Publicación: Adsorción de especies de mercurio sobre las superficies 1t-mno2 y 1t-mno2/grafeno
dc.contributor.advisor | Ortega López, César | spa |
dc.contributor.author | Morinson Negrete, Juan David | |
dc.date.accessioned | 2022-08-23T01:37:35Z | |
dc.date.available | 2022-08-23T01:37:35Z | |
dc.date.issued | 2022-08-18 | |
dc.description.abstract | En esta tesis, se realizó un estudio de primeros principios de la adsorción de algunas especies de mercurio (Hg0 , HgCl, HgO y HgCl2) sobre una monocapa de 1T-MnO2 y una heteroestructura vertical de 1T-MnO2/Grafeno. Los cálculos se realizaron dentro del marco de la Teoría del Funcional de la Densidad (DFT). Inicialmente, se verificó la exactitud del método de cálculo, a través del análisis comparativo de algunas propiedades estructurales y electrónicas de la monocapa y la heteroestructura, con resultados previamente citados en la literatura. Asimismo, se examinó la estabilidad energética, mediante el cálculo de las energías de cohesión, formación y superficial (monocapa); y de manera análoga, del trabajo de separación y las energías de enlace, formación e interfacial (heteroestructura). | spa |
dc.description.abstract | In this thesis, a first-principles study of the adsorption of some mercury species (Hg0 , HgCl, HgO and HgCl2) on the 1T-MnO2 monolayer and 1T-MnO2/Graphene vertical heterostructure was carried out. Calculations were performed within the framework of the Density Functional Theory (DFT). First, the exactitude of our calculation method was verified, through a comparative analysis of some structural and electronic properties of the monolayer and heterostructure, with results previously cited in the literature. Also, the energetic stability of the surfaces was examined, by means of the calculation of the cohesion, formation and surface energies (monolayer); and similarly, separation work and the binding, formation and interfacial energies (heterostructure). In order to establish the most energetically favorable adsorption configurations, the following special sites on the monolayer were considered: | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor(a) en Ciencias Físicas | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | En esta tesis, se realizó un estudio de primeros principios de la adsorción de algunas especies de mercurio (Hg0 , HgCl, HgO y HgCl2) sobre una monocapa de 1T-MnO2 y una heteroestructura vertical de 1T-MnO2/Grafeno. Los cálculos se realizaron dentro del marco de la Teoría del Funcional de la Densidad (DFT). Inicialmente, se verificó la exactitud del método de cálculo, a través del análisis comparativo de algunas propiedades estructurales y electrónicas de la monocapa y la heteroestructura, con resultados previamente citados en la literatura. Asimismo, se examinó la estabilidad energética, mediante el cálculo de las energías de cohesión, formación y superficial (monocapa); y de manera análoga, del trabajo de separación y las energías de enlace, formación e interfacial (heteroestructura). | spa |
dc.description.tableofcontents | Resumen . . . . . . . . . . . . . . . 1 | spa |
dc.description.tableofcontents | 1. Introducción. . . . . . . . . . . . . . . 7 | spa |
dc.description.tableofcontents | 2. Fundamentos teóricos . . . . . . . . . . . . . . . 10 | spa |
dc.description.tableofcontents | 2.1. Teoría del Funcional de la Densidad (DFT) . . . . . . . . . . . . . . . 11 | spa |
dc.description.tableofcontents | 2.1.1. Funcionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 | spa |
dc.description.tableofcontents | 2.1.2. Aproximación de Born-Oppenheimer (BO) . . . . . . . . . . . . 12 | spa |
dc.description.tableofcontents | 2.1.3. Teoremas de Hohenberg-Kohn (HK) . . . . . . . . . . . . . . . 14 | spa |
dc.description.tableofcontents | 2.1.4. Ecuaciones de Kohn-Sham (KS) . . . . . . . . . . . . . . . . . 15 | spa |
dc.description.tableofcontents | 2.1.5. Escalera de Jacob: Funcionales de Correlación - intercambio . 16 | spa |
dc.description.tableofcontents | 2.1.6. Método de campo autoconsistente (scf) . . . . . . . . . . . . . 18 | spa |
dc.description.tableofcontents | 2.1.7. Pseudopotenciales (PP) . . . . . . . . . . . . . . . . . . . . . . 19 | spa |
dc.description.tableofcontents | 2.2. Cristalografía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | spa |
dc.description.tableofcontents | 2.2.1. Red directa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | spa |
dc.description.tableofcontents | 2.2.2. Red recíproca . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 | spa |
dc.description.tableofcontents | 2.2.3. Integración en el espacio recíproco . . . . . . . . . . . . . . . . 24 | spa |
dc.description.tableofcontents | 2.2.4. Escogiendo los puntos k en la IZB . . . . . . . . . . . . . . . . 24 | spa |
dc.description.tableofcontents | 2.2.5. Energía de Corte . . . . . . . . . . . . . . . . . . . . . . . . . . 25 | spa |
dc.description.tableofcontents | .2.6. Modelo de supercelda . . . . . . . . . . . . . . . . . . . . . . . 26 | spa |
dc.description.tableofcontents | 3. Estado del Arte . . . . . . . . . . . . . . . . . . . . 28 | spa |
dc.description.tableofcontents | 4. Sistemas en monocapas . . . . . . . . . . . . . . . . . . . . 32 | spa |
dc.description.tableofcontents | 4.1. Métodos y condiciones de cálculo . . . . . . . . . . . . . . . . . . . . 32 | spa |
dc.description.tableofcontents | 4.2. Monocapa de 1T-MnO_2 . . . . . . . . . . . . . . . . . . . . . . . . . . 34 | spa |
dc.description.tableofcontents | 4.3. Monocapa de 1T-MnO_2 con VO . . . . . . . . . . . . . . . . . . . . . . 36 | spa |
dc.description.tableofcontents | 4.4. Adsorciones sobre una monocapa de 1T-MnO_2. . . . . . . . . . . . . 40 | spa |
dc.description.tableofcontents | 4.4.1. Adsorción de Hg^0 . . . . . . . . . . . . . . . . . . . . . . . . . 40 | spa |
dc.description.tableofcontents | 4.4.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 44 | spa |
dc.description.tableofcontents | 4.4.3. Adsorción de HgO . . . . . . . . . . . . . . . . . . . . . . . . . 50 | spa |
dc.description.tableofcontents | 4.4.4. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 54 | spa |
dc.description.tableofcontents | 4.5. Adsorciones sobre una monocapa de 1T-MnO_2 con VO . . . . . . . . . 59 | spa |
dc.description.tableofcontents | 4.5.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 61 | spa |
dc.description.tableofcontents | 4.5.3. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 65 | spa |
dc.description.tableofcontents | 5. Sistemas en heteroestructuras . . . . . . . . . . . . . . . . . . . . 70 | spa |
dc.description.tableofcontents | 5.1. Métodos y condiciones de cálculo . . . . . . . . . . . . . . . . . . . . 71 | spa |
dc.description.tableofcontents | 5.2. Heteroestructura de 1T-MnO_2/Grafeno . . . . . . . . . . . . . . . . . . 74 | spa |
dc.description.tableofcontents | 5.3. Heteroestructura de 1T-MnO_2/Grafeno con VO . . . . . . . . . . . . . 76 | spa |
dc.description.tableofcontents | 5.4. Adsorciones sobre una heteroestructura de 1T-MnO_2/Grafeno . . . . . 80 | spa |
dc.description.tableofcontents | 5.4.1. Adsorción de Hg^0 . . . . . . . . . . . . . . . . . . . . . . . . . 80 | spa |
dc.description.tableofcontents | 5.4.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 83 | spa |
dc.description.tableofcontents | 5.4.3. Adsorción de HgO . . . . . . . . . . . . . . . . . . . . . . . . . 89 | spa |
dc.description.tableofcontents | 5.4.4. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 94 | spa |
dc.description.tableofcontents | 5.5. Adsorciones sobre una heteroestructura de 1T-MnO_2/Grafeno con VO . . . . . . . . . . . . . . . . . . . . . . . . 99 | spa |
dc.description.tableofcontents | 5.5.1. Adsorción de Hg^0 . . . . . . . . . . . . . . . . . . . . . . . . . 99 | spa |
dc.description.tableofcontents | 5.5.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 101 | spa |
dc.description.tableofcontents | 5.5.3. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 106 | spa |
dc.description.tableofcontents | 6. Conclusiones y perspectivas . . . . . . . . . . . . . . . . . . . . . . . . 111 | spa |
dc.description.tableofcontents | Referencias . . . . . . . . . . . . . . . . . . . . . . . . 135 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/6364 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Doctorado en Ciencias Físicas | spa |
dc.rights | Copyright Universidad de Córdoba, 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Density functional theory | eng |
dc.subject.keywords | Adsorption | eng |
dc.subject.keywords | Mercury species | eng |
dc.subject.proposal | Teoría del funcional de la densidad | spa |
dc.subject.proposal | Adsorción | spa |
dc.subject.proposal | especies de mercurio | spa |
dc.title | Adsorción de especies de mercurio sobre las superficies 1t-mno2 y 1t-mno2/grafeno | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | [1] WU, Jiang, et al. Coal fired flue gas mercury emission controls. Springer, 2015. | spa |
dcterms.references | [2] MERCURY, AN INVENTORY OF ANTHROPOGENIC. MERCURY STUDY REPORT TO CONGRESS VOLUME II: AN INVENTORY OF ANTHROPOGENIC MERCURY EMISSIONS IN THE UNITED STATES. Environmental Protection, 1997. | spa |
dcterms.references | [3] ZHANG, L.; WONG, Ming Hung. Environmental mercury contamination in China: sources and impacts. Environment international, 2007, vol. 33, no 1, p. 108-121. | spa |
dcterms.references | [4] LI, Ping, et al. Mercury pollution in Asia: a review of the contaminated sites. Journal of hazardous materials, 2009, vol. 168, no 2-3, p. 591-601. | spa |
dcterms.references | [5] CÓRDOBA, Patricia, et al. Enrichment of inorganic trace pollutants in recirculated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel processing technology, 2011, vol. 92, no 9, p. 1764-1775. | spa |
dcterms.references | [6] HSU, Che-Jung; CHEN, Yun-Hsin; HSI, Hsing-Cheng. Adsorption of aqueous Hg2+ and inhibition of Hg0 re-emission from actual seawater flue gas desulfurization wastewater by using sulfurized activated carbon and NaClO. Science of The Total Environment, 2020, vol. 711, p. 135172. | spa |
dcterms.references | [7] PADAK, Bihter, et al. Mercury binding on activated carbon. Environmental progress, 2006, vol. 25, no 4, p. 319-326. | spa |
dcterms.references | [8] QU,Wenqi, et al. Density Functional Theory Studies of the Adsorption and Interactions between Selenium Species and Mercury on Activated Carbon. Energy & Fuels, 2020, vol. 34, no 8, p. 9779-9786. | spa |
dcterms.references | [9] HADI, Pejman, et al. Aqueous mercury adsorption by activated carbons. Water Research, 2015, vol. 73, p. 37-55. | spa |
dcterms.references | [10] MOHAN, Dines, et al. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, vol. 177, no 2-3, p. 169-181 | spa |
dcterms.references | [11] PADAK, Bihter; WILCOX, Jennifer. Understanding mercury binding on activated carbon. Carbon, 2009, vol. 47, no 12, p. 2855-2864. | spa |
dcterms.references | [12] SUN, Wei; YAN, Nai-qiang; JIA, Jin-ping. Removal of elemental mercury in flue gas by brominated activated carbon. CHINA ENVIRONMENTAL SCIENCE CHINESE EDITION-, 2006, vol. 26, no 3, p. 257. | spa |
dcterms.references | [13] SKODRAS, G., et al. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. Journal of hazardous materials, 2008, vol. 158, no 1, p. 1-13. | spa |
dcterms.references | [14] GOMEZ-SERRANO, V., et al. Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Research, 1998, vol. 32, no 1, p. 1-4. | spa |
dcterms.references | [15] SUN, Shujuan, et al. Density functional theory study of mercury adsorption and oxidation on CuO (1 1 1) surface. Chemical Engineering Journal, 2014, vol. 258, p. 128-135. | spa |
dcterms.references | [16] SASMAZ, Erdem; WILCOX, Jennifer. Mercury species and SO2 adsorption on CaO (100). The Journal of Physical Chemistry C, 2008, vol. 112, no 42, p. 16484-16490. | spa |
dcterms.references | [17] ZHAO, Li, et al. Mechanism of mercury adsorption and oxidation by oxygen over the CeO2 (111) surface: A DFT study. Materials, 2018, vol. 11, no 4, p. 485. | spa |
dcterms.references | [18] ZHANG, Bingkai, et al. Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst: Insights from first principles. Chemical Engineering Journal, 2015, vol. 280, p. 354-362. | spa |
dcterms.references | [19] ZHANG, Bingkai, et al. Theoretical study of mercury species adsorption mechanism on MnO2 (1 1 0) surface. Chemical Engineering Journal, 2014, vol. 256, p. 93-100. | spa |
dcterms.references | [20] SCALA, Fabrizio; ANACLERIA, Concetta; CIMINO, Stefano. Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas. Fuel, 2013, vol. 108, p. 13-18. | spa |
dcterms.references | [21] WIATROS-MOTYKA, Malgorzata M., et al. High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 2013, vol. 109, p. 559-562. | spa |
dcterms.references | [22] JI, Lei, et al. Manganese oxide/titania materials for removal of NO x and elemental mercury from flue gas. Energy & Fuels, 2008, vol. 22, no 4, p. 2299-2306. | spa |
dcterms.references | [23] QIAO, Shaohua, et al. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnO x/alumina. Industrial & engineering chemistry research, 2009, vol. 48, no 7, p. 3317-3322. | spa |
dcterms.references | [24] LI, Jianfeng, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures. Environmental Science & Technology, 2010, vol. 44, no 1, p. 426-431. | spa |
dcterms.references | [25] OMOMO, Yoshitomo, et al. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. Journal of the American Chemical Society, 2003, vol. 125, no 12, p. 3568-3575. | spa |
dcterms.references | [26] FUKUDA, Katsutoshi, et al. Structure analysis of exfoliated unilamellar crystallites of manganese oxide nanosheets. The Journal of Physical Chemistry B, 2006, vol. 110, no 34, p. 17070-17075. | spa |
dcterms.references | [27] YANG, Xiaojing, et al. Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chemistry of Mate- rials, 2004, vol. 16, no 26, p. 5581-5588. | spa |
dcterms.references | [28] SONG, Min-Kyu, et al. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano letters, 2012, vol. 12, no 7, p. 3483-3490. | spa |
dcterms.references | [29] WU, Muyu, et al. Manganese dioxide nanosheets: from preparation to biomedical applications. International journal of nanomedicine, 2019, vol. 14, p. 4781. | spa |
dcterms.references | [30] ATACA, Can; SAHIN, Hasan; CIRACI, Salim. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 2012, vol. 116, no 16, p. 8983-8999. | spa |
dcterms.references | [31] PENG, Lele, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 2013, vol. 13, no 5, p. 2151-2157. | spa |
dcterms.references | [32] LU, Li, et al. Graphene–MnO2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. The Journal of Physical Chemistry C, 2016, vol. 120, no 41, p. 23660-23668. | spa |
dcterms.references | [33] GAN, Li-Yong, et al. Two-dimensional MnO2/Graphene interface: half-metallicity and quantum anomalous hall state. The Journal of Physical Chemistry C, 2016, vol. 120, no 4, p. 2119-2125. | spa |
dcterms.references | [34] WU, Shiyun, et al. Two-dimensional MnO2/graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 2016, vol. 30, no 27, p. 1650208. | spa |
dcterms.references | [35] VAN NOORDEN, Richard; MAHER, Brendan; NUZZO, Regina. The top 100 papers. Nature News, 2014, vol. 514, no 7524, p. 550. | spa |
dcterms.references | [36] ENGEL, Eberhard; DREIZLER, Reiner M. Density functional theory. Springer Verlag Berlin An, 2013. | spa |
dcterms.references | [37] BURKE, Kieron, et al. The abc of dft. Department of Chemistry, University of California, 2007, p. 40. | spa |
dcterms.references | [38] KOHANOFF, Jorge. Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press, 2006. | spa |
dcterms.references | [39] BORN, Max; OPPENHEIMER, Robert. Zur quantentheorie der molekeln. Annalen der physik, 1927, vol. 389, no 20, p. 457-484. | spa |
dcterms.references | [40] CAMPOS, Diógenes; ROMERO, Diógenes Campos. Fundamentos de física atómica y molecular. Univ. Nacional de Colombia, 1997. | spa |
dcterms.references | [41] HOHENBERG, Pierre; KOHN, Walter. Inhomogeneous electron gas. Physical review, 1964, vol. 136, no 3B, p. B864. | spa |
dcterms.references | [42] BORT, Juan Andrés. Química teórica y computacional. Publicacions de la Universitat Jaume I, 2001. | spa |
dcterms.references | [43] KOHN, Walter; SHAM, Lu Jeu. Self-consistent equations including exchange and correlation effects. Physical review, 1965, vol. 140, no 4A, p. A1133. | spa |
dcterms.references | [44] FIOLHAIS, Carlos; NOGUEIRA, Fernando; MARQUES, Miguel AL (ed.). A primer in density functional theory. Springer Science & Business Media, 2003. | spa |
dcterms.references | [45] PERDEW, John P.; SCHMIDT, Karla. Jacob’s ladder of density functional approximations for the exchange-correlation energy. En AIP Conference Proceedings. American Institute of Physics, 2001. p. 1-20. | spa |
dcterms.references | [46] PERDEW, John P.; ZUNGER, A. Self-consistent equations including exchange and correlation effects Phys. Rev. B, 1981, vol. 23, p. 5048-79. | spa |
dcterms.references | [47] MARTIN, Richard M. Electronic structure: basic theory and practical methods. Cambridge university press, 2020. | spa |
dcterms.references | [48] PERDEW, J. P.; BURKE, K.; ERNZERHOF, M. Perdew, burke, and ernzerhof reply. Physical Review Letters, 1998, vol. 80, no 4, p. 891. | spa |
dcterms.references | [49] KAXIRAS, Efthimios, et al. Atomic and electronic structure of solids. Cambridge University Press, 2003. | spa |
dcterms.references | [50] HAMANN, D. R.; SCHLÜTER, M.; CHIANG, C. Norm-conserving pseudopotentials. Physical Review Letters, 1979, vol. 43, no 20, p. 1494. | spa |
dcterms.references | [51] MEYER, Bernd. The pseudopotential plane wave approach. Computational Nanoscience: do it yourself, 2006, vol. 31, p. 71-83. | spa |
dcterms.references | [52] KITTEL, Charles; MCEUEN, Paul. Introduction to solid state physics. New York: Wiley, 1976. | spa |
dcterms.references | [53] RAZEGHI, Manijeh. Fundamentals of solid state engineering. Springer Berlin Heidelberg, 2006. | spa |
dcterms.references | [54] MONKHORST, Hendrik J.; PACK, James D. Special points for Brillouin-zone integrations. Physical review B, 1976, vol. 13, no 12, p. 5188. | spa |
dcterms.references | [55] SHOLL, David; STECKEL, Janice A. Density functional theory: a practical introduction. John Wiley & Sons, 2011. | spa |
dcterms.references | [56] CHOUDHARY, Kamal; TAVAZZA, Francesca. Convergence and machine lear- ning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high throughput DFT calculations. Computational materials science, 2019, vol. 161, p. 300-308. | spa |
dcterms.references | [57] GERSTNER, Ed. Nobel prize 2010: Andre geim & konstantin novoselov. Nature Physics, 2010, vol. 6, no 11, p. 836-836. | spa |
dcterms.references | [58] ALLEN, Matthew J.; TUNG, Vincent C.; KANER, Richard B. Honeycomb carbon: a review of graphene. Chemical reviews, 2010, vol. 110, no 1, p. 132-145. | spa |
dcterms.references | [59] DE RECERCA, TREBALL; COCH, DANIEL BOSCH. Estudio, aplicaciones y obtención del grafeno. | spa |
dcterms.references | [60] NOVOSELOV, K. S., et al. 2D materials and van der Waals heterostructures. Science, 2016, vol. 353, no 6298. | spa |
dcterms.references | [61] SINGH, Virendra, et al. Graphene based materials: past, present and future. Progress in materials science, 2011, vol. 56, no 8, p. 1178-1271. | spa |
dcterms.references | [62] KITCHAEV, Daniil A., et al. Energetics of MnO 2 polymorphs in density functional theory. Physical Review B, 2016, vol. 93, no 4, p. 045132. | spa |
dcterms.references | [63] WEI, Weifeng, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical society reviews, 2011, vol. 40, no 3, p. 1697- 1721. | spa |
dcterms.references | [64] SUBRAMANIAN, V., et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B, 2005, vol. 109, no 43, p. 20207-20214. | spa |
dcterms.references | [65] TANG, Nian, et al. Facile synthesis of α-MnO2 nanostructures for supercapacitors. Materials research bulletin, 2009, vol. 44, no 11, p. 2062-2067. | spa |
dcterms.references | [66] YAN, Jun, et al. Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Materials Research Bulletin, 2010, vol. 45, no 2, p. 210-215. | spa |
dcterms.references | [67] QU, Qunting, et al. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. The Journal of Physical Chemistry C, 2009, vol. 113, no 31, p. 14020-14027. | spa |
dcterms.references | [68] BEAUDROUET, E.; LA SALLE, A. Le Gal; GUYOMARD, Dominique. Nanostruc- tured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochimica Acta, 2009, vol. 54, no 4, p. 1240-1248. | spa |
dcterms.references | [69] WANG, X.; YUAN, A.; WANG, Y. Supercapacitive behaviors and their temperature dependence of sol–gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. Journal of Power Sources 2007, 172, 1007-1011. | spa |
dcterms.references | [70] YU, Peng, et al. Solution-combustion synthesis of ε-MnO2 for supercapacitors. Materials Letters, 2010, vol. 64, no 1, p. 61-64. | spa |
dcterms.references | [71] XIA, Hui; LAI, Man On; LU, Li. Nanostructured manganese oxide thin films as electrode material for supercapacitors. Jom, 2011, vol. 63, no 1, p. 54-59. | spa |
dcterms.references | [72] SHINDE, Pragati A., et al. Hydrothermal synthesis of manganese oxide thin films using different oxidizing agents for supercapacitor application. Int. J. Eng. Res. Technol., 2017, vol. 10, no 1, p. 532-537. | spa |
dcterms.references | [73] DENG, Shuo, et al. Two-dimensional MnO2 as a better cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 2015, vol. 119, no 52, p. 28783-28788. | spa |
dcterms.references | [74] ZHOU, Baozeng, et al. Superior spin-polarized electronic structure in MoS2/MnO 2 heterostructures with an efficient hole injection. Physical Chemistry Chemical Physics, 2019, vol. 21, no 20, p. 10706-10715. | spa |
dcterms.references | [75] KAN, M., et al. The intrinsic ferromagnetism in a MnO2 monolayer. The journal of physical chemistry letters, 2013, vol. 4, no 20, p. 3382-3386. | spa |
dcterms.references | [76] LEONG, Chon Chio; PAN, Hui; HO, Sut Kam. Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries. Physical Chemistry Chemical Physics, 2016, vol. 18, no 10, p. 7527-7534. | spa |
dcterms.references | [77] XI, Yongjie; REN, Ji-Chang. Design of a CO oxidation catalyst based on two-dimensional MnO2. The Journal of Physical Chemistry C, 2016, vol. 120, no 42, p. 24302-24306. | spa |
dcterms.references | [78] WANG, Yang, et al. Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano energy, 2020, vol. 68, p. 104306. | spa |
dcterms.references | [79] WANG, Yong, et al. Oxygen vacancy induced structural variations of exfoliated monolayer MnO 2 sheets. Physical Review B, 2010, vol. 81, no 8, p. 081401. | spa |
dcterms.references | [80] WANG, Hui, et al. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angewandte Chemie, 2015, vol. 127, no 4, p. 1211-1215. | spa |
dcterms.references | [81] SUN, Chenghua, et al. A formation mechanism of oxygen vacancies in a MnO2 monolayer: a DFT+ U study. Physical Chemistry Chemical Physics, 2011, vol. 13, no 23, p. 11325-11328. | spa |
dcterms.references | [82] SOLÍS-FERNÁNDEZ, Pablo; BISSETT, Mark; AGO, Hiroki. Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, vol. 46, no 15, p. 4572-4613. | spa |
dcterms.references | [83] SONG, Zhi; MA, Yu-Long; LI, Cong-Er. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Science of the Total Environment, 2019, vol. 651, p. 580-590. | spa |
dcterms.references | [84] LIU, Yuge, et al. An amperometric glucose biosensor based on a MnO 2/graphene composite modified electrode. RSC advances, 2016, vol. 6, no 22, p. 18654-18661. | spa |
dcterms.references | [85] LEE, Hyuck, et al. MnO 2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. Journal of Materials Chemistry, 2011, vol. 21, no 45, p. 18215-18219. | spa |
dcterms.references | [86] GAO, Xiaoping, et al. Exploring adsorption behavior and oxidation mechanism of mercury on monolayer Ti2CO2 (MXenes) from first principles. Applied Surface Science, 2019, vol. 464, p. 53-60. | spa |
dcterms.references | [87] MU, Xue-liang, et al. Density functional theory study of the adsorption of elemental mercury on a 1T-MoS 2 monolayer. Journal of Zhejiang University SCIENCE A, 2018, vol. 19, no 1, p. 60-67. | spa |
dcterms.references | [88] ZHAO, Haitao, et al. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. Journal of hazardous materials, 2019, vol. 366, p. 240-249. | spa |
dcterms.references | [89] LI, Hailong, et al. Density functional theory study of mercury adsorption on CuS surface: effect of typical flue gas components. Energy & Fuels, 2019, vol. 33, no 2, p. 1540-1546. | spa |
dcterms.references | [90] LIU, Shuai, et al. DFT Study of the Oxidation of Hg0 by O2 on an Mn-doped Buckled g-C3N4 Catalyst. Current Applied Physics, 2020. | spa |
dcterms.references | [91] WANG, Zhen, et al. Effect of the mechanism of H2S on elemental mercury removal using the MnO2 sorbent during coal gasification. Energy & Fuels, 2017, vol. 32, no 4, p. 4453-4460. | spa |
dcterms.references | [92] LIU, Zhong, et al. DFT study on Al-doped defective graphene towards adsorption of elemental mercury. Applied Surface Science, 2018, vol. 427, p. 547-553. | spa |
dcterms.references | [93] GAO, Zhengyang, et al. On the adsorption of elemental mercury on single-atom TM (TM= V, Cr, Mn, Co) decorated graphene substrates. Applied Surface Science, 2020, p. 146037. | spa |
dcterms.references | [94] XU, Haomiao, et al. MnO x/graphene for the catalytic oxidation and adsorption of elemental mercury. Environmental Science & Technology, 2015, vol. 49, no 11, p. 6823-6830. | spa |
dcterms.references | [95] GARRITY, Kevin F., et al. Pseudopotentials for high-throughput DFT calculations. Computational Materials Science, 2014, vol. 81, p. 446-452. | spa |
dcterms.references | [96] GIANNOZZI, Paolo, et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 2017, vol. 29, no 46, p. 465901. | spa |
dcterms.references | [97] GIANNOZZI, Paolo, et al. Quantum ESPRESSO toward the exascale. The Journal of chemical physics, 2020, vol. 152, no 15, p. 154105. | spa |
dcterms.references | [98] PERDEW, John P.; BURKE, Kieron; ERNZERHOF, Matthias. Generalized gradient approximation made simple. Physical review letters, 1996, vol. 77, no 18, p. 3865. | spa |
dcterms.references | [99] GRIMME, Stefan, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 2010, vol. 132, no 15, p. 154104. | spa |
dcterms.references | [100] BADER, Richard FW. Atoms in molecules. Accounts of Chemical Research, 1985, vol. 18, no 1, p. 9-15. | spa |
dcterms.references | [101] HENKELMAN, Graeme; ARNALDSSON, Andri; JÓNSSON, Hannes. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, vol. 36, no 3, p. 354-360. | spa |
dcterms.references | [102] OUYANG, Tianhong, et al. Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: Ab initio exposure. Applied Surface Science, 2018, vol. 462, p. 615-622. | spa |
dcterms.references | [103] ZHAO, Haitao, et al. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. Journal of hazardous materials, 2019, vol. 366, p. 240-249. | spa |
dcterms.references | [104] MURNAGHAN, F. D. The compressibility of media under extreme pressures. Proceedings of the national academy of sciences of the United States of America, 1944, vol. 30, no 9, p. 244. | spa |
dcterms.references | [105] KOKALJ, Anton. XCrySDen—a new program for displaying crystalline structu- res and electron densities. Journal of Molecular Graphics and Modelling, 1999, vol. 17, no 3-4, p. 176-179. | spa |
dcterms.references | [106] JAIN, Anubhav, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, 2013, vol. 1, no 1, p. 011002. | spa |
dcterms.references | [107] CHOUDHARY, Kamal, et al. High-throughput identification and characteriza- tion of two-dimensional materials using density functional theory. Scientific Reports, 2017, vol. 7, no 1, p. 1-16. | spa |
dcterms.references | [108] WANG, Jian; WANG, Shao-Qing. Surface energy and work function of fcc and bcc crystals: Density functional study. Surface science, 2014, vol. 630, p. 216- 224. | spa |
dcterms.references | [109] WANG, Mingjie, et al. Investigation on Mg3Sb2/Mg2Si Heterogeneous Nucleation Interface Using Density Functional Theory. Materials, 2020, vol. 13, no 7, p. 1681. | spa |
dcterms.references | [110] FAN, Yingcai, et al. Theoretical design of an InSe/GaTe vdW heterobilayer: A potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 2018, vol. 122, no 49, p. 27803-27810. | spa |
dcterms.references | [111] WANG, F.; LI, K.; ZHOU, N. G. First-principles calculations on Mg/Al2CO interfaces. Applied surface science, 2013, vol. 285, p. 879-884. | spa |
dcterms.references | [112] BJÖRKMAN, Torbjörn, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Physical review letters, 2012, vol. 108, no 23, p. 235502. | spa |
dcterms.references | [113] WANG, H. Y., et al. The simulation of adhesion, stability, electronic structure of W/ZrB2 interface using first-principles. Surface and Coatings Technology, 2013, vol. 228, p. S583-S587. | spa |
dcterms.references | [114] INGLEZAKIS, Vassilis J.; ZORPAS, Antonis A. Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalination and water treatment, 2012, vol. 39, no 1-3, p. 149-157. | spa |
dcterms.references | 115] SHEN, Shaobo, et al. Adsorption of Pd (II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. Journal of colloid and interface science, 2010, vol. 345, no 1, p. 12-18. | spa |
dcterms.references | [116] GAO, Xiaoping, et al. Unveiling adsorption mechanisms of elemental mercury on defective boron nitride monolayer: a computational study. Energy & Fuels, 2018, vol. 32, no 4, p. 5331-5337. | spa |
dcterms.references | [117] SCHABEL, Matthias C.; MARTINS, José Luís. Energetics of interplanar binding in graphite. Physical review B, 1992, vol. 46, no 11, p. 7185. | spa |
dcterms.references | [118] YIN, M. T.; COHEN, Marvin L. Structural theory of graphite and graphitic silicon. Physical Review B, 1984, vol. 29, no 12, p. 6996. | spa |
dcterms.references | [119] DONOHUE, Jerry. Structures of the Elements. 1974. | spa |
dcterms.references | [120] RIBEIRO-SOARES, Jenaina, et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 2014, vol. 90, no 11, p. 115438. | spa |
dcterms.references | [121] JAIN, Anubhav, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, 2013, vol. 1, no 1, p. 011002. | spa |
dcterms.references | [122] ESPITIA-RICO, Miguel, et al. Graphene monolayers on GaN (0 0 0 1). Applied Surface Science, 2015, vol. 326, p. 7-11. | spa |
dcterms.references | [123] NOVOSELOV, Kostya S., et al. Electric field effect in atomically thin carbon films. science, 2004, vol. 306, no 5696, p. 666-669. | spa |
dcterms.references | [124] KOSKINEN, Pekka; MALOLA, Sami; HÄKKINEN, Hannu. Self-passivating edge reconstructions of graphene. Physical review letters, 2008, vol. 101, no 11, p. 115502. | spa |
dcterms.references | [125] VAN ENGERS, Christian D., et al. Direct measurement of the surface energy of graphene. Nano letters, 2017, vol. 17, no 6, p. 3815-3821. | spa |
dcterms.references | [126] CASIANO, Gladys, R. 2020. Estudio de la interfaz grafeno/BN mediante DFT (Tesis de Doctorado). | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: