Publicación:
Dosimetría ambiental mediante IoT: innovaciones y aplicaciones avanzadas

dc.contributor.authorBaena-Navarro, Rubén
dc.contributor.authorCarriazo-Regino, Yulieth
dc.contributor.authorMacea-Anaya, Mario
dc.date.accessioned2025-04-23T18:50:37Z
dc.date.available2025-04-23T18:50:37Z
dc.date.issued2025-04-11
dc.description.abstractEste libro está dirigido a investigadores, ingenieros, estudiantes y profesionales involucrados en la dosimetría, la protección radiológica y la gestión ambiental. Su objetivo es proporcionar una guía integral que abarque desde los principios teóricos hasta las aplicaciones prácticas más sofisticadas, permitiendo a los lectores aplicar estas tecnologías en sus propios estudios y proyectos. Los casos de estudio y ejemplos prácticos presentados refuerzan la aplicabilidad de las teorías expuestas, ofreciendo una perspectiva realista sobre los beneficios y desafíos del uso de IoT en la dosimetría ambiental.spa
dc.description.tableofcontentsIntroducción ....1
dc.description.tableofcontentsCapítulo 1: Innovaciones tecnológicas en dosimetría ambiental: Integración del IoT y computación en la nube ...2
dc.description.tableofcontentsResumen.... 2
dc.description.tableofcontentsIntroducción............ 3
dc.description.tableofcontentsMateriales y métodos........... 5
dc.description.tableofcontentsResultados.............7
dc.description.tableofcontentsDiscusión........ 9
dc.description.tableofcontentsConclusiones............11
dc.description.tableofcontentsReferencias........12
dc.description.tableofcontentsCapítulo 2: Aplicaciones del Internet de las Cosas (IoT) y la computación en la nube en el monitoreo ambiental: Revisión sistemática y análisis de datos........15
dc.description.tableofcontentsResumen.........15
dc.description.tableofcontentsIntroducción.........16
dc.description.tableofcontentsMateriales y métodos..........17
dc.description.tableofcontentsResultados.....18
dc.description.tableofcontentsDiscusión......24
dc.description.tableofcontentsConclusiones............ 26
dc.description.tableofcontentsReferencias........27
dc.description.tableofcontentsCapítulo 3: Implementación de un sistema IoT para la medición de radiación gamma y UV: Diseño, ensamblaje y validación.....31
dc.description.tableofcontentsResumen..........31
dc.description.tableofcontentsIntroducción..........32
dc.description.tableofcontentsMateriales y métodos........... 33
dc.description.tableofcontentsResultados............ 35
dc.description.tableofcontentsDiscusión............. 41
dc.description.tableofcontentsConclusiones.............. 43
dc.description.tableofcontentsReferencias............ 44
dc.description.tableofcontentsCapítulo 4: Innovaciones en dosimetría ambiental mediante IoT en zonas rurales...........46
dc.description.tableofcontentsResumen........... 46
dc.description.tableofcontentsIntroducción......47
dc.description.tableofcontentsMateriales y métodos..........48
dc.description.tableofcontentsResultados......... 54
dc.description.tableofcontentsDiscusión.......... 57
dc.description.tableofcontentsConclusiones.......... 58
dc.description.tableofcontentsReferencias.......... 59
dc.description.tableofcontentsCapítulo 5: Aplicaciones avanzadas y técnicas de optimización en dosimetría ambiental basada en IoT....... 62
dc.description.tableofcontentsResumen............ 62
dc.description.tableofcontentsIntroducción........... 63
dc.description.tableofcontentsMateriales y métodos ..............64
dc.description.tableofcontentsResultados.......... 68
dc.description.tableofcontentsDiscusión............. 70
dc.description.tableofcontentsConclusiones............. 72
dc.description.tableofcontentsReferencias....... 73
dc.description.tableofcontentsAnálisis de Aportes Tecnológicos en Dosimetría Ambiental Basada en IoT......75
dc.format.mimetypeapplication/pdf
dc.identifier.eisbn978-628-7808-00-3
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9132
dc.language.isospa
dc.publisherFondo Editorial - Universidad de Córdoba
dc.publisher.placeMontería, Córdoba, Colombia
dc.relation.referencesAtzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010
dc.relation.referencesBaena Navarro, R. E. (2019). Optimización de un dron para dosimetría ambiental (Doctoral dissertation, Universidad Internacional Iberoamericana México).
dc.relation.referencesBaena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359
dc.relation.referencesBaena-Navarro, R., Alcala-Varilla, L., Torres-Hoyos, F., Carriazo-Regino, Y., & Parodi- Camaño, T. (2024). Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study. Bulletin of Electrical Engineering and Informatics, 13(5), 3430-3445. https://doi.org/10.11591/eei.v13i5.7344
dc.relation.referencesCember, H., & Johnson, T. E. (2009). Introduction to Health Physics (4th ed.). New York: McGraw-Hill.
dc.relation.referencesCross, E., Williams, L., Lewis, D., Magoon, G., Onasch, T., Kaminsky, M., Worsnop, D., & Jayne, J. (2017). Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575-3588. https://doi.org/10.5194/AMT-10-3575- 2017
dc.relation.referencesFleming, J. J. (1995). Roentgen Rays: Memoirs by Wilhelm Conrad Roentgen, and W. H. Bragg. London: Kessinger Publishing.
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
dc.relation.referencesGupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook. New York: O'Reilly Media.
dc.relation.referencesHarding, L. K. (1997). Radiation protection--lessons from the past. British Journal of Radiology, 70(839), 973-981. https://doi.org/10.1259/bjr.1997.0003
dc.relation.referencesInternational Commission on Radiological Protection. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. https://doi.org/10.1016/j.icrp.2007.10.001
dc.relation.referencesIslam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951
dc.relation.referencesJones, C. (2005). A review of the history of U.S. radiation protection regulations, recommendations, and standards. Health Physics, 88(2), 105-124. https://doi.org/10.1097/01.HP.0000146629.45823.DA
dc.relation.referencesKeawboonchu, J., Thepanondh, S., Kultan, V., Pinthong, N., Malakan, W., & Robson, M. (2023). Integrated Sustainable Management of Petrochemical Industrial Air Pollution. International Journal of Environmental Research and Public Health, 20(3), 2280. https://doi.org/10.3390/ijerph20032280
dc.relation.referencesLindell, B. (2016). The History of Radiation Protection. Vienna: International Radiation Protection Association.
dc.relation.referencesLiu, F., Tai, A., Ahunbay, E., Chen, G., & Li, X. (2011). Dosimetry Benefits from the Advanced Radiation Therapy Delivery Technologies. International Journal of Radiation Oncology Biology Physics, 81(2), S764. https://doi.org/10.1016/j.ijrobp.2011.06.1474
dc.relation.referencesLochner, P., Leone, M., Coppo, L., Nardone, R., & Brigo, F. (2016). B-mode transorbital ultrasonography for the diagnosis of acute optic neuritis. A systematic review. Clinical Neurophysiology, 127(2), 806-814. https://doi.org/10.1016/j.clinph.2015.05.005
dc.relation.referencesMettler, F. A., & Bhargavan, M. (2008). Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006-2010. Radiology, 248(1), 254-263. https://doi.org/10.1148/radiol.2481071451
dc.relation.referencesMoher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
dc.relation.referencesRay, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003
dc.relation.referencesStrom, D. J. (2013). Early history of radiation protection standards for occupational exposure: The role of the ICRP and NCRP. Health Physics, 105(5), 455-465. https://doi.org/10.1097/HP.0b013e3182a3a7cd
dc.relation.referencesUnited Nations Scientific Committee on the Effects of Atomic Radiation. (2016). Sources, Effects and Risks of Ionizing Radiation. UNSCEAR 2013 Report, Volume II. New York: United Nations. https://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Report_Vol.II.pdf
dc.relation.referencesTompkins, F., & Goldsmith, R. (1977). A new personal dosimeter for the monitoring of industrial pollutants. Environmental Health Perspectives, 21, 7-12. https://doi.org/10.1080/0002889778507636
dc.relation.referencesWalker, J. S. (2000). Permissible dose: A history of radiation protection in the twentieth century. University of California Press. https://doi.org/10.2307/3985669
dc.relation.referencesWolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
dc.relation.referencesXia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of Things. International Journal of Communication Systems, 25(9), 1101-1102. https://doi.org/10.1002/dac.2417
dc.relation.referencesAkyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393-422. https://doi.org/10.1016/S1389-1286(01)00302-4
dc.relation.referencesAlam, T. (2021). Cloud-Based IoT Applications and Their Roles in Smart Cities. Smart Cities, 4(3), 64-80. https://doi.org/10.3390/smartcities4030064
dc.relation.referencesAli, A. (2022). A Framework for Air Pollution Monitoring in Smart Cities by Using IoT and Smart Sensors. Informatica, 46(5), 339-353. https://doi.org/10.31449/inf.v46i5.4003
dc.relation.referencesAria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
dc.relation.referencesAshton, K. (2009). That 'Internet of Things' Thing. RFID Journal. Retrieved from https://www.rfidjournal.com/that-internet-of-things-thing
dc.relation.referencesBinsy, M., & Sampath, N. (2018). User Configurable and Portable Air Pollution Monitoring System for Smart Cities Using IoT. In Proceedings of the 2018 International Conference on Intelligent Computing and Communication for Smart World (pp. 123-130). Springer. https://doi.org/10.1007/978-981-10-8681-6_32
dc.relation.referencesBorgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31. https://doi.org/10.1016/j.comcom.2014.09.008
dc.relation.referencesBose, S., Mukherjee, N., & Mistry, S. (2016). Environment Monitoring in Smart Cities Using Virtual Sensors. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (pp. 60-65). IEEE. https://doi.org/10.1109/FiCloud.2016.63
dc.relation.referencesBotta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. https://doi.org/10.1016/j.future.2015.09.021
dc.relation.referencesBuyya, R., Vecchiola, C., & Selvi, S. T. (2018). Mastering Cloud Computing: Foundations and Applications Programming. Morgan Kaufmann. https://doi.org/10.1016/C2013-0-19081-3
dc.relation.referencesCisco. (2020). Cisco Annual Internet Report (2018–2023). Cisco Systems, Inc. Retrieved from https://www.cisco.com/c/en/us/solutions/executive- perspectives/annual-internet-report/index.html
dc.relation.referencesCross, E., Williams, L., Lewis, D., Magoon, G., Onasch, T., Kaminsky, M., Worsnop, D., & Jayne, J. (2017). Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575-3588. https://doi.org/10.5194/AMT-10-3575- 2017
dc.relation.referencesDemidchik, N. N., Kudaibergenova, M. D., & Kintonova, A. Zh. (2021). Using the Internet of Things (IoT) for Natural Resources Monitoring System. IEEE SIST, 9465979. https://doi.org/10.1109/SIST50301.2021.9465979
dc.relation.referencesDhingra, S., Babu, M., Gandomi, A., Patan, R., & Daneshmand, M. (2019). Internet of Things Mobile–Air Pollution Monitoring System (IoT-Mobair). IEEE Journal of Internet of Things, 2903821. https://doi.org/10.1109/JIOT.2019.2903821
dc.relation.referencesEvagelopoulos, V., Charisiou, N., & Evagelopoulos, G. (2021). Smart air monitoring for indoor public spaces using mobile applications. IOP Conference Series: Earth and Environmental Science, 899(1), 012006. https://doi.org/10.1088/1755- 1315/899/1/012006
dc.relation.referencesGaneshkumar, D., Parimala, V., Santhoshkumar, S., Vignesh, T., & Surendar, M. (2020). Air and Sound Pollution Monitoring System using Cloud Computing. IJERT, 9(6), 164. https://doi.org/10.17577/ijertv9is060164
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
dc.relation.referencesHart, J. K., & Martinez, K. (2015). Environmental Sensor Networks: A revolution in the earth system science? Earth-Science Reviews, 178, 124-139. https://doi.org/10.1016/j.earscirev.2017.11.006
dc.relation.referencesHoller, J., Tsiatsis, V., Mulligan, C., Avesand, S., Karnouskos, S., & Boyle, D. (2014). From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence. Academic Press. https://doi.org/10.1016/C2013-0-19081-3
dc.relation.referencesInternational Data Corporation (IDC). (2020). The growth in connected IoT devices and data generated. Retrieved from https://www.idc.com
dc.relation.referencesIslam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951
dc.relation.referencesJo, J., Jo, B., Kim, J. H., Kim, S. J., & Han, W. Y. (2020). Development of an IoT-Based Indoor Air Quality Monitoring Platform. Journal of Sensors, 8749764. https://doi.org/10.1155/2020/8749764
dc.relation.referencesJovanovska, E. M., & Davcev, D. (2020). No Pollution Smart City Sightseeing Based on WSN Monitoring System. In Proceedings of the 2020 International Conference on Mobile, Secure, and Programmable Networking (pp. 90-101). IEEE. https://doi.org/10.1109/MobiSecServ48690.2020.9042959
dc.relation.referencesMell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145
dc.relation.referencesMuppalla, A., Pathakoti, M., Bothale, V., Biswadip, G., Sesha Sai, M.V.R., & Subramanian, V. (2019). Design and Implementation of IoT Solution for Air Pollution Monitoring. IEEE TENGARSS, 8976041. https://doi.org/10.1109/TENGARSS48957.2019.8976041
dc.relation.referencesNguyen, N., & Sim, T. (2020). Predictive Maintenance Using Machine Learning in Manufacturing. Journal of Manufacturing Systems, 56, 237-245. https://doi.org/10.1016/j.jmsy.2020.04.008
dc.relation.referencesPattnayak, P., Jena, O. P., & Sinha, S. (2021). Cloud and Green IoT-Based Technology for Sustainable Smart Cities. In S. Patnaik, X. S. Yang, K. S. Raju, & H. A. S. Kumar (Eds.), Smart Cities and Smart Spaces: Concepts, Methodologies, Tools, and Applications (pp. 19-40). IGI Global. https://doi.org/10.1201/9781003176275-1
dc.relation.referencesPinedo-López, J., Baena-Navarro, R., Durán-Rojas, N., Díaz-Cogollo, L., & Farak- Flórez, L. (2024a). Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability, 16(17), 7263. https://doi.org/10.3390/su16177263
dc.relation.referencesPinedo-López, J., Baena-Navarro, R., Carriazo-Regino, Y., Urrea-Ortiz, A., & Reyes- Guevara, D. (2024b). Sustainability strategies: A proposal for food sector SMEs, based on the integration of life cycle assessment and ESG strategies. Journal of Infrastructure, Policy and Development, 8(12), 8934. https://doi.org/10.24294/jipd.v8i12.8934
dc.relation.referencesRay, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003
dc.relation.referencesSaha, D., Shinde, M., & Thadeshwar, S. (2017). IoT based air quality monitoring system using wireless sensors deployed in public bus services. Proceedings of the ACM, 3025135. https://doi.org/10.1145/3018896.3025135
dc.relation.referencesSpandana, G., & Shanmughasundram, R. (2018). Design and Development of Air Pollution Monitoring System for Smart Cities. In Proceedings of the 2018 International Conference on Circuits and Systems (pp. 130-137). IEEE. https://doi.org/10.1109/ICCONS.2018.8662932
dc.relation.referencesSu, X., Shao, G., Vause, J., & Tang, L. (2013). An Integrated System for Urban Environmental Monitoring and Management Based on the Environmental Internet of Things. International Journal of Sustainable Development & World Ecology, 20(3), 205-209. https://doi.org/10.1080/13504509.2013.782580
dc.relation.referencesTayan, O. (2022). Context-Aware Framework for Enhanced Smart Urban Pollution Monitoring and Control. In Proceedings of the 2022 International Conference on Engineering and Technology for Sustainable Development (pp. 450-460). IEEE. https://doi.org/10.1109/ETCEA57049.2022.10009678
dc.relation.referencesWolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
dc.relation.referencesYang, Y. (2022). IoT-based air pollution monitoring system. HSET, 17, 2619. https://doi.org/10.54097/hset.v17i.2619
dc.relation.referencesZhang, Y., Qian, C., Wu, C., & Tsang, D. H. K. (2015). Toward tens of Tbps optical backplane bandwidth: Circuit-switching and MAC-routing hybrid architecture for data center networks. IEEE Journal on Selected Areas in Communications, 33(8), 1684- 1696. https://doi.org/10.1109/JSAC.2015.2430243
dc.relation.referencesZhang, H., Zhang, J., Wang, R., Huang, Y., Zhang, M., Shang, X., & Gao, C. (2021). Smart Carbon Monitoring Platform under IoT-Cloud Architecture for Small Cities in B5G. Wireless Networks, 27(4), 1201-1215. https://doi.org/10.1007/s11276-021- 02756-2
dc.relation.referencesZhou, Z., Liu, Y., Zhang, Q., & Liu, K. (2017). Real-time Big Data Processing Framework: Challenges and Solutions. Applied Soft Computing, 68, 82-92. https://doi.org/10.1016/j.asoc.2017.01.037
dc.relation.referencesBaena Navarro, R. E. (2019). Optimización de un dron para dosimetría ambiental (Doctoral dissertation, Universidad Internacional Iberoamericana México).
dc.relation.referencesBaena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359
dc.relation.referencesBarzilov, A., & Kazemeini, M. (2020). Unmanned Aerial System Integrated Sensor for Remote Gamma and Neutron Monitoring. Sensors, 20(19), 5529. https://doi.org/10.3390/s20195529
dc.relation.referencesCastillo Malla, D., Sánchez, A., González, J., Chamba, C., & Lakshminarayanan, V. (2021). Natural pigment sensor for solar ultraviolet radiation measurement. Proceedings of SPIE, 11868. https://doi.org/10.1117/12.2597616
dc.relation.referencesComisión Internacional de Iluminación (CIE). (2020). International Commission on Illumination. Retrieved from https://cie.co.at/
dc.relation.referencesDankan Gowda, V., Shekhar, R., Prasad, K. V., Kumar, P. S. V. S. R., Gangadharan, S., & Srividya, C. N. (2023). Scalable and Reliable Cloud-Based UV Monitoring for Public Health Applications. IEEE GCAT, 10353349. https://doi.org/10.1109/GCAT59970.2023.10353349
dc.relation.referencesEl Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., ... & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet Oncology, 10(8), 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X
dc.relation.referencesGong, P., Tang, X., Huang, X., Wang, P., Wen, L. S., & Zhu, X. X. (2019). Locating lost radioactive sources using a UAV radiation monitoring system. Applied Radiation and Isotopes, 150, 1-13. https://doi.org/10.1016/j.apradiso.2019.04.037
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
dc.relation.referencesInstituto Nacional de Estándares y Tecnología (NIST). (2020). National Institute of Standards and Technology. Retrieved from https://www.nist.gov/
dc.relation.referencesIslam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951
dc.relation.referencesManigandan, M., Qureshi, A. R., Vijayakumar, D., Viswanathan, A., & Bharathi, N. (2017). Geo tagged internet of things (iot) device for radiation monitoring. ICACCI, 8125878. https://doi.org/10.1109/ICACCI.2017.8125878
dc.relation.referencesMell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145
dc.relation.referencesPark, H., & Joo, K. (2016). Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors, 16(6), 919. https://doi.org/10.3390/s16060919
dc.relation.referencesRajan, K. N. G. (2017). Calibration of radiation monitoring instruments. Radiation Safety in Radiation Oncology, 199-218. https://doi.org/10.1201/9781315119656-6
dc.relation.referencesRay, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003
dc.relation.referencesWorld Health Organization (WHO). (2017). Radiation: Ultraviolet (UV) radiation. Retrieved from https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)
dc.relation.referencesYe, L., Wu, Z., Li, Y., Yu, G., & Jin, Q. (2009). Design of wideband solar ultraviolet radiation intensity monitoring and control system. Proceedings of SPIE, 7502. https://doi.org/10.1117/12.825802
dc.relation.referencesBaena-Navarro, R., Alcala-Varilla, L., Torres-Hoyos, F., Carriazo-Regino, Y., & Parodi- Camaño, T. (2024). Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study. Bulletin of Electrical Engineering and Informatics, 13(5), 3430-3445. https://doi.org/10.11591/eei.v13i5.7344
dc.relation.referencesBaena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359
dc.relation.referencesCastillo Malla, D., Sánchez, A., González, J., Chamba, C., & Lakshminarayanan, V. (2021). Natural pigment sensor for solar ultraviolet radiation measurement. Proceedings of SPIE, 11868. https://doi.org/10.1117/12.2597616
dc.relation.referencesEl Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., ... & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet Oncology, 10(8), 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X
dc.relation.referencesGong, P., Tang, X., Huang, X., Wang, P., Wen, L. S., & Zhu, X. X. (2019). Locating lost radioactive sources using a UAV radiation monitoring system. Applied Radiation and Isotopes, 150, 1-13. https://doi.org/10.1016/j.apradiso.2019.04.037
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
dc.relation.referencesMell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145
dc.relation.referencesPark, H., & Joo, K. (2016). Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors, 16(6), 919. https://doi.org/10.3390/s16060919
dc.relation.referencesPinedo-López, J., Baena-Navarro, R., Durán-Rojas, N., Díaz-Cogollo, L., & Farak- Flórez, L. (2024a). Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability, 16(17), 7263. https://doi.org/10.3390/su16177263
dc.relation.referencesPinedo-López, J., Baena-Navarro, R., Carriazo-Regino, Y., Urrea-Ortiz, A., & Reyes- Guevara, D. (2024b). Sustainability strategies: A proposal for food sector SMEs, based on the integration of life cycle assessment and ESG strategies. Journal of Infrastructure, Policy and Development, 8(12), 8934. https://doi.org/10.24294/jipd.v8i12.8934
dc.relation.referencesRajan, K. N. G. (2017). Calibration of radiation monitoring instruments. Radiation Safety in Radiation Oncology, 199-218. https://doi.org/10.1201/9781315119656-6
dc.relation.referencesRay, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003
dc.relation.referencesSigning, V. R. F., Taamté, J. M., Noube, M. K., Abanda, Z. S. O., Abba, H. Y., & Saïdou, J. (2023). Real-time environmental radiation monitoring based on locally developed low-cost device and unmanned aerial vehicle. Journal of Instrumentation, 18(5), P05031. https://doi.org/10.1088/1748-0221/18/05/P05031
dc.relation.referencesSaifullah, M., Bajwa, I. S., Ibrahim, M., & Asghar, M. (2022). IoT-Enabled Intelligent System for the Radiation Monitoring and Warning Approach. Mobile Information Systems. https://doi.org/10.1155/2022/2769958
dc.relation.referencesWorld Health Organization (WHO). (2017). Radiation: Ultraviolet (UV) radiation. Retrieved from https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)
dc.relation.referencesBaena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359
dc.relation.referencesBaena-Navarro, R., Carriazo-Regino, Y., Torres-Hoyos, F., & Pinedo-López, J. (2025). Intelligent Prediction and Continuous Monitoring of Water Quality in Aquaculture: Integration of Machine Learning and Internet of Things for Sustainable Management. Water, 17(1), 82. https://doi.org/10.3390/w17010082
dc.relation.referencesCastillo Malla, D., Sánchez, A., González, J., Chamba, C., & Lakshminarayanan, V. (2021). Natural pigment sensor for solar ultraviolet radiation measurement. Proceedings of SPIE, 11868. https://doi.org/10.1117/12.2597616
dc.relation.referencesEl Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., ... & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet Oncology, 10(8), 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X
dc.relation.referencesGong, P., Tang, X., Huang, X., Wang, P., Wen, L. S., & Zhu, X. X. (2019). Locating lost radioactive sources using a UAV radiation monitoring system. Applied Radiation and Isotopes, 150, 1-13. https://doi.org/10.1016/j.apradiso.2019.04.037
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
dc.relation.referencesManigandan, M., Qureshi, A. R., Vijayakumar, D., Viswanathan, A., & Bharathi, N. (2017). Geo tagged internet of things (iot) device for radiation monitoring. ICACCI, 8125878. https://doi.org/10.1109/ICACCI.2017.8125878
dc.relation.referencesManzano, L. G., Bisegni, C., Boukabache, H., Curioni, A., Galea, C., Heracleous, N., ... & Silari, M. (2018). W-MON: a wireless network of ionizing sensors for radiation monitoring in waste. NSSMIC, 8824643. https://doi.org/10.1109/NSSMIC.2018.8824643
dc.relation.referencesMell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145
dc.relation.referencesOrganización de las Naciones Unidas (ONU). (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Recuperado de https://www.un.org/sustainabledevelopment/es/agenda-2030/
dc.relation.referencesPark, H., & Joo, K. (2016). Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors, 16(6), 919. https://doi.org/10.3390/s16060919
dc.relation.referencesPinedo-López, J., Baena-Navarro, R., Durán-Rojas, N., Díaz-Cogollo, L., & Farak- Flórez, L. (2024a). Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability, 16(17), 7263. https://doi.org/10.3390/su16177263
dc.relation.referencesPinedo-López, J., Baena-Navarro, R., Carriazo-Regino, Y., Urrea-Ortiz, A., & Reyes- Guevara, D. (2024b). Sustainability strategies: A proposal for food sector SMEs, based on the integration of life cycle assessment and ESG strategies. Journal of Infrastructure, Policy and Development, 8(12), 8934. https://doi.org/10.24294/jipd.v8i12.8934
dc.relation.referencesRajan, K. N. G. (2017). Calibration of radiation monitoring instruments. Radiation Safety in Radiation Oncology, 199-218. https://doi.org/10.1201/9781315119656-6
dc.relation.referencesRay, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003
dc.relation.referencesSigning, V. R. F., Taamté, J. M., Noube, M. K., Abanda, Z. S. O., Abba, H. Y., & Saïdou, J. (2023). Real-time environmental radiation monitoring based on locally developed low-cost device and unmanned aerial vehicle. Journal of Instrumentation, 18(5), P05031. https://doi.org/10.1088/1748-0221/18/05/P05031
dc.relation.referencesSun, H., Gui, D., Yan, B., Liu, Y., Liao, W., Zhu, Y., & Lu, C. (2016). Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Conversion and Management, 119, 280-291. https://doi.org/10.1016/J.ENCONMAN.2016.04.051
dc.relation.referencesWorld Health Organization (WHO). (2017). Radiation: Ultraviolet (UV) radiation. Retrieved from https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lcshDosimetría
dc.titleDosimetría ambiental mediante IoT: innovaciones y aplicaciones avanzadas
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.redcolhttp://purl.org/redcol/resource_type/LIB
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Dosimetría ambiental mediante IoT.pdf
Tamaño:
4.68 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación.pdf
Tamaño:
269.11 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones