnological potential in agriculture and pollution mitigation. Biocatalysis and Agricultural Biotechnology, 55, 102960. https://doi.org/10.1016/j.bcab.2023.102960
dc.relation.referencesDin, I., Khan, H., Ahmad Khan, N., & Khil, A. (2021). Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. Journal of the Saudi Society of Agricultural Sciences, 20(7), 459-466. https://doi.org/10.1016/j.jssas.2021.05.008
dc.relation.referencesDo Carmo, T. S., Moreira, F. S., Cabral, B. V., Dantas, R. C. C., De Resende, M. M., Cardoso, V. L., & Ribeiro, E. J. (2019). Phosphorus Recovery from Phosphate Rocks Using PhosphateSolubilizing Bacteria. Geomicrobiology Journal, 36(3), 195-203. https://doi.org/10.1080/01490451.2018.1534901
dc.relation.referencesDomínguez, C. E. (1990). Yuca, investigacion, produccion y utilizacion. CIAT/PNUD.
dc.relation.referencesĐorđević, S., Stanojević, D., Vidović, M., Mandić, V., & Trajković, I. (2017). The use of bacterial indole-3-acetic acid (IAA) for reduce of chemical fertilizers doses. HEMIJSKA INDUSTRIJA (Chemical Industry), 71(3), Article 3. https://doi.org/10.2298/HEMIND160317029D
dc.relation.referencesĐorđević, S., Stanojević, D., Vidović, M., Mandić, V., & Trajković, I. (2017). The use of bacterial indole-3-acetic acid (IAA) for reduce of chemical fertilizers doses. HEMIJSKA INDUSTRIJA (Chemical Industry), 71(3), Article 3. https://doi.org/10.2298/HEMIND160317029D
dc.relation.referencesEarl, C. D., Ronson, C. W., & Ausubel, F. M. (1987). Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. Journal of Bacteriology, 169(3), 1127-1136. https://doi.org/10.1128/jb.169.3.1127-1136.1987
dc.relation.referencesEdgren, T., & Nordlund, S. (2004). The fixABCX Genes in Rhodospirillum rubrum Encode a Putative Membrane Complex Participating in Electron Transfer to Nitrogenase. Journal of Bacteriology, 186(7), 2052-2060. https://doi.org/10.1128/JB.186.7.2052-2060.2004
dc.relation.referencesElhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y., & Bargaz, A. (2022). Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. En Journal of Advanced Research (Vol. 38, pp. 13-28). Elsevier. https://doi.org/10.1016/j.jare.2021.08.014
dc.relation.referencesFahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T., & Huang, J. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research, 22(7), 4907-4921. https://doi.org/10.1007/s11356-014-3754-2
dc.relation.referencesFAOSTAT. (2021). Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/faostat/es/#home
dc.relation.referencesFAOSTAT. (2022). FAOSTAT. Organización de las Naciones Unidas para la Agricultura y la Alimentación, 2022. Producción de yuca en todos los países, 1961–2020. https://www.fao.org/faostat/en/#data/QCL
dc.relation.referencesFerreira, S. D. C., Nakasone, A. K., Do Nascimento, S. M. C., De Oliveira, D. A., Siqueira, A. S., Cunha, E. F. M., De Castro, G. L. S., & De Souza, C. R. B. (2021). Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium sp. Physiological and Molecular Plant Pathology, 116, 101709. https://doi.org/10.1016/j.pmpp.2021.101709
dc.relation.referencesFranco-Franklin, V., Moreno-Riascos, S., & Ghneim-Herrera, T. (2021). Are Endophytic Bacteria an Option for Increasing Heavy Metal Tolerance of Plants? A Meta-Analysis of the Effect Size. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.603668
dc.relation.referencesFuchs, J. (2000). The laboratory medium used to grow biocontrol Pseudomonas sp. Pf153 influences its subsequent ability to protect cucumber from black root rot. Soil Biology and Biochemistry, 32(3), 421-424. https://doi.org/10.1016/S0038-0717(99)00169-8
dc.relation.referencesGao, C., Zhang, M., Song, K., Wei, Y., & Zhang, S. (2020). Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137588
dc.relation.referencesGao, Z., Li, P., Li, C., Tang, R., Wang, M., Chen, J., Yang, Y., He, Z., Xiao, Z., Ma, Y., & Chen, Y. (2024). Identification, functional annotation, and isolation of phosphorus-solubilizing bacteria in the rhizosphere soil of Swida wilsoniana (Wanger) Sojak. Applied Soil Ecology, 194, 105207. https://doi.org/10.1016/j.apsoil.2023.105207
dc.relation.referencesGarcia-Vallejo, M. C., & Alzate, C. A. C. (2024). Life cycle assessment of the cassava simplified value chain in Colombia and the use of cassava residues as energy carriers. Industrial Crops and Products, 210, 118135. https://doi.org/10.1016/j.indcrop.2024.118135
dc.relation.referencesGarofálo, L. I. (2017). “Respuesta del cultivo de girasol (Helianthus annuus L.) a la aplicación de dos bioestimulantes orgánicos en la zona de Pangua".
dc.relation.referencesGarreto, F. G. S., Fernandes, A. M., Silva, J. A., Silva, R. M., Figueiredo, R. T., & Soratto, R. P. (2023). No-tillage and previous maize–palisadegrass intercropping reduce soil and water losses without decreasing root yield and quality of cassava. Soil and Tillage Research, 227, 105621. https://doi.org/10.1016/j.still.2022.105621
dc.relation.referencesGoldstein, A. H. (1995). Recent Progress in Understanding the Molecular Genetics and Biochemistry of Calcium Phosphate Solubilization by Gram Negative Bacteria. Biological Agriculture & Horticulture, 12(2), 185-193. https://doi.org/10.1080/01448765.1995.9754736
dc.relation.referencesGoldstein, A. H., & Liu, S. T. (1987). Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola. Nature Biotechnology, 5(1), 72-74. https://doi.org/10.1038/nbt0187-72
dc.relation.referencesGoswami, D., Dhandhukia, P., Patel, P., & Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169(1), 66-75. https://doi.org/10.1016/j.micres.2013.07.004
dc.relation.referencesGoyal, T., Mukherjee, A., Chouhan, G. K., Gaurav, A. K., Kumar, D., Abeysinghe, S., & Verma, J. P. (2024). Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling. Heliyon, 10(8), e29692. https://doi.org/10.1016/j.heliyon.2024.e29692
dc.relation.referencesGulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant Growth-Promoting and RhizosphereCompetent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current Microbiology, 58(4), 371-377. https://doi.org/10.1007/s00284-008- 9339-x
dc.relation.referencesGuo, K., Yang, J., Yu, N., Luo, L., & Wang, E. (2023). Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Communications, 4(2), 100499. https://doi.org/10.1016/j.xplc.2022.100499
dc.relation.referencesGupta, R., Kumari, A., Sharma, S., Alzahrani, O. M., Noureldeen, A., & Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35-42. https://doi.org/10.1016/j.sjbs.2021.09.075
dc.relation.referencesHaile, F., G/Medhin, M. T., Kifle, Z. D., Dejenie, T. A., & Berhane, N. (2022). Synergetic antibacterial activity of Vernonia auriculifera Hiern and Buddleja polystachya Fresen on selected human pathogenic bacteria. Metabolism Open, 16, 100210. https://doi.org/10.1016/j.metop.2022.100210
dc.relation.referencesHao, J., Knoll, A. H., Huang, F., Schieber, J., Hazen, R. M., & Daniel, I. (2020). Cycling phosphorus on the Archean Earth: Part II. Phosphorus limitation on primary production in Archean ecosystems. Geochimica et Cosmochimica Acta, 280, 360-377. https://doi.org/10.1016/j.gca.2020.04.005
dc.relation.referencesHesterberg, D., Zhou, W., Hutchison, K. J., Beauchemin, S., & Sayers, D. E. (1999). XAFS study of adsorbed and mineral forms of phosphate. Journal of Synchrotron Radiation, 6(3), 636- 638. https://doi.org/10.1107/S0909049599000370
dc.relation.referencesHk, P., Rv, V., & Hn, S. (2022). Selective Enrichment Method for Isolation of Efficient Phosphate Solubilizing Bacteria from Soil. Communications in Soil Science and Plant Analysis, 53(12), 1532-1541. https://doi.org/10.1080/00103624.2022.2055054
dc.relation.referencesHolland-Moritz, H., Stuart, J. E. M., Lewis, L. R., Miller, S. N., Mack, M. C., Ponciano, J. M., McDaniel, S. F., & Fierer, N. (2021). The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome, 9(1), 53. https://doi.org/10.1186/s40168- 021-01001-4
dc.relation.referencesHong-xing, X., Ya-jun, Y., Yan-hui, L., Xu-song, Z., Jun-ce, T., Feng-xiang, L., Qiang, F., & Zhong-xian, L. (2017). Sustainable Management of Rice Insect Pests by Non-ChemicalInsecticide Technologies in China. En Rice Science (Vol. 24, Número 2, pp. 61-72). Elsevier. https://doi.org/10.1016/j.rsci.2017.01.001
dc.relation.referencesHou, E., Chen, C., Luo, Y., Zhou, G., Kuang, Y., Zhang, Y., Heenan, M., Lu, X., & Wen, D. (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24(8), 3344-3356. https://doi.org/10.1111/gcb.14093
dc.relation.referencesHoweler, R., Lutaladio, N., & Thomas, G. (2013). Save and grow: Cassava: a guide to sustainable production intensification. (No Title). https://cir.nii.ac.jp/crid/1130000795968788864
dc.relation.referencesHusseiny, S., Dishisha, T., Soliman, H. A., Adeleke, R., & Raslan, M. (2021). Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L. South African Journal of Botany, 143, 238-247. https://doi.org/10.1016/j.sajb.2021.07.042
dc.relation.referencesIllmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biology and Biochemistry, 27(3), 257-263. https://doi.org/10.1016/0038- 0717(94)00190-C
dc.relation.referencesITIS. (2023). The Integrated Taxonomic Information System (Versión 2023-10-31) [dataset]. ITIS. https://doi.org/10.48580/DFGNM-4KY
dc.relation.referencesJalali, M., & Sajadi Tabar, S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science, 174(4), 523-531. https://doi.org/10.1002/jpln.201000217
dc.relation.referencesJambhulkar, P. P., Sharma, P., & Yadav, R. (2016). Delivery systems for introduction of microbial inoculants in the field. En Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications (pp. 199-218). Springer India. https://doi.org/10.1007/978- 81-322-2644-4_13
dc.relation.referencesJames, E. K. (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 65(2-3), 197-209. https://doi.org/10.1016/S0378-4290(99)00087-8
dc.relation.referencesJi, C., Liu, Z., Hao, L., Song, X., Wang, C., Liu, Y., Li, H., Li, C., Gao, Q., & Liu, X. (2020). Effects of Enterobacter cloacae HG-1 on the Nitrogen-Fixing Community Structure of Wheat Rhizosphere Soil and on Salt Tolerance. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01094
dc.relation.referencesJiao, H., Wang, R., Qin, W., & Yang, J. (2024). Screening of rhizosphere nitrogen fixing, phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.) Roem. And the effect on apple growth. Journal of Plant Physiology, 292, 154142. https://doi.org/10.1016/j.jplph.2023.154142
dc.relation.referencesJohansen, A., & Olsson, S. (2005). Using Phospholipid Fatty Acid Technique to Study Short-Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere. Microbial Ecology, 49(2), 272-281. https://doi.org/10.1007/s00248-004-0135-2
dc.relation.referencesKallas, T., Coursin, T., & Rippka, R. (1985). Different organization of nif genes in nonheterocystous and heterocystous cyanobacteria. Plant Molecular Biology, 5(5), 321- 329. https://doi.org/10.1007/BF00020630
dc.relation.referencesKhalifa, A. Y. Z., Alsyeeh, A.-M., Almalki, M. A., & Saleh, F. A. (2016). Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of nonnodulating Medicago sativa. Saudi Journal of Biological Sciences, 23(1), 79-86. https://doi.org/10.1016/j.sjbs.2015.06.008
dc.relation.referencesKhan, M., Imran, Q. M., Shahid, M., Mun, B.-G., Lee, S.-U., Khan, M. A., Hussain, A., Lee, I.-J., & Yun, B.-W. (2019). Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC Plant Biology, 19(1), 602. https://doi.org/10.1186/s12870-019-2210-3
dc.relation.referencesKhan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 56(1), 73-98. https://doi.org/10.1080/03650340902806469
dc.relation.referencesKhourchi, S., Elhaissoufi, W., Loum, M., Ibnyasser, A., Haddine, M., Ghani, R., Barakat, A., Zeroual, Y., Rchiad, Z., Delaplace, P., & Bargaz, A. (2022). Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiological Research, 262, 127094. https://doi.org/10.1016/J.MICRES.2022.127094
dc.relation.referencesKhumairah, F. H., Setiawati, M. R., Fitriatin, B. N., Simarmata, T., Alfaraj, S., Ansari, M. J., Enshasy, H. A. E., Sayyed, R. Z., & Najafi, S. (2022). Halotolerant Plant GrowthPromoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Frontiers in Microbiology, 13, 905210. https://doi.org/10.3389/fmicb.2022.905210
dc.relation.referencesKhuong, N. Q., Tuong, N. V., Nhi, M. K., Xuan, L. N. T., Thu, L. T. M., Quang, L. T., & Phong, N. T. (2024). Potency of endophytic nitrogen-fixing bacteria Burkholderia tropica LVT08c and Enterobacter cloacae N-VT01 in improving soil fertility and pineapple yield on acid sulfate soil. Scientia Horticulturae, 331, 113153. https://doi.org/10.1016/j.scienta.2024.113153
dc.relation.referencesKim, K. Y., Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., & Suh, J. S. (2003). 2-Ketogluconic Acid Production and Phosphate Solubilization by Enterobacter intermedium. Current Microbiology, 47(2), 87-92. https://doi.org/10.1007/s00284-002-3951-y
dc.relation.referencesKim, Y., Bae, B., & Choung, Y. (2005). Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Bioscience and Bioengineering, 99(1), 23-29. https://doi.org/10.1263/jbb.99.23
dc.relation.referencesKumar, A., & Rai, L. C. (2017). Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain. 3 Biotech, 7(3), 199. https://doi.org/10.1007/s13205-017-0810-x
dc.relation.referencesKumar, C., Yadav, K., Archana, G., & Naresh Kumar, G. (2013). 2-Ketogluconic Acid Secretion by Incorporation of Pseudomonas putida KT 2440 Gluconate Dehydrogenase (gad) Operon in Enterobacter asburiae PSI3 Improves Mineral Phosphate Solubilization. Current Microbiology, 67(3), 388-394. https://doi.org/10.1007/s00284-013-0372-z
dc.relation.referencesKumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921.
dc.relation.referencesKumar, S., Diksha, Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094
dc.relation.referencesKUMAR, S., SUYAL, D. C., Dhauni, N., Bhoriyal, M., & Reeta, G. (2014). Relative plant growth promoting potential of Himalayan Psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. And Eleusine coracana (L.)Gaertn. MICROBIOLOGY RESEARCH. http://go7publish.com/id/eprint/2770/
dc.relation.referencesLambers, H. (2022). Phosphorus Acquisition and Utilization in Plants. Annual Review of Plant Biology, 73(1), 17-42. https://doi.org/10.1146/annurev-arplant-102720-125738
dc.relation.referencesLara, M. C., Villalba, A. M., & Oviedo, Z. L. E. (2008). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6-14.
dc.relation.referencesLee Díaz, A. S., Macheda, D., Saha, H., Ploll, U., Orine, D., & Biere, A. (2021). Tackling the Context-Dependency of Microbial-Induced Resistance. Agronomy, 11(7), 1293. https://doi.org/10.3390/agronomy11071293
dc.relation.referencesLee, S., Reth, A., Meletzus, D., Sevilla, M., & Kennedy, C. (2000). Characterization of a Major Cluster of nif , fix , and Associated Genes in a Sugarcane Endophyte, Acetobacter diazotrophicus. Journal of Bacteriology, 182(24), 7088-7091. https://doi.org/10.1128/JB.182.24.7088-7091.2000
dc.relation.referencesLehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. Routledge.
dc.relation.referencesLi, C., Li, Q., Wang, Z., Ji, G., Zhao, H., Gao, F., Su, M., Jiao, J., Li, Z., & Li, H. (2019). Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 9(1), 15291. https://doi.org/10.1038/s41598- 019-51804-7
dc.relation.referencesLi, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.- L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375
dc.relation.referencesLi, H.-Z., Bi, Q., Yang, K., Zheng, B.-X., Pu, Q., & Cui, L. (2019). D 2 O-Isotope-Labeling Approach to Probing Phosphate-Solubilizing Bacteria in Complex Soil Communities by Single-Cell Raman Spectroscopy. Analytical Chemistry, 91(3), 2239-2246. https://doi.org/10.1021/acs.analchem.8b04820
dc.relation.referencesLi, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates. International Journal of Molecular Sciences, 18(7), 1253. https://doi.org/10.3390/ijms18071253
dc.relation.referencesLiang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. https://doi.org/10.1038/s41396-020-0632-4
dc.relation.referencesLindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13(5), 1314-1335. https://doi.org/10.1111/1751-7915.13517
dc.relation.referencesLiu, F.-P., Liu, H.-Q., Zhou, H.-L., Dong, Z.-G., Bai, X.-H., Bai, P., & Qiao, J.-J. (2014). Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils, 50(6), 927-937. https://doi.org/10.1007/s00374-014-0913-z
dc.relation.referencesLiu, Q., Liu, J., Zhang, P., & He, S. (2014). Root and Tuber Crops. En Encyclopedia of Agriculture and Food Systems (pp. 46-61). Elsevier. https://doi.org/10.1016/B978-0-444-52512- 3.00151-0
dc.relation.referencesLiu, X., Chen, C., Wang, J., Zou, S., & Long, X. (2021). Phosphorus solubilizing bacteria Bacillus thuringiensis and Pantoea ananatis simultaneously promote soil inorganic phosphate dissolution and soil Pb immobilization. Rhizosphere, 20, 100448. https://doi.org/10.1016/j.rhisph.2021.100448
dc.relation.referencesLiu, Y., He, P., He, P., Munir, S., Wu, Y., Wang, J., Kong, B., Lu, C., Li, X., Tian, Y., & He, Y. (2024). Potential rhizospheric bacteria benefit tobacco health during the incidence of tobacco black shank disease. Biological Control, 105448. https://doi.org/10.1016/j.biocontrol.2024.105448
dc.relation.referencesLiu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003
dc.relation.referencesLourenco, S. O., Barbarino, E., De-Paula, J. C., Pereira, L. O. D. S., & Marquez, U. M. L. (2002). Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233-241. https://doi.org/10.1111/j.1440-1835.2002.tb00156.x
dc.relation.referencesLuna-Castellanos, L. L., Espinosa-Carvajal, M. R., De-La-Ossa-Albis, V. A., Panza-Tapia, B. D., & Garcia-Peña, J. A. (2018). Selección de herbicidas para el control de arvenses en yuca (Manihot esculenta Crantz) en Bolívar, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(3), 621-631. https://doi.org/10.17584/rcch.2018v12i3.7895
dc.relation.referencesMachaca, M. L. (2017). Bacterias solubilizadoras de fosfato del género Bacillus en suelos de la provincia de El Collao (Puno) y su efecto en la germinación y crecimiento de quinua.
dc.relation.referencesMadhaiyan, M., Alex, T. H. H., Ngoh, S. T., Prithiviraj, B., & Ji, L. (2015). Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnology for Biofuels, 8(1), 222. https://doi.org/10.1186/s13068- 015-0404-y
dc.relation.referencesMaharana, R., & Dhal, N. K. (2022). Solubilization of rock phosphate by phosphate solubilizing bacteria isolated from effluent treatment plant sludge of a fertilizer plant. Folia Microbiologica, 67(4), 605-615. https://doi.org/10.1007/s12223-022-00953-w
dc.relation.referencesMaitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J. B., Shah, M. M. R., Barek, V., Ondrisik, P., Skalický, M., & Hossain, A. (2021). Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms, 10(1), 51. https://doi.org/10.3390/microorganisms10010051
dc.relation.referencesMaltais-Landry, G., Scow, K., & Brennan, E. (2014). Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in California agricultural soils. Soil Biology and Biochemistry, 78, 255-262. https://doi.org/10.1016/j.soilbio.2014.08.013
dc.relation.referencesMawarda, P. C., Le Roux, X., Dirk Van Elsas, J., & Salles, J. F. (2020). Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148, 107874. https://doi.org/10.1016/j.soilbio.2020.107874
dc.relation.referencesMederos, V. (2006). Embriogénesis somática en yuca (Manihot esculenta Crantz). Ciego de Ávila, Cuba: Tesis en opción al grado científico de Doctor en Ciencias Agrícolas. Universidad de Ciego de Ávila. Centro de Bioplantas.
dc.relation.referencesMeng, X., Wang, Z., He, S., Shi, L., Song, Y., Lou, X., & He, D. (2019). Endogenous hormone levels and activities of IAA-modifying enzymes during adventitious rooting of tree peony cuttings and grafted scions. Horticulture, Environment, and Biotechnology, 60(2), 187- 197. https://doi.org/10.1007/s13580-018-00121-5
dc.relation.referencesMeyer, G., Maurhofer, M., Frossard, E., Gamper, H. A., Mäder, P., Mészáros, É., SchönholzerMauclaire, L., Symanczik, S., & Oberson, A. (2019). Pseudomonas protegens CHA0 does not increase phosphorus uptake from 33P labeled synthetic hydroxyapatite by wheat grown on calcareous soil. Soil Biology and Biochemistry, 131, 217-228. https://doi.org/10.1016/j.soilbio.2019.01.015
dc.relation.referencesMeyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline Quinone Biosynthesis Gene pqqC , a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate-Solubilizing Pseudomonads. Applied and Environmental Microbiology, 77(20), 7345-7354. https://doi.org/10.1128/AEM.05434-11
dc.relation.referencesMinagricultura. (2019). Cifras sectoriales: Subsector productivo de la yuca. https://co.search.yahoo.com/search?fr=mcafee&type=E210CO91215G0&p=Parra%2C+J .+(2019).+Cifras+sectoriales%3A+Subsector+productivo+de+la+yuca.+https%3A%2F% 2Fsioc.minagricultura.gov.co%2FYuca%2F+Documentos%2F2019-06- 30%2520Cifras%2520Sectoriales.pdf
dc.relation.referencesMinagricultura. (2021). Cadena Productiva de la Yuca.
dc.relation.referencesMiranda, C. G., Speranza, P., & Sato, A. C. K. (2023). Evaluation of cassava leaves extract as a material to produce biopolymer-based films. Food Hydrocolloids, 144, 108944. https://doi.org/10.1016/j.foodhyd.2023.108944
dc.relation.referencesMitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5, 606815. https://doi.org/10.3389/fsufs.2021.606815
dc.relation.referencesMorales, M. (2007). Los biorfertilizantes. Una alternativa productiva, económica y sustentable. Estudios agrarios, 36. https://biblat.unam.mx/es/revista/estudios-agrarios/articulo/losbiofertilizantes-una-alternativa-productiva-economica-y-sustentable
dc.relation.referencesMoreira, J. C. F., Brum, M., De Almeida, L. C., Barrera-Berdugo, S., De Souza, A. A., De Camargo, P. B., Oliveira, R. S., Alves, L. F., Rosado, B. H. P., & Lambais, M. R. (2021). Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. Science of The Total Environment, 773, 145066. https://doi.org/10.1016/j.scitotenv.2021.145066
dc.relation.referencesMosimann, C., Oberhänsli, T., Ziegler, D., Nassal, D., Kandeler, E., Boller, T., Mäder, P., & Thonar, C. (2017). Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02150
dc.relation.referencesNacoon, S., Jogloy, S., Riddech, N., Mongkolthanaruk, W., Kuyper, T. W., & Boonlue, S. (2020). Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 10(1), 4916. https://doi.org/10.1038/s41598-020-61846-x
dc.relation.referencesNahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12(6), 567-572. https://doi.org/10.1007/BF00327716
dc.relation.referencesNassar, N., Junior, O., Sousa, M., & Ortiz, R. (2009). Improving Carotenoids and Amino-Acids in Cassava. Recent Patents on Food, Nutrition & Agriculturee, 1(1), 32-38. https://doi.org/10.2174/2212798410901010032
dc.relation.referencesNautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
dc.relation.referencesNegi, R., Kaur, T., Devi, R., Kour, D., & Yadav, A. N. (2022). Assessment of nitrogen-fixing endophytic and mineral solubilizing rhizospheric bacteria as multifunctional microbial consortium for growth promotion of wheat and wild wheat relative Aegilops kotschyi. Heliyon, 8(12), e12579. https://doi.org/10.1016/j.heliyon.2022.e12579
dc.relation.referencesNegrete, P. J. L., & Esquivel, A. L. M. (2018). AISLAMIENTO, IDENTIFICACIÓN Y EVALUACIÓN DE CEPAS NATIVAS SOLUBILIZADORAS DE FOSFATO EN ZONA RURAL DE MONTERÍA CÓRDOBA CORE View metadata, citation and similar papers at core.ac.uk provided by Repositorio de la Universidad de Córdoba [PhD Thesis].
dc.relation.referencesNejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16, 101060. https://doi.org/10.1016/j.jafr.2024.101060
dc.relation.referencesNyirakanani, C., Bizimana, J. P., Kwibuka, Y., Nduwumuremyi, A., Bigirimana, V. D. P., Bucagu, C., Lassois, L., Malice, E., Gengler, N., Massart, S., Bragard, C., Habtu, M., Brostaux, Y., Thonar, C., & Vanderschuren, H. (2021). Farmer and Field Survey in Cassava-Growing Districts of Rwanda Reveals Key Factors Associated With Cassava Brown Streak Disease Incidence and Cassava Productivity. Frontiers in Sustainable Food Systems, 5, 699655. https://doi.org/10.3389/fsufs.2021.699655
dc.relation.referencesOliva, J. (2017). Evaluación del rendimiento de cultivares de yuca biofortificada Santa Rosalía Zacapa. Universidad Rafael Landívar, 1-13.
dc.relation.referencesOrek, C. (2024). A review of management of major arthropod pests affecting cassava production in Sub-Saharan Africa. Crop Protection, 175, 106465. https://doi.org/10.1016/j.cropro.2023.106465
dc.relation.referencesOrtega-Ortega, Y., Sarmiento-López, L. G., Baylón-Palomino, A., Vázquez-Lee, J., MaldonadoBonilla, L. D., Flores-Olivas, A., & Valenzuela-Soto, J. H. (2024). Enterobacter sp. DBA51 produces ACC deaminase and promotes the growth of tomato (Solanum lycopersicum L.) and tobacco (Nicotiana tabacum L.) plants under greenhouse condition. Current Research in Microbial Sciences, 6, 100207. https://doi.org/10.1016/j.crmicr.2023.100207
dc.relation.referencesOspina, B. (2002). La Yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización. CIAT.
dc.relation.referencesPalladini, G., Garbarino, C., Luppi, A., Russo, S., Filippi, A., Arrigoni, N., Massella, E., & Ricchi, M. (2023). Comparison between broth microdilution and agar disk diffusion methods for antimicrobial susceptibility testing of bovine mastitis pathogens. Journal of Microbiological Methods, 212, 106796. https://doi.org/10.1016/j.mimet.2023.106796
dc.relation.referencesPanigrahi, S., Mohanty, S., & Rath, C. C. (2020). Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South African Journal of Botany, 134, 17-26. https://doi.org/10.1016/j.sajb.2019.09.017
dc.relation.referencesPark, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829-836. https://doi.org/10.1016/j.jhazmat.2010.09.095
dc.relation.referencesPark, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., & Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133. https://doi.org/10.1016/j.micres.2004.10.003
dc.relation.referencesParmar, A., Sturm, B., & Hensel, O. (2017a). Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Security, 9(5), 907-927. https://doi.org/10.1007/s12571-017-0717-8
dc.relation.referencesParmar, A., Sturm, B., & Hensel, O. (2017b). Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. En Food Security (Vol. 9, Número 5, pp. 907-927). Springer Netherlands. https://doi.org/10.1007/s12571-017-0717- 8
dc.relation.referencesPatel, D. K., Archana, G., & Kumar, G. N. (2008). Variation in the Nature of Organic Acid Secretion and Mineral Phosphate Solubilization by Citrobacter sp. DHRSS in the Presence of Different Sugars. Current Microbiology, 56(2), 168-174. https://doi.org/10.1007/s00284-007-9053-0
dc.relation.referencesPatrick, O. R., Abimbola, O. A., & Adeniyi, A. O. (2018). Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. African Journal of Microbiology Research, 12(34), 829-834. https://doi.org/10.5897/AJMR2018.8957
dc.relation.referencesPérez, F. L. P., & Oviedo, Z. L. E. (2019). CARACTERIZACIÓN DE BACTERIAS NATIVAS CON POTENCIAL BIOFERTILIZANTE AISLADAS DE SUELOS DEL DEPARTAMENTO DE SUCRE. En Biotecnología aplicada al sector agropecuario en el departamento de Sucre. https://doi.org/10.21892/9789585547063.11
dc.relation.referencesPineda-Rodriguez, Y. Y., Pompelli, M. F., Jarma-Orozco, A., Rodríguez, N. V., & RodriguezPaez, L. A. (2023). A New and Profitable Protocol to DNA Extraction in Limnospira maxima. Methods and Protocols, 6(4), Article 4. https://doi.org/10.3390/mps6040062
dc.relation.referencesPompelli, M. F., Mendes, K. R., Ramos, M. V., Santos, J. N. B., Youssef, D. T. A., Pereira, J. D., Endres, L., Jarma-Orozco, A., Solano-Gomes, R., Jarma-Arroyo, B., Silva, A. L. J., Santos, M. A., & Antunes, W. C. (2019). Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. Journal of Arid Land, 11(6), 795-810. https://doi.org/10.1007/s40333-019-0016-7
dc.relation.referencesPostma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46(3), 464-469. https://doi.org/10.1016/j.apsoil.2010.08.016
dc.relation.referencesPrietzel, J., Harrington, G., Häusler, W., Heister, K., Werner, F., & Klysubun, W. (2016). Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K -edge XANES spectroscopy. Journal of Synchrotron Radiation, 23(2), 532-544. https://doi.org/10.1107/S1600577515023085
dc.relation.referencesQin, S., Zhang, H., He, Y., Chen, Z., Yao, L., & Han, H. (2023). Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. Science of the Total Environment, 868. https://doi.org/10.1016/j.scitotenv.2023.161685
dc.relation.referencesRafi, M. M., Krishnaveni, M. S., & Charyulu, P. B. B. N. (2019). Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. En Recent Developments in Applied Microbiology and Biochemistry (pp. 223-233). Elsevier. https://doi.org/10.1016/B978-0-12-816328-3.00017-9
dc.relation.referencesRahman, A., Sitepu, I. R., Tang, S.-Y., & Hashidoko, Y. (2010). Salkowski’s Reagent Test as a Primary Screening Index for Functionalities of Rhizobacteria Isolated from Wild Dipterocarp Saplings Growing Naturally on Medium-Strongly Acidic Tropical Peat Soil. Bioscience, Biotechnology, and Biochemistry, 74(11), 2202-2208. https://doi.org/10.1271/bbb.100360
dc.relation.referencesRaymond, N. S., Gómez‐Muñoz, B., Van Der Bom, F. J. T., Nybroe, O., Jensen, L. S., Müller‐ Stöver, D. S., Oberson, A., & Richardson, A. E. (2021). Phosphate‐solubilising microorganisms for improved crop productivity: A critical assessment. New Phytologist, 229(3), 1268-1277. https://doi.org/10.1111/nph.16924
dc.relation.referencesRehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125, 107460. https://doi.org/10.1016/j.ecolind.2021.107460
dc.relation.referencesReis, C. R. G., Pacheco, F. S., Reed, S. C., Tejada, G., Nardoto, G. B., Forti, M. C., & Ometto, J. P. (2020). Biological nitrogen fixation across major biomes in Latin America: Patterns and global change effects. Science of The Total Environment, 746, 140998. https://doi.org/10.1016/j.scitotenv.2020.140998
dc.relation.referencesRfaki, A., Zennouhi, O., Aliyat, F. Z., Nassiri, L., & Ibijbijen, J. (2020). Isolation, Selection and Characterization of Root-Associated Rock Phosphate Solubilizing Bacteria in Moroccan Wheat ( Triticum aestivum L.). Geomicrobiology Journal, 37(3), 230-241. https://doi.org/10.1080/01490451.2019.1694106
dc.relation.referencesRichardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897. https://doi.org/10.1071/PP01093
dc.relation.referencesRoberts, T. L., & Johnston, A. E. (2015). Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling, 105, 275-281. https://doi.org/10.1016/j.resconrec.2015.09.013
dc.relation.referencesRobinson, W. D., Park, J., Tran, H. T., Del Vecchio, H. A., Ying, S., Zins, J. L., Patel, K., McKnight, T. D., & Plaxton, W. C. (2012). The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany, 63(18), 6531-6542. https://doi.org/10.1093/jxb/ers309
dc.relation.referencesRodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287(1-2), 15-21. https://doi.org/10.1007/s11104-006-9056-9
dc.relation.referencesSaikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-w
dc.relation.referencesSanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441-448. https://doi.org/10.1016/0022-2836(75)90213-2
dc.relation.referencesSano, H., Wakui, A., Kawachi, M., Washio, J., Abiko, Y., Mayanagi, G., Yamaki, K., Tanaka, K., Takahashi, N., & Sato, T. (2021). Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. Journal of Oral Biosciences, 63(3), 292-297. https://doi.org/10.1016/j.job.2021.05.003
dc.relation.referencesSashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2(4), 521-529. https://doi.org/10.1111/j.1751- 7915.2009.00119.x
dc.relation.referencesSavary, S., Horgan, F., Willocquet, L., & Heong, K. L. (2012). A review of principles for sustainable pest management in rice. En Crop Protection (Vol. 32, pp. 54-63). Elsevier. https://doi.org/10.1016/j.cropro.2011.10.012
dc.relation.referencesSawada, H., Kuykendall, L. D., & Young, J. M. (2003). Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. The Journal of General and Applied Microbiology, 49(3), 155-179. https://doi.org/10.2323/jgam.49.155
dc.relation.referencesSecco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A. K., & Rouached, H. (2017). Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 37(7), 898-910. https://doi.org/10.1080/07388551.2016.1268089
dc.relation.referencesShah, V. K., & Brill, W. J. (1977). Isolation of an iron-molybdenum cofactor from nitrogenase. Proceedings of the National Academy of Sciences, 74(8), 3249-3253. https://doi.org/10.1073/pnas.74.8.3249
dc.relation.referencesShameem M, R., Sonali J, M. I., Kumar, P. S., Rangasamy, G., Gayathri, K. V., & Parthasarathy, V. (2023). Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogenfixing bacteria isolated from rhizosphere soil. Environmental Research, 220, 115200. https://doi.org/10.1016/j.envres.2022.115200
dc.relation.referencesSharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587
dc.relation.referencesSingh, A., Parmar, N., Kuhad, R. C., & Ward, O. P. (2011). Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (Vol. 108, pp. 1-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_1
dc.relation.referencesSingh, R. P., Pandey, D. M., Jha, P. N., & Ma, Y. (2022). ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant. PLOS ONE, 17(5), e0267127. https://doi.org/10.1371/journal.pone.0267127
dc.relation.referencesSingh, V., & Kumar, B. (2024). A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere, 29, 100843. https://doi.org/10.1016/j.rhisph.2023.100843
dc.relation.referencesSmil, V. (2000). P HOSPHORUS IN THE E NVIRONMENT: Natural Flows and Human Interferences. Annual Review of Energy and the Environment, 25(1), 53-88. https://doi.org/10.1146/annurev.energy.25.1.53
dc.relation.referencesSon, H.-J., Park, G.-T., Cha, M.-S., & Heo, M.-S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204-210. https://doi.org/10.1016/j.biortech.2005.02.021
dc.relation.referencesSong, O.-R., Lee, S.-J., Lee, Y.-S., Lee, S.-C., Kim, K.-K., & Choi, Y.-L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39, 151-156. https://doi.org/10.1590/S1517- 83822008000100030
dc.relation.referencesSoumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). Efficacy of phosphate solubilizing Actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere, 17, 100284. https://doi.org/10.1016/j.rhisph.2020.100284
dc.relation.referencesStanton, D. E., Batterman, S. A., Von Fischer, J. C., & Hedin, L. O. (2019). Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology, 100(9), e02795. https://doi.org/10.1002/ecy.2795
dc.relation.referencesSuárez, L., & Mederos, V. (2011). Apuntes sobre el cultivo de la yuca (Manihot esculenta Crantz). Tendencias actuales. Cultivos Tropicales, 32(3), 27-35.
dc.relation.referencesSullivan, B. W., Smith, W. K., Townsend, A. R., Nasto, M. K., Reed, S. C., Chazdon, R. L., & Cleveland, C. C. (2014). Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Sciences, 111(22), 8101-8106. https://doi.org/10.1073/pnas.1320646111
dc.relation.referencesSun, S., DeLuca, T. H., Zhang, J., Wang, G., Sun, X., Hu, Z., Wang, W., & Zhang, W. (2022). Evidence of endophytic nitrogen fixation as a potential mechanism supporting colonization of non-nodulating pioneer plants on a glacial foreland. Biology and Fertility of Soils, 58(5), 527-539. https://doi.org/10.1007/s00374-022-01640-1
dc.relation.referencesSunarpi, H., Nikmatullah, A., Sunarwidhi, A. L., Sapitri, I., Ilhami, B. T. K., Widyastuti, S., & Prasedya, E. S. (2020). Growth and yield of rice plants (Oryza sativa) grown in soil media containing several doses of inorganic fertilizers and sprayed with lombok brown algae extracts. IOP Conference Series: Earth and Environmental Science, 594(1), 012032. https://doi.org/10.1088/1755-1315/594/1/012032
dc.relation.referencesTang, A., Haruna, A. O., Majid, N. M. A., & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030442
dc.relation.referencesTejera-Hernández, B., Heydrich-Pérez, M., & Rojas-Badía, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357. https://doi.org/10.15517/am.v24i2.12535
dc.relation.referencesTian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158
dc.relation.referencesTimmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A.-C. (2017). Perspectives and Challenges of Microbial Application for Crop Improvement. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00049
dc.relation.referencesTsegaye, Z., Alemu, T., Desta, F. A., & Assefa, F. (2022). Plant growth-promoting rhizobacterial inoculation to improve growth, yield, and grain nutrient uptake of teff varieties. Frontiers in Microbiology, 13, 896770. https://doi.org/10.3389/fmicb.2022.896770
dc.relation.referencesUdoh, L. I., Agogbua, J. U., Keyagha, E. R., Nkanga, I. I., Udoh, L. I., Agogbua, J. U., Keyagha, E. R., & Nkanga, I. I. (2022). Carotenoids in Cassava (<em>Manihot esculenta</em> Crantz). En Carotenoids—New Perspectives and Application. IntechOpen. https://doi.org/10.5772/intechopen.105210
dc.relation.referencesVacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. Annual Review of Ecology, Evolution, and Systematics, 47(1), 1-24. https://doi.org/10.1146/annurev-ecolsys-121415- 032238
dc.relation.referencesValverde, A., Burgos, A., Fiscella, T., Rivas, R., Velázquez, E., Rodríguez-Barrueco, C., Cervantes, E., Chamber, M., & Igual, J.-M. (2007). Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. En E. Velázquez & C. Rodríguez-Barrueco (Eds.), First International Meeting on Microbial Phosphate Solubilization (Vol. 102, pp. 43-50). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5765-6_5
dc.relation.referencesVan Deynze, A., Zamora, P., Delaux, P.-M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H.-Y., … Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilageassociated diazotrophic microbiota. PLOS Biology, 16(8), e2006352. https://doi.org/10.1371/journal.pbio.2006352
dc.relation.referencesVasseur-Coronado, M., Vlassi, A., Boulois, H. D. D., Schuhmacher, R., Parich, A., Pertot, I., & Puopolo, G. (2021). Ecological Role of Volatile Organic Compounds Emitted by Pantoea agglomerans as Interspecies and Interkingdom Signals. Microorganisms, 9(6), 1186. https://doi.org/10.3390/microorganisms9061186
dc.relation.referencesVazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphatesolubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5-6), 460-468. https://doi.org/10.1007/s003740050024
dc.relation.referencesVitousek, P. M., Menge, D. N. L., Reed, S. C., & Cleveland, C. C. (2013). Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621). https://doi.org/10.1098/rstb.2013.0119
dc.relation.referencesVitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1
dc.relation.referencesVorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828-840. https://doi.org/10.1038/nrmicro2910
dc.relation.referencesVyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1), 174. https://doi.org/10.1186/1471-2180-9-174
dc.relation.referencesWagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. N. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 98(11), 5117-5129. https://doi.org/10.1007/s00253-014-5610-1
dc.relation.referencesWalpola, B., & Yoon, M.-H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African journal of microbiology research, 6, 6600-6605. https://doi.org/10.5897/AJMR12.889
dc.relation.referencesWang, Q., Xiao, C., Feng, B., & Chi, R. (2020). Phosphate rock solubilization and the potential for lead immobilization by a phosphate-solubilizing bacterium ( Pseudomonas sp.). Journal of Environmental Science and Health, Part A, 55(4), 411-420. https://doi.org/10.1080/10934529.2019.1704134
dc.relation.referencesWang, S., Li, Y., Zhang, J., Wang, X., Hong, J., Qiu, C., & Meng, H. (2022). Transcriptome Profiling Analysis of Phosphate-Solubilizing Mechanism of Pseudomonas Strain W134. Microorganisms, 10(10), 1998. https://doi.org/10.3390/microorganisms10101998
dc.relation.referencesWang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166
dc.relation.referencesWei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092
dc.relation.referencesWhite, J. F., Crawford, H., Torres, M. S., Mattera, R., Irizarry, I., & Bergen, M. (2012). A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis, 57(3), 161-171. https://doi.org/10.1007/s13199-012-0189-8
dc.relation.referencesWhite, J. F., Kingsley, K. L., Zhang, Q., Verma, R., Obi, N., Dvinskikh, S., Elmore, M. T., Verma, S. K., Gond, S. K., & Kowalski, K. P. (2019). Review: Endophytic microbes and their potential applications in crop management. Pest Management Science, 75(10), 2558-2565. https://doi.org/10.1002/ps.5527
dc.relation.referencesWooding, S. P., & Payahua, C. N. (2022). Ethnobotanical Diversity of Cassava (Manihot esculenta Crantz) in the Peruvian Amazon. Diversity, 14(4), Article 4. https://doi.org/10.3390/d14040252
dc.relation.referencesYi, Y., Huang, W., & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24(7), 1059-1065. https://doi.org/10.1007/s11274-007-9575-4
dc.relation.referencesZaidi, A., Ahmad, E., & Khan, Md. S. (2014). Role of Phosphate-Solubilizing Microbes in the Management of Plant Diseases. En M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology (pp. 225-256). Springer International Publishing. https://doi.org/10.1007/978-3-319-08216- 5_10
dc.relation.referencesZaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56(3), 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6
dc.relation.referencesZainuddin, I. M., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2018). Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 142, 115-123. https://doi.org/10.1016/j.postharvbio.2017.09.004
dc.relation.referencesZhang, L., Zhang, M., Huang, S., Li, L., Gao, Q., Wang, Y., Zhang, S., Huang, S., Yuan, L., Wen, Y., Liu, K., Yu, X., Li, D., Zhang, L., Xu, X., Wei, H., He, P., Zhou, W., Philippot, L., & Ai, C. (2022). A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 13(1), 3361. https://doi.org/10.1038/s41467-022-31113-w
dc.relation.referencesZhang, X., Zhi, X., Chen, L., & Shen, Z. (2020). Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. Water Research, 178, 115835. https://doi.org/10.1016/j.watres.2020.115835
dc.relation.referencesZhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. https://doi.org/10.1016/j.micres.2013.07.003
dc.relation.referencesZhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269-278. https://doi.org/10.1016/j.bjm.2017.06.007
dc.relation.referencesZhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522- 537. https://doi.org/10.1016/j.scitotenv.2017.08.095
dc.relation.referencesZhu, J., Qu, B., & Li, M. (2017). Phosphorus mobilization in the Yeyahu Wetland: Phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils. International Biodeterioration & Biodegradation, 124, 304-313. https://doi.org/10.1016/j.ibiod.2017.05.010
dc.relation.referencesZhu, Y., Xiong, C., Wei, Z., Chen, Q., Ma, B., Zhou, S., Tan, J., Zhang, L., Cui, H., & Duan, G. (2022). Impacts of global change on the phyllosphere microbiome. New Phytologist, 234(6), 1977-1986. https://doi.org/10.1111/nph.17928
dc.relation.referencesZhu, Y.-G., Peng, J., Chen, C., Xiong, C., Li, S., Ge, A., Wang, E., & Liesack, W. (2023). Harnessing biological nitrogen fixation in plant leaves. Trends in Plant Science, 28(12), 1391-1405. https://doi.org/10.1016/j.tplants.2023.05.009
dc.relation.referencesZúñiga-Silgado, D., Rivera-Leyva, J. C., Coleman, J. J., Sánchez-Reyez, A., Valencia-Díaz, S., Serrano, M., de-Bashan, L. E., & Folch-Mallol, J. L. (2020). Soil Type Affects Organic Acid Production and Phosphorus Solubilization Efficiency Mediated by Several Native Fungal Strains from Mexico. Microorganisms, 8(9), 1337. https://doi.org/10.3390/microorganisms8091337
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsIndole acetic acid
dc.subject.keywordsPhosphorus-solubilizing bacteria
dc.subject.keywordsNitrogen-fixing bacteria
dc.subject.keywordsColombia
dc.subject.proposalÁcido indol acético
dc.subject.proposalBacterias solubilizadoras de fósforo
dc.subject.proposalBacterias fijadoras de nitrógeno
dc.subject.proposalColombia
dc.titleEfecto de un biofertilizante a base de Enterobacter cloacae sobre el desarrollo y rendimiento de plantas de yuca (Manihot esculenta Crantz) en el municipio de Montería, Departamento de Córdobaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Trabajo De Grado Maestria En Biotecnologia-Betin Ruiz 2024.Pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato repositorio diligenciado.pdf
Tamaño:
1.75 MB
Formato:
Adobe Portable Document Format
Colecciones