Publicación:
Comportamientos críticos y de histéresis de un ferromagneto de momentos magnéticos semienteros

dc.contributor.advisorEspriella Vélez, Nicolás Antonio. De Laspa
dc.contributor.advisorMadera Yances, Julio C.spa
dc.contributor.authorCorrea Cárdenas, Luis Enriquespa
dc.date.accessioned2022-11-18T13:35:10Z
dc.date.available2022-11-18T13:35:10Z
dc.date.issued2022-11-18
dc.description.abstractThis work was developed through computational simulations based on a Monte Carlo method, under the implementation of a heat bath algorithm, for the studyof the thermomagnetic properties of a ferromagnetic mixed Ising model, which is constituted by a bipartite square lattice of sublattices A and B, where spins S = ±3/2, ±1/2 alternate with spins σ = ±5/2, ±3/2, ±1/2. The Hamiltonian of the system contains a ferromagnetic interaction to first neighbors and an external ongitudinal magnetic field. We calculate the dependence of the total magnetization, the sublattice magnetizations, the energy, the magnetic susceptibility and the hysteresis loops with the magnetic field at a fixed temperature. We find that the critical temperature of the system decreases for h < 0 and increases for h > 0. We also find that the hysteresis loops in this (3/2-5/2) mixed-spin ferromagnetic system exhibit no coercive magnetic field, and in some cases the magnitude of the magnetic remanence is not far from the saturation value.spa
dc.description.degreelevelPregradospa
dc.description.degreenameFísico(a)spa
dc.description.modalityMonografíasspa
dc.description.resumenEste trabajo se desarrolló a través de simulaciones computacionales basadas en un método Monte Carlo, bajo la implementación de un algoritmo baño térmico, para el estudio de las propiedades termomagnéticas de un modelo de Ising mixto ferromagnético, el cual está constituido por una red cuadrada bipartita de subredes A y B, donde espines S = ±3/2, ±1/2 se alternan con los espines σ = ±5/2, ±3/2, ±1/2. El Hamiltoniano del sistema contiene una interacción ferromagnética a primeros vecinos y un campo magnético longitudinal externo; calculamos la dependencia de la magnetización total, las magnetizaciones de las subredes, la energía, la susceptibilidad magnética y los lazos de histéresis con el campo magnético a temperatura fija. Hallamos que la temperatura crítica del sistema decrece para h < 0 y se incrementa para h > 0, también encontramos que los lazos de histéresis en este sistema ferromagnético de espines mixtos (3/2-5/2), exhiben campo magnético coercitivo, y en algunos casos la magnitud de la remanencia magnética se aproxima al valor de saturación.spa
dc.description.tableofcontents1. INTRODUCCIÓN................................................................................................................................................................4spa
dc.description.tableofcontents2. FENÓMENOS CRÍTICOS DE UN MODELO FERROMAGNÉTICO TIPO ISING........................... 7spa
dc.description.tableofcontents2.1. Fenómenos críticos magnéticos .......................................................................................................................7spa
dc.description.tableofcontents2.1.1. Transiciones de fase ...............................................................................................................................................7spa
dc.description.tableofcontents2.1.2. Transiciones de fase de primer orden ..................................................................................................... 8spa
dc.description.tableofcontents2.1.3. Transiciones de fase de segundo orden .................................................................................................. 8spa
dc.description.tableofcontents2.2. Modelo de Ising ............................................................................................................................................................9spa
dc.description.tableofcontents2.2.1. Modelo de Ising Bidimensional ................................................................................................................... 10spa
dc.description.tableofcontents2.3. Estados base de un sistema magnético.......................................................................................................11spa
dc.description.tableofcontents2.4. Lazos de histéresis en un material ferromagnético ............................................................................ 12spa
dc.description.tableofcontents2.4.1. Coercitividad Magnética..................................................................................................................................... 14spa
dc.description.tableofcontents2.4.2. Remanencia Magnética.................................................................................................................................. 14spa
dc.description.tableofcontents2.5. Materiales magnéticamente blandos y magnéticamente duros............................................14spa
dc.description.tableofcontents2.5.1. Materiales magnéticamente blandos.................................................................................................... 15spa
dc.description.tableofcontents2.5.2. Materiales magnéticamente duros ......................................................................................................... 15spa
dc.description.tableofcontents2.6. Condiciones de borde periódicas ................................................................................................................. 15spa
dc.description.tableofcontents2.7. Método Monte Carlo ............................................................................................................................................. 16spa
dc.description.tableofcontents3. RESULTADOS Y ANÁLISIS.......................................................................................................................................... 18spa
dc.description.tableofcontents3.1. Hamiltoniano de interacción ............................................................................................................................. 18spa
dc.description.tableofcontents3.2. Variables termomagnéticas del modelo ...................................................................................................19spa
dc.description.tableofcontents3.3. Estados base del sistema .................................................................................................................................... 19spa
dc.description.tableofcontents3.4. Efectos del campo magnético externo h sobre las variables termomagnéticas ........... 21spa
dc.description.tableofcontents3.4.1. Efecto de h sobre la energía (E) .................................................................................................................... 21spa
dc.description.tableofcontents3.4.2. Efecto de h sobre las magnetizaciones: (MS,Mσ,MT ) ....................................................................22spa
dc.description.tableofcontents3.4.3. Efecto de h sobre la susceptibilidad magnética (χT ) ..................................................................25spa
dc.description.tableofcontents3.5. Efectos de la temperatura (T) sobre las variables termomagnéticas.................................... 26spa
dc.description.tableofcontents3.5.1. Efectos de (T) sobre las magnetizaciones: (MS,Mσ,MT )...................................................................26spa
dc.description.tableofcontents3.5.2. Efecto de (T) sobre la susceptibilidad χT .................................................................................................28spa
dc.description.tableofcontents3.6. Efectos del campo magnético (h) sobre la temperatura crítica (Tc)......................................... 29spa
dc.description.tableofcontents3.7. Comportamiento de histéresis del modelo ............................................................................................ 30spa
dc.description.tableofcontents4. Conclusiones......................................................................................................................................................................35spa
dc.description.tableofcontentsA. Descripción del método Monte Carlo................................................................................................................ 37spa
dc.description.tableofcontentsA.1. Muestreo directo .........................................................................................................................................................38spa
dc.description.tableofcontentsA.2. Muestreo de importancia ................................................................................................................................... 38spa
dc.description.tableofcontentsA.3. Descripción del algoritmo para modelos de Ising mixtos ............................................................. 39spa
dc.description.tableofcontentsA.3.1. Algoritmo tipo baño térmico ............................................................................................................................40spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6824
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programFísicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsCritical behavioreng
dc.subject.keywordsMagnetizationeng
dc.subject.keywordsMonte Carlo simulationeng
dc.subject.keywordsIsing modeleng
dc.subject.proposalComportamiento críticospa
dc.subject.proposalMagnetizaciónspa
dc.subject.proposalSimulación Monte Carlospa
dc.subject.proposalModelo de Isingspa
dc.titleComportamientos críticos y de histéresis de un ferromagneto de momentos magnéticos semienterosspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references[1] S. W. Koch. Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems, lect. Notes Phys. Springer-Verlag, (1984).spa
dcterms.references[2] C. Ekiz. Mixed spin-1/2 and spin-3/2 Ising system in a longitudinal magnetic field, J. Magn. Magn. Mater. 293 (2005) 913–923.spa
dcterms.references[3] N. De La Espriella, C.A. Mercado, G.M. Buendía, Critical and compensation points of a mixed spin-2-spin-5/2 Ising ferrimagnetic system with crystal field and nearest and next nearest neighbors interactions, J. Magn. Magn. Mater. 417 (2016) 30–36.spa
dcterms.references[4] Y. Hou, Q. Zhang, Y. Jia, Monte Carlo studies of the first order phase transitions on a mixed spin-2 and spin-5/2 system, Phys. B 442 (2014) 52–56.spa
dcterms.references[5] M. Rascle, D. Serre, M. Slemrod. DPEs and Continuum Models of Phase Transitions, lect. Notes Phys. Springer-Verlag, (1988).spa
dcterms.references[6] F. Ikhouane, J.Rodellar. System Wiht Hysteresis. Analysis, Identification and Control Using the Bouc-Wen Model. Wiley, (2007).spa
dcterms.references[7] Z.H. Yang, Z.W. Li, L. Liu, L.B. Kong, Microstructure and magnetic properties of Co-Cu nanowire arrays fabricated by galvanic displacement deposition, J. Magn. Magn. Mater. 323 (2011) 2674–2677.spa
dcterms.references[8] K.H. Seong, J.Y. Kim, J.J. Kim, et al., Room-temperature ferromagnetism in Cu doped GaN nanowires, Nano Lett. 7 (2007) 3366–3371.spa
dcterms.references[9] L. Zhang, Y. Zhang, Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters, J. Magn. Magn. Mater. 321 (2009) L15–L20.spa
dcterms.references[10] M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube, Superlattices Microstruct. 80 (2015) 151–168.spa
dcterms.references[11] R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359–372.spa
dcterms.references[12] S.D. Bader, Opportunities in nanomagnetism, Rev. Mod. Phys. 78 (2006) 1.spa
dcterms.references[13] N. Sounderya, Y. Zhang, Use of core/shell nanoparticles for biomedical applications, Recent Pat. Biomed. Eng. 1 (2008) 34–42.spa
dcterms.references14] G.Z. Wei, Y.Q. Liang, Q. Zhang, Z.H. Xin, Magnetic properties of mixedspin Ising systems in a longitudinal magnetic field, J. Magn. Magn. Mater. 271 (2004) 246–253.spa
dcterms.references[15] A. Jabar, R. Masrour, A. Benyoussef, M. Hamedoun, Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice, J. Magn. Magn. Mater. 397 (2016) 287–294.spa
dcterms.references[16] C.Q. Xu, S.L. Yan, Compensation behaviors of mixed Ising model with transverse crystal field in an external magnetic field, J. Magn. Magn. Mater. 345 (2013) 261–265.spa
dcterms.references[17] C. P. Poole Jr, F. J. Owens. Introducción a la nanotecnología. Reverte, (2003).spa
dcterms.references[18] Eckart Kneller. FERROMAGNETISMUS. Springer-Verlag, (1962).spa
dcterms.references[19] Shan X.Wang, A. M. Taratorin, Magnetic Information Storage Technology. Academic Press, (1999).spa
dcterms.references[20] N. De La Espriella and C. Ortega. Critical and compensation temperatures for the mixed spin-3/2 and spin-5/2 Ising model Revista Mexicana de Física : 59(2013)95-101.spa
dcterms.references[21] N. De La Espriella, G. Casiano and C. Ortega. Propiedades magnéticas del sistema ferrimagnético de Ising mixto de espines S = 3/2 y σ = 5/2, Información Tecnológica: 23(2)(2012)129-140.spa
dcterms.references[22] B. Deriven, M. Keskin, Dynamic phase transitions and compensation temperatures in a mixed spin-3/2 and spin-5/2 Ising system, Journal of Statistical Physics 140(2010)934-947.spa
dcterms.references[23] R. Weiss, A. Gold, J. Tener, Cytochromes c’: biological model for the S=3/2,5/2 admixture, Chem. Rev. 106 (2006) 2550–2579.spa
dcterms.references[24] M.E. Kosal, K.S. Suslick, Microporous porphyrin and metalloporphyrin materials, J. Solid State Chem. 152 (2000) 87–98.spa
dcterms.references[25] X. Luo, W. Wang, D. Chen, S. Xu, Monte Carlo Study of internal energy and specific heat of a nano-graphene bilayer in a longitudinal magnetic field, Physica B 491 (2016) 51-58.spa
dcterms.references[26] W. Jiang, Y.Y. Yang, A.B. Guo, Study on magnetic properties of a nanographene bilayer, Carbon 95 (2015) 190-198.spa
dcterms.references[27] W. Jiang, Y.Wang, A.B. Guo, Y.Y. Yang, K.L. Shi, Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure, Carbon 110 (2016) 41-47.spa
dcterms.references[28] Y. Yang, W. Wang, D. Lv, J. Liu, Z. Gao, Z. Wang, Monte Carlo Study of magnetic behaviors in a quadrangle ferrimagnetic Ising nanoisland, J. Phys. Chem. Solids 120 (2018) 109-122.spa
dcterms.references[29] J.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer, J. Magn. Magn. Mater. 429 (2017) 34.spa
dcterms.references[30] A. Feraoun, S. Amraoui, M. Kerouad, Critical and compensation behaviors of an Ising mixed spin-(5/2, 3/2) on a nanographene layer, Appl. Phys. A 124 (2018) 329.spa
dcterms.references[31] W. Jiang, Y.Y. Yang, A.B. Guo, Study on magnetic properties of a nanographene bilayer, Carbon 95 (2015) 190-198.spa
dcterms.references[32] R. Masrour and A. Jabar, “Magnetic properties of bilayer graphene armchair nanoribbons: A Monte Carlo study,” J. Magn. Magn. Mater, vol. 426, pp. 225–229, Mar. 2017.spa
dcterms.references[33] D. Gross. Microcanonical Thermodynamics, Phase Transitions in “Small” Systems. World Scientfic, (2001).spa
dcterms.references[34] G. Parisi. Field-Theoretic Approach to Second-Order Phase Transitions in Two-and Three-Dimensional Systems. Journal of Statistical Physics, Vol. 23, No. 1, 1980.spa
dcterms.references[35] B. D. Simons. Phase Transitions and Collective Phenomena, Copyright (C), (1997).spa
dcterms.references[36] J. M. Yeomans. Statistical Mechanics of Phase Transitions. CLARENDON PRES·OXFORD, (1992).spa
dcterms.references[37] L. Garrido. Far from Equilibrium Phase Transitions, lect. Notes Phys. Springer-Verlag, (1988).spa
dcterms.references[38] W. G. Unruh, R. Schutzhold. Quantum Analogues: From Phase Transitions to Black holes and Cosmology, lect. Notes Phys. Springer, (2007).spa
dcterms.references[39] M. S. Green. Phase Transitions and Critical Phenomena. Academic Press, (1974).spa
dcterms.references[40] Y. G. Sinai. Theory of Phase Transitions: Rigorous Results. Pergamon Press, (1982).spa
dcterms.references[41] Nigel Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. PERSEUS BOOKS PUBLISHING, (1992).spa
dcterms.references[42] P. Pabon, J. Leblond, P. Meijer. The Physics of PhaseTransitions. Springer, (2006).spa
dcterms.references[43] A. Figueredo, S. Salinas. The Physics of Lyotropic Liquid Crystals, Phase Transitions and Structural Properties. Oxford University Press, (2005).spa
dcterms.references[44] C. Domb, M.S. Green. Phase Transitions and Critical Phenomena. Vol 2. Academi Press, (1972).spa
dcterms.references45] C. Domb, J. L. Lebowitz. Phase Transitions and Critical Phenomena. Vol 10. Academi Press, (1986).spa
dcterms.references[46] C. Domb, J. L. Lebowitz. Phase Transitions and Critical Phenomena. Vol 11. Academi Press, (1987).spa
dcterms.references[47] Ekhard K. H. Salje. Phase Transitions Ferroelastic and Co-elastic Cristals. Cambridge University Press, (1990).spa
dcterms.references[48] D. L. Mills. Phase Transitions in Liquid Crystals. Physics Reports 324 (2000) 107-269.spa
dcterms.references[49] N. F. Mott. Metal-Insulador Transitions. Second edition. Tailor & Francis, (1990).spa
dcterms.references[50] M. Fujimoto. The Physics of Structural Phase Transitions. Secund edition. Springer, (2005).spa
dcterms.references[51] M. baus, C. Tejero. Equilibrium Statical Physics, Phases of Matter and Phase Transitions. Springer, (2008).spa
dcterms.references[52] N. Tsushima, Y. Honda, T. Horiguchi, Critical Properties of a Spin-3/2 Ising Model on a Square Lattice, Journal of the Physical Society of Japan 66 (1997) 3053-3062.spa
dcterms.references[53] Y. I . Dublenych, Exact ground-state diagrams for the generalized Blume- Emery-Griffiths model, Physical Review B 71 (2005) 012411-1-012411-4.spa
dcterms.references[54] N. De La Espriella, G. M. Buendía. Ground state phase diagrams for the mixed Ising 3/2 and 5/2 spin model, Physica A, 389 (2010)2725-2732.spa
dcterms.references[55] I. Mayergoyz. Mathematical Models of Hysteresis and Their Applications. Academic Press, (2003).spa
dcterms.references[56] M. Brokate, N. Kenmochi, I. M¨uller, J. Roriguez, C. Verdi. Phase Transitions and Hysteresis. Springer, (1993).spa
dcterms.references[57] G. Bertotti. Hysteresis in Magnetism. For Physicist, Materials Scientists, and Engineers. Academic Press, (1998).spa
dcterms.references[58] E. Della Torre. Magnetic Hysteresis. IEEE Press, (1999).spa
dcterms.references[59] C. Denis Mee, E. Daniel. Macnetic Storage Handbook. IEEE Press, (1997).spa
dcterms.references[60] P. Krejci. Hysteresis, Convexity and Dissipation in Hyperbolic Ecuations. Gakuto, (1996).spa
dcterms.references[61] P. Ehrenfest, T. Ehrenfest. The Conceptual Foundations of the Statical Approach in Mechanics. Dover puplications, (1990).spa
dcterms.references[62] H. Eugene Stanley. Introduction to Phase Transitions and Critical Phenomena. CLARENDON PRESS·OXFORD, (1971).spa
dcterms.references[63] V. Sabolev. Singular Perturbations and Hysteresis. Copyright, (2005).spa
dcterms.references[64] É. du Trémolet de Lacheissie, D. Gignoux, M. Schlenker. Magnetism Fundamentals, (2005).spa
dcterms.references[65] M.E. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, New York, 2006.spa
dcterms.references[66] D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithms to Applications. Academic Press. A Division of Harcourt, Inc., (1998).spa
dcterms.references[67] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics Third Edition: 68, 69 (2009).spa
dcterms.references[68] D. W. Heermann, Computer Simulation Methods in Theoretical Physics. Springer-Verlag, (1986).spa
dcterms.references[69] B. A. Berg, Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientic Publishing, (2004).spa
dcterms.references[70] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, (1998).spa
dcterms.references[71] N. De la Espriella, J.C. Madera, G.M. Buendía, Critical phenomena in a mixed spin-3/2 and spin-5/2 Ising ferroferrimagnetic system in a longitudinal magnetic field. Journal of Magnetism and Magnetic Materials, 442(2017)350-359.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
correacardenasluisenrique.pdf
Tamaño:
664.44 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: