Publicación: Dosimetría ambiental mediante IoT: innovaciones y aplicaciones avanzadas
dc.contributor.author | Baena-Navarro, Rubén | |
dc.contributor.author | Carriazo-Regino, Yulieth | |
dc.contributor.author | Macea-Anaya, Mario | |
dc.date.accessioned | 2025-04-23T18:50:37Z | |
dc.date.available | 2025-04-23T18:50:37Z | |
dc.date.issued | 2025-04-11 | |
dc.description.abstract | Este libro está dirigido a investigadores, ingenieros, estudiantes y profesionales involucrados en la dosimetría, la protección radiológica y la gestión ambiental. Su objetivo es proporcionar una guía integral que abarque desde los principios teóricos hasta las aplicaciones prácticas más sofisticadas, permitiendo a los lectores aplicar estas tecnologías en sus propios estudios y proyectos. Los casos de estudio y ejemplos prácticos presentados refuerzan la aplicabilidad de las teorías expuestas, ofreciendo una perspectiva realista sobre los beneficios y desafíos del uso de IoT en la dosimetría ambiental. | spa |
dc.description.tableofcontents | Introducción ....1 | |
dc.description.tableofcontents | Capítulo 1: Innovaciones tecnológicas en dosimetría ambiental: Integración del IoT y computación en la nube ...2 | |
dc.description.tableofcontents | Resumen.... 2 | |
dc.description.tableofcontents | Introducción............ 3 | |
dc.description.tableofcontents | Materiales y métodos........... 5 | |
dc.description.tableofcontents | Resultados.............7 | |
dc.description.tableofcontents | Discusión........ 9 | |
dc.description.tableofcontents | Conclusiones............11 | |
dc.description.tableofcontents | Referencias........12 | |
dc.description.tableofcontents | Capítulo 2: Aplicaciones del Internet de las Cosas (IoT) y la computación en la nube en el monitoreo ambiental: Revisión sistemática y análisis de datos........15 | |
dc.description.tableofcontents | Resumen.........15 | |
dc.description.tableofcontents | Introducción.........16 | |
dc.description.tableofcontents | Materiales y métodos..........17 | |
dc.description.tableofcontents | Resultados.....18 | |
dc.description.tableofcontents | Discusión......24 | |
dc.description.tableofcontents | Conclusiones............ 26 | |
dc.description.tableofcontents | Referencias........27 | |
dc.description.tableofcontents | Capítulo 3: Implementación de un sistema IoT para la medición de radiación gamma y UV: Diseño, ensamblaje y validación.....31 | |
dc.description.tableofcontents | Resumen..........31 | |
dc.description.tableofcontents | Introducción..........32 | |
dc.description.tableofcontents | Materiales y métodos........... 33 | |
dc.description.tableofcontents | Resultados............ 35 | |
dc.description.tableofcontents | Discusión............. 41 | |
dc.description.tableofcontents | Conclusiones.............. 43 | |
dc.description.tableofcontents | Referencias............ 44 | |
dc.description.tableofcontents | Capítulo 4: Innovaciones en dosimetría ambiental mediante IoT en zonas rurales...........46 | |
dc.description.tableofcontents | Resumen........... 46 | |
dc.description.tableofcontents | Introducción......47 | |
dc.description.tableofcontents | Materiales y métodos..........48 | |
dc.description.tableofcontents | Resultados......... 54 | |
dc.description.tableofcontents | Discusión.......... 57 | |
dc.description.tableofcontents | Conclusiones.......... 58 | |
dc.description.tableofcontents | Referencias.......... 59 | |
dc.description.tableofcontents | Capítulo 5: Aplicaciones avanzadas y técnicas de optimización en dosimetría ambiental basada en IoT....... 62 | |
dc.description.tableofcontents | Resumen............ 62 | |
dc.description.tableofcontents | Introducción........... 63 | |
dc.description.tableofcontents | Materiales y métodos ..............64 | |
dc.description.tableofcontents | Resultados.......... 68 | |
dc.description.tableofcontents | Discusión............. 70 | |
dc.description.tableofcontents | Conclusiones............. 72 | |
dc.description.tableofcontents | Referencias....... 73 | |
dc.description.tableofcontents | Análisis de Aportes Tecnológicos en Dosimetría Ambiental Basada en IoT......75 | |
dc.format.mimetype | application/pdf | |
dc.identifier.eisbn | 978-628-7808-00-3 | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9132 | |
dc.language.iso | spa | |
dc.publisher | Fondo Editorial - Universidad de Córdoba | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.relation.references | Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010 | |
dc.relation.references | Baena Navarro, R. E. (2019). Optimización de un dron para dosimetría ambiental (Doctoral dissertation, Universidad Internacional Iberoamericana México). | |
dc.relation.references | Baena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359 | |
dc.relation.references | Baena-Navarro, R., Alcala-Varilla, L., Torres-Hoyos, F., Carriazo-Regino, Y., & Parodi- Camaño, T. (2024). Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study. Bulletin of Electrical Engineering and Informatics, 13(5), 3430-3445. https://doi.org/10.11591/eei.v13i5.7344 | |
dc.relation.references | Cember, H., & Johnson, T. E. (2009). Introduction to Health Physics (4th ed.). New York: McGraw-Hill. | |
dc.relation.references | Cross, E., Williams, L., Lewis, D., Magoon, G., Onasch, T., Kaminsky, M., Worsnop, D., & Jayne, J. (2017). Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575-3588. https://doi.org/10.5194/AMT-10-3575- 2017 | |
dc.relation.references | Fleming, J. J. (1995). Roentgen Rays: Memoirs by Wilhelm Conrad Roentgen, and W. H. Bragg. London: Kessinger Publishing. | |
dc.relation.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010 | |
dc.relation.references | Gupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook. New York: O'Reilly Media. | |
dc.relation.references | Harding, L. K. (1997). Radiation protection--lessons from the past. British Journal of Radiology, 70(839), 973-981. https://doi.org/10.1259/bjr.1997.0003 | |
dc.relation.references | International Commission on Radiological Protection. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. https://doi.org/10.1016/j.icrp.2007.10.001 | |
dc.relation.references | Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951 | |
dc.relation.references | Jones, C. (2005). A review of the history of U.S. radiation protection regulations, recommendations, and standards. Health Physics, 88(2), 105-124. https://doi.org/10.1097/01.HP.0000146629.45823.DA | |
dc.relation.references | Keawboonchu, J., Thepanondh, S., Kultan, V., Pinthong, N., Malakan, W., & Robson, M. (2023). Integrated Sustainable Management of Petrochemical Industrial Air Pollution. International Journal of Environmental Research and Public Health, 20(3), 2280. https://doi.org/10.3390/ijerph20032280 | |
dc.relation.references | Lindell, B. (2016). The History of Radiation Protection. Vienna: International Radiation Protection Association. | |
dc.relation.references | Liu, F., Tai, A., Ahunbay, E., Chen, G., & Li, X. (2011). Dosimetry Benefits from the Advanced Radiation Therapy Delivery Technologies. International Journal of Radiation Oncology Biology Physics, 81(2), S764. https://doi.org/10.1016/j.ijrobp.2011.06.1474 | |
dc.relation.references | Lochner, P., Leone, M., Coppo, L., Nardone, R., & Brigo, F. (2016). B-mode transorbital ultrasonography for the diagnosis of acute optic neuritis. A systematic review. Clinical Neurophysiology, 127(2), 806-814. https://doi.org/10.1016/j.clinph.2015.05.005 | |
dc.relation.references | Mettler, F. A., & Bhargavan, M. (2008). Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006-2010. Radiology, 248(1), 254-263. https://doi.org/10.1148/radiol.2481071451 | |
dc.relation.references | Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 | |
dc.relation.references | Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003 | |
dc.relation.references | Strom, D. J. (2013). Early history of radiation protection standards for occupational exposure: The role of the ICRP and NCRP. Health Physics, 105(5), 455-465. https://doi.org/10.1097/HP.0b013e3182a3a7cd | |
dc.relation.references | United Nations Scientific Committee on the Effects of Atomic Radiation. (2016). Sources, Effects and Risks of Ionizing Radiation. UNSCEAR 2013 Report, Volume II. New York: United Nations. https://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Report_Vol.II.pdf | |
dc.relation.references | Tompkins, F., & Goldsmith, R. (1977). A new personal dosimeter for the monitoring of industrial pollutants. Environmental Health Perspectives, 21, 7-12. https://doi.org/10.1080/0002889778507636 | |
dc.relation.references | Walker, J. S. (2000). Permissible dose: A history of radiation protection in the twentieth century. University of California Press. https://doi.org/10.2307/3985669 | |
dc.relation.references | Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023 | |
dc.relation.references | Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of Things. International Journal of Communication Systems, 25(9), 1101-1102. https://doi.org/10.1002/dac.2417 | |
dc.relation.references | Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393-422. https://doi.org/10.1016/S1389-1286(01)00302-4 | |
dc.relation.references | Alam, T. (2021). Cloud-Based IoT Applications and Their Roles in Smart Cities. Smart Cities, 4(3), 64-80. https://doi.org/10.3390/smartcities4030064 | |
dc.relation.references | Ali, A. (2022). A Framework for Air Pollution Monitoring in Smart Cities by Using IoT and Smart Sensors. Informatica, 46(5), 339-353. https://doi.org/10.31449/inf.v46i5.4003 | |
dc.relation.references | Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 | |
dc.relation.references | Ashton, K. (2009). That 'Internet of Things' Thing. RFID Journal. Retrieved from https://www.rfidjournal.com/that-internet-of-things-thing | |
dc.relation.references | Binsy, M., & Sampath, N. (2018). User Configurable and Portable Air Pollution Monitoring System for Smart Cities Using IoT. In Proceedings of the 2018 International Conference on Intelligent Computing and Communication for Smart World (pp. 123-130). Springer. https://doi.org/10.1007/978-981-10-8681-6_32 | |
dc.relation.references | Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31. https://doi.org/10.1016/j.comcom.2014.09.008 | |
dc.relation.references | Bose, S., Mukherjee, N., & Mistry, S. (2016). Environment Monitoring in Smart Cities Using Virtual Sensors. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (pp. 60-65). IEEE. https://doi.org/10.1109/FiCloud.2016.63 | |
dc.relation.references | Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. https://doi.org/10.1016/j.future.2015.09.021 | |
dc.relation.references | Buyya, R., Vecchiola, C., & Selvi, S. T. (2018). Mastering Cloud Computing: Foundations and Applications Programming. Morgan Kaufmann. https://doi.org/10.1016/C2013-0-19081-3 | |
dc.relation.references | Cisco. (2020). Cisco Annual Internet Report (2018–2023). Cisco Systems, Inc. Retrieved from https://www.cisco.com/c/en/us/solutions/executive- perspectives/annual-internet-report/index.html | |
dc.relation.references | Cross, E., Williams, L., Lewis, D., Magoon, G., Onasch, T., Kaminsky, M., Worsnop, D., & Jayne, J. (2017). Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575-3588. https://doi.org/10.5194/AMT-10-3575- 2017 | |
dc.relation.references | Demidchik, N. N., Kudaibergenova, M. D., & Kintonova, A. Zh. (2021). Using the Internet of Things (IoT) for Natural Resources Monitoring System. IEEE SIST, 9465979. https://doi.org/10.1109/SIST50301.2021.9465979 | |
dc.relation.references | Dhingra, S., Babu, M., Gandomi, A., Patan, R., & Daneshmand, M. (2019). Internet of Things Mobile–Air Pollution Monitoring System (IoT-Mobair). IEEE Journal of Internet of Things, 2903821. https://doi.org/10.1109/JIOT.2019.2903821 | |
dc.relation.references | Evagelopoulos, V., Charisiou, N., & Evagelopoulos, G. (2021). Smart air monitoring for indoor public spaces using mobile applications. IOP Conference Series: Earth and Environmental Science, 899(1), 012006. https://doi.org/10.1088/1755- 1315/899/1/012006 | |
dc.relation.references | Ganeshkumar, D., Parimala, V., Santhoshkumar, S., Vignesh, T., & Surendar, M. (2020). Air and Sound Pollution Monitoring System using Cloud Computing. IJERT, 9(6), 164. https://doi.org/10.17577/ijertv9is060164 | |
dc.relation.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010 | |
dc.relation.references | Hart, J. K., & Martinez, K. (2015). Environmental Sensor Networks: A revolution in the earth system science? Earth-Science Reviews, 178, 124-139. https://doi.org/10.1016/j.earscirev.2017.11.006 | |
dc.relation.references | Holler, J., Tsiatsis, V., Mulligan, C., Avesand, S., Karnouskos, S., & Boyle, D. (2014). From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence. Academic Press. https://doi.org/10.1016/C2013-0-19081-3 | |
dc.relation.references | International Data Corporation (IDC). (2020). The growth in connected IoT devices and data generated. Retrieved from https://www.idc.com | |
dc.relation.references | Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951 | |
dc.relation.references | Jo, J., Jo, B., Kim, J. H., Kim, S. J., & Han, W. Y. (2020). Development of an IoT-Based Indoor Air Quality Monitoring Platform. Journal of Sensors, 8749764. https://doi.org/10.1155/2020/8749764 | |
dc.relation.references | Jovanovska, E. M., & Davcev, D. (2020). No Pollution Smart City Sightseeing Based on WSN Monitoring System. In Proceedings of the 2020 International Conference on Mobile, Secure, and Programmable Networking (pp. 90-101). IEEE. https://doi.org/10.1109/MobiSecServ48690.2020.9042959 | |
dc.relation.references | Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145 | |
dc.relation.references | Muppalla, A., Pathakoti, M., Bothale, V., Biswadip, G., Sesha Sai, M.V.R., & Subramanian, V. (2019). Design and Implementation of IoT Solution for Air Pollution Monitoring. IEEE TENGARSS, 8976041. https://doi.org/10.1109/TENGARSS48957.2019.8976041 | |
dc.relation.references | Nguyen, N., & Sim, T. (2020). Predictive Maintenance Using Machine Learning in Manufacturing. Journal of Manufacturing Systems, 56, 237-245. https://doi.org/10.1016/j.jmsy.2020.04.008 | |
dc.relation.references | Pattnayak, P., Jena, O. P., & Sinha, S. (2021). Cloud and Green IoT-Based Technology for Sustainable Smart Cities. In S. Patnaik, X. S. Yang, K. S. Raju, & H. A. S. Kumar (Eds.), Smart Cities and Smart Spaces: Concepts, Methodologies, Tools, and Applications (pp. 19-40). IGI Global. https://doi.org/10.1201/9781003176275-1 | |
dc.relation.references | Pinedo-López, J., Baena-Navarro, R., Durán-Rojas, N., Díaz-Cogollo, L., & Farak- Flórez, L. (2024a). Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability, 16(17), 7263. https://doi.org/10.3390/su16177263 | |
dc.relation.references | Pinedo-López, J., Baena-Navarro, R., Carriazo-Regino, Y., Urrea-Ortiz, A., & Reyes- Guevara, D. (2024b). Sustainability strategies: A proposal for food sector SMEs, based on the integration of life cycle assessment and ESG strategies. Journal of Infrastructure, Policy and Development, 8(12), 8934. https://doi.org/10.24294/jipd.v8i12.8934 | |
dc.relation.references | Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003 | |
dc.relation.references | Saha, D., Shinde, M., & Thadeshwar, S. (2017). IoT based air quality monitoring system using wireless sensors deployed in public bus services. Proceedings of the ACM, 3025135. https://doi.org/10.1145/3018896.3025135 | |
dc.relation.references | Spandana, G., & Shanmughasundram, R. (2018). Design and Development of Air Pollution Monitoring System for Smart Cities. In Proceedings of the 2018 International Conference on Circuits and Systems (pp. 130-137). IEEE. https://doi.org/10.1109/ICCONS.2018.8662932 | |
dc.relation.references | Su, X., Shao, G., Vause, J., & Tang, L. (2013). An Integrated System for Urban Environmental Monitoring and Management Based on the Environmental Internet of Things. International Journal of Sustainable Development & World Ecology, 20(3), 205-209. https://doi.org/10.1080/13504509.2013.782580 | |
dc.relation.references | Tayan, O. (2022). Context-Aware Framework for Enhanced Smart Urban Pollution Monitoring and Control. In Proceedings of the 2022 International Conference on Engineering and Technology for Sustainable Development (pp. 450-460). IEEE. https://doi.org/10.1109/ETCEA57049.2022.10009678 | |
dc.relation.references | Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023 | |
dc.relation.references | Yang, Y. (2022). IoT-based air pollution monitoring system. HSET, 17, 2619. https://doi.org/10.54097/hset.v17i.2619 | |
dc.relation.references | Zhang, Y., Qian, C., Wu, C., & Tsang, D. H. K. (2015). Toward tens of Tbps optical backplane bandwidth: Circuit-switching and MAC-routing hybrid architecture for data center networks. IEEE Journal on Selected Areas in Communications, 33(8), 1684- 1696. https://doi.org/10.1109/JSAC.2015.2430243 | |
dc.relation.references | Zhang, H., Zhang, J., Wang, R., Huang, Y., Zhang, M., Shang, X., & Gao, C. (2021). Smart Carbon Monitoring Platform under IoT-Cloud Architecture for Small Cities in B5G. Wireless Networks, 27(4), 1201-1215. https://doi.org/10.1007/s11276-021- 02756-2 | |
dc.relation.references | Zhou, Z., Liu, Y., Zhang, Q., & Liu, K. (2017). Real-time Big Data Processing Framework: Challenges and Solutions. Applied Soft Computing, 68, 82-92. https://doi.org/10.1016/j.asoc.2017.01.037 | |
dc.relation.references | Baena Navarro, R. E. (2019). Optimización de un dron para dosimetría ambiental (Doctoral dissertation, Universidad Internacional Iberoamericana México). | |
dc.relation.references | Baena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359 | |
dc.relation.references | Barzilov, A., & Kazemeini, M. (2020). Unmanned Aerial System Integrated Sensor for Remote Gamma and Neutron Monitoring. Sensors, 20(19), 5529. https://doi.org/10.3390/s20195529 | |
dc.relation.references | Castillo Malla, D., Sánchez, A., González, J., Chamba, C., & Lakshminarayanan, V. (2021). Natural pigment sensor for solar ultraviolet radiation measurement. Proceedings of SPIE, 11868. https://doi.org/10.1117/12.2597616 | |
dc.relation.references | Comisión Internacional de Iluminación (CIE). (2020). International Commission on Illumination. Retrieved from https://cie.co.at/ | |
dc.relation.references | Dankan Gowda, V., Shekhar, R., Prasad, K. V., Kumar, P. S. V. S. R., Gangadharan, S., & Srividya, C. N. (2023). Scalable and Reliable Cloud-Based UV Monitoring for Public Health Applications. IEEE GCAT, 10353349. https://doi.org/10.1109/GCAT59970.2023.10353349 | |
dc.relation.references | El Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., ... & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet Oncology, 10(8), 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X | |
dc.relation.references | Gong, P., Tang, X., Huang, X., Wang, P., Wen, L. S., & Zhu, X. X. (2019). Locating lost radioactive sources using a UAV radiation monitoring system. Applied Radiation and Isotopes, 150, 1-13. https://doi.org/10.1016/j.apradiso.2019.04.037 | |
dc.relation.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010 | |
dc.relation.references | Instituto Nacional de Estándares y Tecnología (NIST). (2020). National Institute of Standards and Technology. Retrieved from https://www.nist.gov/ | |
dc.relation.references | Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678-708. https://doi.org/10.1109/ACCESS.2015.2437951 | |
dc.relation.references | Manigandan, M., Qureshi, A. R., Vijayakumar, D., Viswanathan, A., & Bharathi, N. (2017). Geo tagged internet of things (iot) device for radiation monitoring. ICACCI, 8125878. https://doi.org/10.1109/ICACCI.2017.8125878 | |
dc.relation.references | Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145 | |
dc.relation.references | Park, H., & Joo, K. (2016). Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors, 16(6), 919. https://doi.org/10.3390/s16060919 | |
dc.relation.references | Rajan, K. N. G. (2017). Calibration of radiation monitoring instruments. Radiation Safety in Radiation Oncology, 199-218. https://doi.org/10.1201/9781315119656-6 | |
dc.relation.references | Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003 | |
dc.relation.references | World Health Organization (WHO). (2017). Radiation: Ultraviolet (UV) radiation. Retrieved from https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv) | |
dc.relation.references | Ye, L., Wu, Z., Li, Y., Yu, G., & Jin, Q. (2009). Design of wideband solar ultraviolet radiation intensity monitoring and control system. Proceedings of SPIE, 7502. https://doi.org/10.1117/12.825802 | |
dc.relation.references | Baena-Navarro, R., Alcala-Varilla, L., Torres-Hoyos, F., Carriazo-Regino, Y., & Parodi- Camaño, T. (2024). Gamma and ultraviolet radiation radiation analysis: an internet of things-based dosimetric study. Bulletin of Electrical Engineering and Informatics, 13(5), 3430-3445. https://doi.org/10.11591/eei.v13i5.7344 | |
dc.relation.references | Baena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359 | |
dc.relation.references | Castillo Malla, D., Sánchez, A., González, J., Chamba, C., & Lakshminarayanan, V. (2021). Natural pigment sensor for solar ultraviolet radiation measurement. Proceedings of SPIE, 11868. https://doi.org/10.1117/12.2597616 | |
dc.relation.references | El Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., ... & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet Oncology, 10(8), 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X | |
dc.relation.references | Gong, P., Tang, X., Huang, X., Wang, P., Wen, L. S., & Zhu, X. X. (2019). Locating lost radioactive sources using a UAV radiation monitoring system. Applied Radiation and Isotopes, 150, 1-13. https://doi.org/10.1016/j.apradiso.2019.04.037 | |
dc.relation.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010 | |
dc.relation.references | Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145 | |
dc.relation.references | Park, H., & Joo, K. (2016). Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors, 16(6), 919. https://doi.org/10.3390/s16060919 | |
dc.relation.references | Pinedo-López, J., Baena-Navarro, R., Durán-Rojas, N., Díaz-Cogollo, L., & Farak- Flórez, L. (2024a). Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability, 16(17), 7263. https://doi.org/10.3390/su16177263 | |
dc.relation.references | Pinedo-López, J., Baena-Navarro, R., Carriazo-Regino, Y., Urrea-Ortiz, A., & Reyes- Guevara, D. (2024b). Sustainability strategies: A proposal for food sector SMEs, based on the integration of life cycle assessment and ESG strategies. Journal of Infrastructure, Policy and Development, 8(12), 8934. https://doi.org/10.24294/jipd.v8i12.8934 | |
dc.relation.references | Rajan, K. N. G. (2017). Calibration of radiation monitoring instruments. Radiation Safety in Radiation Oncology, 199-218. https://doi.org/10.1201/9781315119656-6 | |
dc.relation.references | Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003 | |
dc.relation.references | Signing, V. R. F., Taamté, J. M., Noube, M. K., Abanda, Z. S. O., Abba, H. Y., & Saïdou, J. (2023). Real-time environmental radiation monitoring based on locally developed low-cost device and unmanned aerial vehicle. Journal of Instrumentation, 18(5), P05031. https://doi.org/10.1088/1748-0221/18/05/P05031 | |
dc.relation.references | Saifullah, M., Bajwa, I. S., Ibrahim, M., & Asghar, M. (2022). IoT-Enabled Intelligent System for the Radiation Monitoring and Warning Approach. Mobile Information Systems. https://doi.org/10.1155/2022/2769958 | |
dc.relation.references | World Health Organization (WHO). (2017). Radiation: Ultraviolet (UV) radiation. Retrieved from https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv) | |
dc.relation.references | Baena-Navarro, R., Torres-Hoyos, F., Uc–Rios, C., & Colmenares-Quintero, R. F. (2020). Design and assembly of an IoT-based device to determine the absorbed dose of gamma and UV radiation. Applied Radiation and Isotopes, 166, 109359. https://doi.org/10.1016/j.apradiso.2020.109359 | |
dc.relation.references | Baena-Navarro, R., Carriazo-Regino, Y., Torres-Hoyos, F., & Pinedo-López, J. (2025). Intelligent Prediction and Continuous Monitoring of Water Quality in Aquaculture: Integration of Machine Learning and Internet of Things for Sustainable Management. Water, 17(1), 82. https://doi.org/10.3390/w17010082 | |
dc.relation.references | Castillo Malla, D., Sánchez, A., González, J., Chamba, C., & Lakshminarayanan, V. (2021). Natural pigment sensor for solar ultraviolet radiation measurement. Proceedings of SPIE, 11868. https://doi.org/10.1117/12.2597616 | |
dc.relation.references | El Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., ... & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet Oncology, 10(8), 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X | |
dc.relation.references | Gong, P., Tang, X., Huang, X., Wang, P., Wen, L. S., & Zhu, X. X. (2019). Locating lost radioactive sources using a UAV radiation monitoring system. Applied Radiation and Isotopes, 150, 1-13. https://doi.org/10.1016/j.apradiso.2019.04.037 | |
dc.relation.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010 | |
dc.relation.references | Manigandan, M., Qureshi, A. R., Vijayakumar, D., Viswanathan, A., & Bharathi, N. (2017). Geo tagged internet of things (iot) device for radiation monitoring. ICACCI, 8125878. https://doi.org/10.1109/ICACCI.2017.8125878 | |
dc.relation.references | Manzano, L. G., Bisegni, C., Boukabache, H., Curioni, A., Galea, C., Heracleous, N., ... & Silari, M. (2018). W-MON: a wireless network of ionizing sensors for radiation monitoring in waste. NSSMIC, 8824643. https://doi.org/10.1109/NSSMIC.2018.8824643 | |
dc.relation.references | Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145 | |
dc.relation.references | Organización de las Naciones Unidas (ONU). (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Recuperado de https://www.un.org/sustainabledevelopment/es/agenda-2030/ | |
dc.relation.references | Park, H., & Joo, K. (2016). Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors, 16(6), 919. https://doi.org/10.3390/s16060919 | |
dc.relation.references | Pinedo-López, J., Baena-Navarro, R., Durán-Rojas, N., Díaz-Cogollo, L., & Farak- Flórez, L. (2024a). Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability, 16(17), 7263. https://doi.org/10.3390/su16177263 | |
dc.relation.references | Pinedo-López, J., Baena-Navarro, R., Carriazo-Regino, Y., Urrea-Ortiz, A., & Reyes- Guevara, D. (2024b). Sustainability strategies: A proposal for food sector SMEs, based on the integration of life cycle assessment and ESG strategies. Journal of Infrastructure, Policy and Development, 8(12), 8934. https://doi.org/10.24294/jipd.v8i12.8934 | |
dc.relation.references | Rajan, K. N. G. (2017). Calibration of radiation monitoring instruments. Radiation Safety in Radiation Oncology, 199-218. https://doi.org/10.1201/9781315119656-6 | |
dc.relation.references | Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-319. https://doi.org/10.1016/j.jksuci.2016.10.003 | |
dc.relation.references | Signing, V. R. F., Taamté, J. M., Noube, M. K., Abanda, Z. S. O., Abba, H. Y., & Saïdou, J. (2023). Real-time environmental radiation monitoring based on locally developed low-cost device and unmanned aerial vehicle. Journal of Instrumentation, 18(5), P05031. https://doi.org/10.1088/1748-0221/18/05/P05031 | |
dc.relation.references | Sun, H., Gui, D., Yan, B., Liu, Y., Liao, W., Zhu, Y., & Lu, C. (2016). Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Conversion and Management, 119, 280-291. https://doi.org/10.1016/J.ENCONMAN.2016.04.051 | |
dc.relation.references | World Health Organization (WHO). (2017). Radiation: Ultraviolet (UV) radiation. Retrieved from https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv) | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.lcsh | Dosimetría | |
dc.title | Dosimetría ambiental mediante IoT: innovaciones y aplicaciones avanzadas | |
dc.type | Libro | |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/book | |
dc.type.redcol | http://purl.org/redcol/resource_type/LIB | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: