Publicación:
Evaluación termodinámica del proceso de pirólisis de biomasa

dc.contributor.advisorRhenals julio, Jesus David
dc.contributor.advisorGómez Vásquez, Rafael David
dc.contributor.authorHernández Contreras, Luis Fernando
dc.contributor.juryMendoza Fandiño, Jorge Mario
dc.contributor.juryBula, Antonio
dc.contributor.researcherHERNANDEZ CONTRERAS, LUIS FERNANDO
dc.date.accessioned2025-07-23T14:20:01Z
dc.date.available2025-07-23T14:20:01Z
dc.date.issued2025-07-22
dc.description.abstractEsta investigación presenta la evaluación termodinámica y cinética del proceso de pirólisis de la tusa de maíz, una biomasa lignocelulósica de amplia disponibilidad. Se desarrolla y valida un modelo cinético capaz de predecir los rendimientos y la composición de los productos generados (sólidos, líquidos y gases) durante el proceso. La metodología se basó en análisis termogravimétricos (TGA) realizados a diferentes tasas de calentamiento (5, 10 y 30°C/min) para caracterizar la descomposición térmica de la biomasa. A partir de la deconvolución de la curva de la derivada termogravimétrica (DTG), se determinaron las proporciones de los componentes principales: hemicelulosa, celulosa y lignina. Con esta información, se estimaron los parámetros cinéticos, como la energía de activación y el factor preexponencial, utilizando el método de Coats-Redfern. Estos parámetros fundamentales se implementaron en un software de simulación para modelar la distribución de productos a diversas temperaturas. Los resultados simulados mostraron una excelente concordancia con datos experimentales reportados en la literatura, con errores absolutos mayormente inferiores al 9%. Además, se realizó un análisis exergético local para evaluar la eficiencia y el potencial termodinámico a lo largo del proceso de conversión. Se concluye que la metodología desarrollada es una herramienta robusta y precisa para la predicción de los productos de la pirólisis. Este modelo representa un aporte significativo para el diseño y la optimización de procesos sostenibles orientados a la valorización de residuos agrícolas, facilitando la obtención de biocombustibles y productos químicos de valor añadido.spa
dc.description.abstractThis research presents the thermodynamic and kinetic evaluation of the pyrolysis process of corn cob, a widely available lignocellulosic biomass. A kinetic model is developed and validated to predict the yields and composition of the generated products (solids, liquids, and gases).The methodology was based on thermogravimetric analysis (TGA) conducted at various heating rates (5, 10, and 30°C/min) to characterize the thermal decomposition of the biomass. Through the deconvolution of the derivative thermogravimetric (DTG) curve, the proportions of the main components—hemicellulose, cellulose, and lignin—were determined. Based on this information, kinetic parameters, such as activation energy and the pre-exponential factor, were estimated using the Coats-Redfern method. These fundamental parameters were implemented in simulation software to model the product distribution at various temperatures. The simulated results showed strong agreement with experimental data reported in the literature, with absolute errors predominantly below 9%. Furthermore, a local exergy analysis was performed to assess the efficiency and thermodynamic potential throughout the conversion process. In conclusion, the developed methodology constitutes a robust and accurate tool for the prediction of pyrolysis products. This model represents a significant contribution to the design and optimization of sustainable processes for the valorization of agricultural residues, facilitating the procurement of biofuels and value-added chemicals.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsLISTA DE TABLAS 9spa
dc.description.tableofcontentsLISTA DE FIGURAS 10spa
dc.description.tableofcontentsRESUMEN 12spa
dc.description.tableofcontentsABSTRACT 13spa
dc.description.tableofcontents1. INTRODUCCIÓN 14spa
dc.description.tableofcontents2. REVISIÓN DE LITERATURA 16spa
dc.description.tableofcontents2.1 Biomasa Lignocelulósica 16spa
dc.description.tableofcontents2.2 Caracterización de la Biomasa 17spa
dc.description.tableofcontents2.3 Pirolisis de Biomasa lignocelulósica 18spa
dc.description.tableofcontents2.4 Modelos cinéticos de pirolisis de biomasa 22spa
dc.description.tableofcontents3. OBJETIVOS 25spa
dc.description.tableofcontentsObjetivo general 25spa
dc.description.tableofcontentsObjetivos Específicos 25spa
dc.description.tableofcontents4. MATERIALES Y MÉTODOS 26spa
dc.description.tableofcontentsObjetivo 1. Definir los parámetros cinéticos de cada uno de los compuestos presentes en las reacciones del proceso. 26spa
dc.description.tableofcontentsObjetivo 2. Modelar el proceso de pirolisis de biomasa empleando un reactor cinético y las reacciones de transformación lignocelulósica. 30spa
dc.description.tableofcontentsObjetivo 3. Realizar un análisis exergético local del proceso de pirolisis de biomasa 33spa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIONES 36spa
dc.description.tableofcontentsObjetivo 1. Definir los parámetros cinéticos de cada uno de los compuestos presentes en las reacciones del proceso. 36spa
dc.description.tableofcontentsObjetivo 2. Modelar el proceso de pirolisis de biomasa empleando un reactor cinético y las reacciones de transformación lignocelulósica. 39spa
dc.description.tableofcontentsObjetivo 3. Realizar un análisis exergético local del proceso de pirolisis de biomasa 49spa
dc.description.tableofcontents6. CONCLUSIONES 50spa
dc.description.tableofcontents7. RECOMENDACIONES: 52spa
dc.description.tableofcontents8. REFERENCIAS BIBLIOGRÁFICAS 53spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9462
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ingeniería Mecánica
dc.relation.referencesAbdullah, N., Mohd Taib, R., Mohamad Aziz, N. S., Omar, M. R., & Md Disa, N. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1), e12940. https://doi.org/10.1016/J.HELIYON.2023.E12940
dc.relation.referencesAjikashile, J. O., Alhnidi, M. J., Parku, G. K., Funke, A., & Kruse, A. (2023a). A study on the fast pyrolysis of millet and sorghum straws sourced from arid and semi-arid regions of Nigeria in a twin-screw mixing reactor. Materials Science for Energy Technologies, 6, 388–398. https://doi.org/10.1016/J.MSET.2023.03.007
dc.relation.referencesAjikashile, J. O., Alhnidi, M. J., Parku, G. K., Funke, A., & Kruse, A. (2023b). A study on the fast pyrolysis of millet and sorghum straws sourced from arid and semi-arid regions of Nigeria in a twin-screw mixing reactor. Materials Science for Energy Technologies, 6, 388–398. https://doi.org/10.1016/J.MSET.2023.03.007
dc.relation.referencesAydin, E. S., Yucel, O., & Sadikoglu, H. (2017). Development of a semi-empirical equilibrium model for downdraft gasification systems. Energy, 130, 86–98. https://doi.org/10.1016/J.ENERGY.2017.04.132
dc.relation.referencesBasu, P. (2010a). Biomass Characteristics. In Biomass Gasification Design Handbook (pp. 27–63). Elsevier. https://doi.org/10.1016/b978-0-12-374988-8.00002-7
dc.relation.referencesBasu, P. (2010b). Pyrolysis and Torrefaction. In Biomass Gasification Design Handbook (pp. 65–96). Elsevier. https://doi.org/10.1016/b978-0-12-374988-8.00003-9
dc.relation.referencesBasu, P., & Kaushal, P. (2024). Biomass characteristics. In Biomass Gasification, Pyrolysis, and Torrefaction (pp. 63–105). Elsevier. https://doi.org/10.1016/b978-0-443-13784-6.00009-3
dc.relation.referencesBongomin, O., Nzila, C., Igadwa Mwasiagi, J., & Maube, O. (2024). Comprehensive thermal properties, kinetic, and thermodynamic analyses of biomass wastes pyrolysis via TGA and Coats-Redfern methodologies. Energy Conversion and Management: X, 24. https://doi.org/10.1016/j.ecmx.2024.100723
dc.relation.referencesChen, C., Miao, W., Zhou, C., & Wu, H. (2017). Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution. Bioresource Technology, 225, 48–57. https://doi.org/10.1016/j.biortech.2016.11.013
dc.relation.referencesDebevc, S., Weldekidan, H., Snowdon, M. R., Vivekanandhan, S., Wood, D. F., Misra, M., & Mohanty, A. K. (2022). Valorization of almond shell biomass to biocarbon materials: Influence of pyrolysis temperature on their physicochemical properties and electrical conductivity. Carbon Trends, 9, 100214. https://doi.org/10.1016/J.CARTRE.2022.100214
dc.relation.referencesGarba, K., Mohammed, I. Y., Isa, Y. M., Abubakar, L. G., Abakr, Y. A., & Hameed, B. H. (2023). Pyrolysis of Canarium schweinfurthii hard-shell: Thermochemical characterisation and pyrolytic kinetics studies. Heliyon, 9(2), e13234. https://doi.org/10.1016/J.HELIYON.2023.E13234
dc.relation.referencesHosseinzaei, B., Hadianfard, M. J., Aghabarari, B., García-Rollán, M., Ruiz-Rosas, R., Rosas, J. M., Rodríguez-Mirasol, J., & Cordero, T. (2022). Pyrolysis of pistachio shell, orange peel and saffron petals for bioenergy production. Bioresource Technology Reports, 19, 101209. https://doi.org/10.1016/J.BITEB.2022.101209
dc.relation.referencesKim, H., Yu, S., Kim, M., & Ryu, C. (2022a). Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy, 254. https://doi.org/10.1016/j.energy.2022.124446
dc.relation.referencesKim, H., Yu, S., Kim, M., & Ryu, C. (2022b). Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy, 254. https://doi.org/10.1016/j.energy.2022.124446
dc.relation.referencesKorpeh, M., Lotfollahi, A., Moghimi, M., & Anvari-Moghaddam, A. (2025). Combustion optimization of various biomass types to hydrogen-rich syngas: Two-stage pyrolysis modeling, methane addition effects, and environmental impact assessment. International Journal of Hydrogen Energy, 133, 458–471. https://doi.org/10.1016/J.IJHYDENE.2025.04.490
dc.relation.referencesLiu, L., Xu, G., Wang, J., Li, G., He, C., & Jiao, Y. (2025). Co-pyrolysis of biomass and plastic waste based on ReaxFF MD: Insights into hydrogen migration, radicals interactions and synergistic mechanism. Energy, 325, 136103. https://doi.org/10.1016/J.ENERGY.2025.136103
dc.relation.referencesManals-Cutiño, E., Penedo-Medina, M., & Giralt-Ortega, G. (n.d.). ANÁLISIS TERMOGRAVIMETRICO Y TÉRMICO DIFERENCIAL DE DIFERENTES BIOMASAS VEGETALES THERMOGRAVIMETRIC AND THERMAL ANALYSIS DIFFERENTIAL DIFFERENT VEGETABLE BIOMASSES.
dc.relation.referencesMansoor, K., Suraj, P., Arun, P., & Muraleedharan, C. (2025). Unlocking the potential of corn husk through pyrolysis and gasification: Characterization, kinetics, and agglomeration analysis. Biomass and Bioenergy, 195, 107701. https://doi.org/10.1016/J.BIOMBIOE.2025.107701
dc.relation.referencesOyeleke, O. R., Hu, Y., & Naterer, G. F. (2025). Effects of potassium salt on cellulose pyrolysis: biochar production, kinetic triplet, and thermodynamic properties. Chemical Engineering Science, 313, 121787. https://doi.org/10.1016/J.CES.2025.121787
dc.relation.referencesRanzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy and Fuels, 22(6), 4292–4300. https://doi.org/10.1021/ef800551t
dc.relation.referencesRanzi, E., Debiagi, P. E. A., & Frassoldati, A. (2017a). Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustainable Chemistry and Engineering, 5(4), 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096
dc.relation.referencesRanzi, E., Debiagi, P. E. A., & Frassoldati, A. (2017b). Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustainable Chemistry and Engineering, 5(4), 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096
dc.relation.referencesRocha, G. J. de M., Nascimento, V. M., Gonçalves, A. R., Silva, V. F. N., & Martín, C. (2015). Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Industrial Crops and Products, 64, 52–58. https://doi.org/10.1016/J.INDCROP.2014.11.003
dc.relation.referencesRout, T., Pradhan, D., Singh, R. K., & Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4(3), 3696–3705. https://doi.org/10.1016/J.JECE.2016.02.024
dc.relation.referencesTemireyeva, A., Sarbassov, Y., & Shah, D. (2024). Process simulation of flax straw pyrolysis with kinetic reaction Model: Experimental validation and exergy analysis. Fuel, 367. https://doi.org/10.1016/j.fuel.2024.131494
dc.relation.referencesWang, L., Olsen, M. N. P., Moni, C., Dieguez-Alonso, A., de la Rosa, J. M., Stenrød, M., Liu, X., & Mao, L. (2022). Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 °C. Applications in Energy and Combustion Science, 12, 100090. https://doi.org/10.1016/J.JAECS.2022.100090
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBiomass pyrolysiseng
dc.subject.keywordsLocal exergy analysiseng
dc.subject.keywordsKinetic modeleng
dc.subject.keywordsAsym2sig deconvolution.eng
dc.subject.proposalPirólisis de biomasaspa
dc.subject.proposalAnálisis exergético localspa
dc.subject.proposalModelo cinéticospa
dc.subject.proposalDeconvolucion Asym2sigspa
dc.titleEvaluación termodinámica del proceso de pirólisis de biomasaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
HernandezContrerasLuisFernando.pdf
Tamaño:
1.59 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FormatodeAutorizaciónPublicación..pdf
Tamaño:
279.88 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones