Publicación: Evaluación termodinámica del proceso de pirólisis de biomasa
dc.contributor.advisor | Rhenals julio, Jesus David | |
dc.contributor.advisor | Gómez Vásquez, Rafael David | |
dc.contributor.author | Hernández Contreras, Luis Fernando | |
dc.contributor.jury | Mendoza Fandiño, Jorge Mario | |
dc.contributor.jury | Bula, Antonio | |
dc.contributor.researcher | HERNANDEZ CONTRERAS, LUIS FERNANDO | |
dc.date.accessioned | 2025-07-23T14:20:01Z | |
dc.date.available | 2025-07-23T14:20:01Z | |
dc.date.issued | 2025-07-22 | |
dc.description.abstract | Esta investigación presenta la evaluación termodinámica y cinética del proceso de pirólisis de la tusa de maíz, una biomasa lignocelulósica de amplia disponibilidad. Se desarrolla y valida un modelo cinético capaz de predecir los rendimientos y la composición de los productos generados (sólidos, líquidos y gases) durante el proceso. La metodología se basó en análisis termogravimétricos (TGA) realizados a diferentes tasas de calentamiento (5, 10 y 30°C/min) para caracterizar la descomposición térmica de la biomasa. A partir de la deconvolución de la curva de la derivada termogravimétrica (DTG), se determinaron las proporciones de los componentes principales: hemicelulosa, celulosa y lignina. Con esta información, se estimaron los parámetros cinéticos, como la energía de activación y el factor preexponencial, utilizando el método de Coats-Redfern. Estos parámetros fundamentales se implementaron en un software de simulación para modelar la distribución de productos a diversas temperaturas. Los resultados simulados mostraron una excelente concordancia con datos experimentales reportados en la literatura, con errores absolutos mayormente inferiores al 9%. Además, se realizó un análisis exergético local para evaluar la eficiencia y el potencial termodinámico a lo largo del proceso de conversión. Se concluye que la metodología desarrollada es una herramienta robusta y precisa para la predicción de los productos de la pirólisis. Este modelo representa un aporte significativo para el diseño y la optimización de procesos sostenibles orientados a la valorización de residuos agrícolas, facilitando la obtención de biocombustibles y productos químicos de valor añadido. | spa |
dc.description.abstract | This research presents the thermodynamic and kinetic evaluation of the pyrolysis process of corn cob, a widely available lignocellulosic biomass. A kinetic model is developed and validated to predict the yields and composition of the generated products (solids, liquids, and gases).The methodology was based on thermogravimetric analysis (TGA) conducted at various heating rates (5, 10, and 30°C/min) to characterize the thermal decomposition of the biomass. Through the deconvolution of the derivative thermogravimetric (DTG) curve, the proportions of the main components—hemicellulose, cellulose, and lignin—were determined. Based on this information, kinetic parameters, such as activation energy and the pre-exponential factor, were estimated using the Coats-Redfern method. These fundamental parameters were implemented in simulation software to model the product distribution at various temperatures. The simulated results showed strong agreement with experimental data reported in the literature, with absolute errors predominantly below 9%. Furthermore, a local exergy analysis was performed to assess the efficiency and thermodynamic potential throughout the conversion process. In conclusion, the developed methodology constitutes a robust and accurate tool for the prediction of pyrolysis products. This model represents a significant contribution to the design and optimization of sustainable processes for the valorization of agricultural residues, facilitating the procurement of biofuels and value-added chemicals. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería Mecánica | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | LISTA DE TABLAS 9 | spa |
dc.description.tableofcontents | LISTA DE FIGURAS 10 | spa |
dc.description.tableofcontents | RESUMEN 12 | spa |
dc.description.tableofcontents | ABSTRACT 13 | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN 14 | spa |
dc.description.tableofcontents | 2. REVISIÓN DE LITERATURA 16 | spa |
dc.description.tableofcontents | 2.1 Biomasa Lignocelulósica 16 | spa |
dc.description.tableofcontents | 2.2 Caracterización de la Biomasa 17 | spa |
dc.description.tableofcontents | 2.3 Pirolisis de Biomasa lignocelulósica 18 | spa |
dc.description.tableofcontents | 2.4 Modelos cinéticos de pirolisis de biomasa 22 | spa |
dc.description.tableofcontents | 3. OBJETIVOS 25 | spa |
dc.description.tableofcontents | Objetivo general 25 | spa |
dc.description.tableofcontents | Objetivos Específicos 25 | spa |
dc.description.tableofcontents | 4. MATERIALES Y MÉTODOS 26 | spa |
dc.description.tableofcontents | Objetivo 1. Definir los parámetros cinéticos de cada uno de los compuestos presentes en las reacciones del proceso. 26 | spa |
dc.description.tableofcontents | Objetivo 2. Modelar el proceso de pirolisis de biomasa empleando un reactor cinético y las reacciones de transformación lignocelulósica. 30 | spa |
dc.description.tableofcontents | Objetivo 3. Realizar un análisis exergético local del proceso de pirolisis de biomasa 33 | spa |
dc.description.tableofcontents | 5. RESULTADOS Y DISCUSIONES 36 | spa |
dc.description.tableofcontents | Objetivo 1. Definir los parámetros cinéticos de cada uno de los compuestos presentes en las reacciones del proceso. 36 | spa |
dc.description.tableofcontents | Objetivo 2. Modelar el proceso de pirolisis de biomasa empleando un reactor cinético y las reacciones de transformación lignocelulósica. 39 | spa |
dc.description.tableofcontents | Objetivo 3. Realizar un análisis exergético local del proceso de pirolisis de biomasa 49 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES 50 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES: 52 | spa |
dc.description.tableofcontents | 8. REFERENCIAS BIBLIOGRÁFICAS 53 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9462 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ingeniería Mecánica | |
dc.relation.references | Abdullah, N., Mohd Taib, R., Mohamad Aziz, N. S., Omar, M. R., & Md Disa, N. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1), e12940. https://doi.org/10.1016/J.HELIYON.2023.E12940 | |
dc.relation.references | Ajikashile, J. O., Alhnidi, M. J., Parku, G. K., Funke, A., & Kruse, A. (2023a). A study on the fast pyrolysis of millet and sorghum straws sourced from arid and semi-arid regions of Nigeria in a twin-screw mixing reactor. Materials Science for Energy Technologies, 6, 388–398. https://doi.org/10.1016/J.MSET.2023.03.007 | |
dc.relation.references | Ajikashile, J. O., Alhnidi, M. J., Parku, G. K., Funke, A., & Kruse, A. (2023b). A study on the fast pyrolysis of millet and sorghum straws sourced from arid and semi-arid regions of Nigeria in a twin-screw mixing reactor. Materials Science for Energy Technologies, 6, 388–398. https://doi.org/10.1016/J.MSET.2023.03.007 | |
dc.relation.references | Aydin, E. S., Yucel, O., & Sadikoglu, H. (2017). Development of a semi-empirical equilibrium model for downdraft gasification systems. Energy, 130, 86–98. https://doi.org/10.1016/J.ENERGY.2017.04.132 | |
dc.relation.references | Basu, P. (2010a). Biomass Characteristics. In Biomass Gasification Design Handbook (pp. 27–63). Elsevier. https://doi.org/10.1016/b978-0-12-374988-8.00002-7 | |
dc.relation.references | Basu, P. (2010b). Pyrolysis and Torrefaction. In Biomass Gasification Design Handbook (pp. 65–96). Elsevier. https://doi.org/10.1016/b978-0-12-374988-8.00003-9 | |
dc.relation.references | Basu, P., & Kaushal, P. (2024). Biomass characteristics. In Biomass Gasification, Pyrolysis, and Torrefaction (pp. 63–105). Elsevier. https://doi.org/10.1016/b978-0-443-13784-6.00009-3 | |
dc.relation.references | Bongomin, O., Nzila, C., Igadwa Mwasiagi, J., & Maube, O. (2024). Comprehensive thermal properties, kinetic, and thermodynamic analyses of biomass wastes pyrolysis via TGA and Coats-Redfern methodologies. Energy Conversion and Management: X, 24. https://doi.org/10.1016/j.ecmx.2024.100723 | |
dc.relation.references | Chen, C., Miao, W., Zhou, C., & Wu, H. (2017). Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution. Bioresource Technology, 225, 48–57. https://doi.org/10.1016/j.biortech.2016.11.013 | |
dc.relation.references | Debevc, S., Weldekidan, H., Snowdon, M. R., Vivekanandhan, S., Wood, D. F., Misra, M., & Mohanty, A. K. (2022). Valorization of almond shell biomass to biocarbon materials: Influence of pyrolysis temperature on their physicochemical properties and electrical conductivity. Carbon Trends, 9, 100214. https://doi.org/10.1016/J.CARTRE.2022.100214 | |
dc.relation.references | Garba, K., Mohammed, I. Y., Isa, Y. M., Abubakar, L. G., Abakr, Y. A., & Hameed, B. H. (2023). Pyrolysis of Canarium schweinfurthii hard-shell: Thermochemical characterisation and pyrolytic kinetics studies. Heliyon, 9(2), e13234. https://doi.org/10.1016/J.HELIYON.2023.E13234 | |
dc.relation.references | Hosseinzaei, B., Hadianfard, M. J., Aghabarari, B., García-Rollán, M., Ruiz-Rosas, R., Rosas, J. M., Rodríguez-Mirasol, J., & Cordero, T. (2022). Pyrolysis of pistachio shell, orange peel and saffron petals for bioenergy production. Bioresource Technology Reports, 19, 101209. https://doi.org/10.1016/J.BITEB.2022.101209 | |
dc.relation.references | Kim, H., Yu, S., Kim, M., & Ryu, C. (2022a). Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy, 254. https://doi.org/10.1016/j.energy.2022.124446 | |
dc.relation.references | Kim, H., Yu, S., Kim, M., & Ryu, C. (2022b). Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy, 254. https://doi.org/10.1016/j.energy.2022.124446 | |
dc.relation.references | Korpeh, M., Lotfollahi, A., Moghimi, M., & Anvari-Moghaddam, A. (2025). Combustion optimization of various biomass types to hydrogen-rich syngas: Two-stage pyrolysis modeling, methane addition effects, and environmental impact assessment. International Journal of Hydrogen Energy, 133, 458–471. https://doi.org/10.1016/J.IJHYDENE.2025.04.490 | |
dc.relation.references | Liu, L., Xu, G., Wang, J., Li, G., He, C., & Jiao, Y. (2025). Co-pyrolysis of biomass and plastic waste based on ReaxFF MD: Insights into hydrogen migration, radicals interactions and synergistic mechanism. Energy, 325, 136103. https://doi.org/10.1016/J.ENERGY.2025.136103 | |
dc.relation.references | Manals-Cutiño, E., Penedo-Medina, M., & Giralt-Ortega, G. (n.d.). ANÁLISIS TERMOGRAVIMETRICO Y TÉRMICO DIFERENCIAL DE DIFERENTES BIOMASAS VEGETALES THERMOGRAVIMETRIC AND THERMAL ANALYSIS DIFFERENTIAL DIFFERENT VEGETABLE BIOMASSES. | |
dc.relation.references | Mansoor, K., Suraj, P., Arun, P., & Muraleedharan, C. (2025). Unlocking the potential of corn husk through pyrolysis and gasification: Characterization, kinetics, and agglomeration analysis. Biomass and Bioenergy, 195, 107701. https://doi.org/10.1016/J.BIOMBIOE.2025.107701 | |
dc.relation.references | Oyeleke, O. R., Hu, Y., & Naterer, G. F. (2025). Effects of potassium salt on cellulose pyrolysis: biochar production, kinetic triplet, and thermodynamic properties. Chemical Engineering Science, 313, 121787. https://doi.org/10.1016/J.CES.2025.121787 | |
dc.relation.references | Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy and Fuels, 22(6), 4292–4300. https://doi.org/10.1021/ef800551t | |
dc.relation.references | Ranzi, E., Debiagi, P. E. A., & Frassoldati, A. (2017a). Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustainable Chemistry and Engineering, 5(4), 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096 | |
dc.relation.references | Ranzi, E., Debiagi, P. E. A., & Frassoldati, A. (2017b). Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustainable Chemistry and Engineering, 5(4), 2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096 | |
dc.relation.references | Rocha, G. J. de M., Nascimento, V. M., Gonçalves, A. R., Silva, V. F. N., & Martín, C. (2015). Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Industrial Crops and Products, 64, 52–58. https://doi.org/10.1016/J.INDCROP.2014.11.003 | |
dc.relation.references | Rout, T., Pradhan, D., Singh, R. K., & Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4(3), 3696–3705. https://doi.org/10.1016/J.JECE.2016.02.024 | |
dc.relation.references | Temireyeva, A., Sarbassov, Y., & Shah, D. (2024). Process simulation of flax straw pyrolysis with kinetic reaction Model: Experimental validation and exergy analysis. Fuel, 367. https://doi.org/10.1016/j.fuel.2024.131494 | |
dc.relation.references | Wang, L., Olsen, M. N. P., Moni, C., Dieguez-Alonso, A., de la Rosa, J. M., Stenrød, M., Liu, X., & Mao, L. (2022). Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 °C. Applications in Energy and Combustion Science, 12, 100090. https://doi.org/10.1016/J.JAECS.2022.100090 | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Biomass pyrolysis | eng |
dc.subject.keywords | Local exergy analysis | eng |
dc.subject.keywords | Kinetic model | eng |
dc.subject.keywords | Asym2sig deconvolution. | eng |
dc.subject.proposal | Pirólisis de biomasa | spa |
dc.subject.proposal | Análisis exergético local | spa |
dc.subject.proposal | Modelo cinético | spa |
dc.subject.proposal | Deconvolucion Asym2sig | spa |
dc.title | Evaluación termodinámica del proceso de pirólisis de biomasa | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: