Publicación:
Adsorción de especies de mercurio sobre las superficies 1t-mno2 y 1t-mno2/grafeno

dc.contributor.advisorOrtega López, Césarspa
dc.contributor.authorMorinson Negrete, Juan David
dc.date.accessioned2022-08-23T01:37:35Z
dc.date.available2022-08-23T01:37:35Z
dc.date.issued2022-08-18
dc.description.abstractEn esta tesis, se realizó un estudio de primeros principios de la adsorción de algunas especies de mercurio (Hg0 , HgCl, HgO y HgCl2) sobre una monocapa de 1T-MnO2 y una heteroestructura vertical de 1T-MnO2/Grafeno. Los cálculos se realizaron dentro del marco de la Teoría del Funcional de la Densidad (DFT). Inicialmente, se verificó la exactitud del método de cálculo, a través del análisis comparativo de algunas propiedades estructurales y electrónicas de la monocapa y la heteroestructura, con resultados previamente citados en la literatura. Asimismo, se examinó la estabilidad energética, mediante el cálculo de las energías de cohesión, formación y superficial (monocapa); y de manera análoga, del trabajo de separación y las energías de enlace, formación e interfacial (heteroestructura).spa
dc.description.abstractIn this thesis, a first-principles study of the adsorption of some mercury species (Hg0 , HgCl, HgO and HgCl2) on the 1T-MnO2 monolayer and 1T-MnO2/Graphene vertical heterostructure was carried out. Calculations were performed within the framework of the Density Functional Theory (DFT). First, the exactitude of our calculation method was verified, through a comparative analysis of some structural and electronic properties of the monolayer and heterostructure, with results previously cited in the literature. Also, the energetic stability of the surfaces was examined, by means of the calculation of the cohesion, formation and surface energies (monolayer); and similarly, separation work and the binding, formation and interfacial energies (heterostructure). In order to establish the most energetically favorable adsorption configurations, the following special sites on the monolayer were considered:eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Ciencias Físicasspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEn esta tesis, se realizó un estudio de primeros principios de la adsorción de algunas especies de mercurio (Hg0 , HgCl, HgO y HgCl2) sobre una monocapa de 1T-MnO2 y una heteroestructura vertical de 1T-MnO2/Grafeno. Los cálculos se realizaron dentro del marco de la Teoría del Funcional de la Densidad (DFT). Inicialmente, se verificó la exactitud del método de cálculo, a través del análisis comparativo de algunas propiedades estructurales y electrónicas de la monocapa y la heteroestructura, con resultados previamente citados en la literatura. Asimismo, se examinó la estabilidad energética, mediante el cálculo de las energías de cohesión, formación y superficial (monocapa); y de manera análoga, del trabajo de separación y las energías de enlace, formación e interfacial (heteroestructura).spa
dc.description.tableofcontentsResumen . . . . . . . . . . . . . . . 1spa
dc.description.tableofcontents1. Introducción. . . . . . . . . . . . . . . 7spa
dc.description.tableofcontents2. Fundamentos teóricos . . . . . . . . . . . . . . . 10spa
dc.description.tableofcontents2.1. Teoría del Funcional de la Densidad (DFT) . . . . . . . . . . . . . . . 11spa
dc.description.tableofcontents2.1.1. Funcionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11spa
dc.description.tableofcontents2.1.2. Aproximación de Born-Oppenheimer (BO) . . . . . . . . . . . . 12spa
dc.description.tableofcontents2.1.3. Teoremas de Hohenberg-Kohn (HK) . . . . . . . . . . . . . . . 14spa
dc.description.tableofcontents2.1.4. Ecuaciones de Kohn-Sham (KS) . . . . . . . . . . . . . . . . . 15spa
dc.description.tableofcontents2.1.5. Escalera de Jacob: Funcionales de Correlación - intercambio . 16spa
dc.description.tableofcontents2.1.6. Método de campo autoconsistente (scf) . . . . . . . . . . . . . 18spa
dc.description.tableofcontents2.1.7. Pseudopotenciales (PP) . . . . . . . . . . . . . . . . . . . . . . 19spa
dc.description.tableofcontents2.2. Cristalografía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22spa
dc.description.tableofcontents2.2.1. Red directa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22spa
dc.description.tableofcontents2.2.2. Red recíproca . . . . . . . . . . . . . . . . . . . . . . . . . . . 23spa
dc.description.tableofcontents2.2.3. Integración en el espacio recíproco . . . . . . . . . . . . . . . . 24spa
dc.description.tableofcontents2.2.4. Escogiendo los puntos k en la IZB . . . . . . . . . . . . . . . . 24spa
dc.description.tableofcontents2.2.5. Energía de Corte . . . . . . . . . . . . . . . . . . . . . . . . . . 25spa
dc.description.tableofcontents.2.6. Modelo de supercelda . . . . . . . . . . . . . . . . . . . . . . . 26spa
dc.description.tableofcontents3. Estado del Arte . . . . . . . . . . . . . . . . . . . . 28spa
dc.description.tableofcontents4. Sistemas en monocapas . . . . . . . . . . . . . . . . . . . . 32spa
dc.description.tableofcontents4.1. Métodos y condiciones de cálculo . . . . . . . . . . . . . . . . . . . . 32spa
dc.description.tableofcontents4.2. Monocapa de 1T-MnO_2 . . . . . . . . . . . . . . . . . . . . . . . . . . 34spa
dc.description.tableofcontents4.3. Monocapa de 1T-MnO_2 con VO . . . . . . . . . . . . . . . . . . . . . . 36spa
dc.description.tableofcontents4.4. Adsorciones sobre una monocapa de 1T-MnO_2. . . . . . . . . . . . . 40spa
dc.description.tableofcontents4.4.1. Adsorción de Hg^0 . . . . . . . . . . . . . . . . . . . . . . . . . 40spa
dc.description.tableofcontents4.4.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 44spa
dc.description.tableofcontents4.4.3. Adsorción de HgO . . . . . . . . . . . . . . . . . . . . . . . . . 50spa
dc.description.tableofcontents4.4.4. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 54spa
dc.description.tableofcontents4.5. Adsorciones sobre una monocapa de 1T-MnO_2 con VO . . . . . . . . . 59spa
dc.description.tableofcontents4.5.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 61spa
dc.description.tableofcontents4.5.3. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 65spa
dc.description.tableofcontents5. Sistemas en heteroestructuras . . . . . . . . . . . . . . . . . . . . 70spa
dc.description.tableofcontents5.1. Métodos y condiciones de cálculo . . . . . . . . . . . . . . . . . . . . 71spa
dc.description.tableofcontents5.2. Heteroestructura de 1T-MnO_2/Grafeno . . . . . . . . . . . . . . . . . . 74spa
dc.description.tableofcontents5.3. Heteroestructura de 1T-MnO_2/Grafeno con VO . . . . . . . . . . . . . 76spa
dc.description.tableofcontents5.4. Adsorciones sobre una heteroestructura de 1T-MnO_2/Grafeno . . . . . 80spa
dc.description.tableofcontents5.4.1. Adsorción de Hg^0 . . . . . . . . . . . . . . . . . . . . . . . . . 80spa
dc.description.tableofcontents5.4.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 83spa
dc.description.tableofcontents5.4.3. Adsorción de HgO . . . . . . . . . . . . . . . . . . . . . . . . . 89spa
dc.description.tableofcontents5.4.4. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 94spa
dc.description.tableofcontents5.5. Adsorciones sobre una heteroestructura de 1T-MnO_2/Grafeno con VO . . . . . . . . . . . . . . . . . . . . . . . . 99spa
dc.description.tableofcontents5.5.1. Adsorción de Hg^0 . . . . . . . . . . . . . . . . . . . . . . . . . 99spa
dc.description.tableofcontents5.5.2. Adsorción de HgCl . . . . . . . . . . . . . . . . . . . . . . . . . 101spa
dc.description.tableofcontents5.5.3. Adsorción de HgCl_2 . . . . . . . . . . . . . . . . . . . . . . . . 106spa
dc.description.tableofcontents6. Conclusiones y perspectivas . . . . . . . . . . . . . . . . . . . . . . . . 111spa
dc.description.tableofcontentsReferencias . . . . . . . . . . . . . . . . . . . . . . . . 135spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6364
dc.language.isospaspa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programDoctorado en Ciencias Físicasspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsDensity functional theoryeng
dc.subject.keywordsAdsorptioneng
dc.subject.keywordsMercury specieseng
dc.subject.proposalTeoría del funcional de la densidadspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalespecies de mercuriospa
dc.titleAdsorción de especies de mercurio sobre las superficies 1t-mno2 y 1t-mno2/grafenospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.references[1] WU, Jiang, et al. Coal fired flue gas mercury emission controls. Springer, 2015.spa
dcterms.references[2] MERCURY, AN INVENTORY OF ANTHROPOGENIC. MERCURY STUDY REPORT TO CONGRESS VOLUME II: AN INVENTORY OF ANTHROPOGENIC MERCURY EMISSIONS IN THE UNITED STATES. Environmental Protection, 1997.spa
dcterms.references[3] ZHANG, L.; WONG, Ming Hung. Environmental mercury contamination in China: sources and impacts. Environment international, 2007, vol. 33, no 1, p. 108-121.spa
dcterms.references[4] LI, Ping, et al. Mercury pollution in Asia: a review of the contaminated sites. Journal of hazardous materials, 2009, vol. 168, no 2-3, p. 591-601.spa
dcterms.references[5] CÓRDOBA, Patricia, et al. Enrichment of inorganic trace pollutants in recirculated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel processing technology, 2011, vol. 92, no 9, p. 1764-1775.spa
dcterms.references[6] HSU, Che-Jung; CHEN, Yun-Hsin; HSI, Hsing-Cheng. Adsorption of aqueous Hg2+ and inhibition of Hg0 re-emission from actual seawater flue gas desulfurization wastewater by using sulfurized activated carbon and NaClO. Science of The Total Environment, 2020, vol. 711, p. 135172.spa
dcterms.references[7] PADAK, Bihter, et al. Mercury binding on activated carbon. Environmental progress, 2006, vol. 25, no 4, p. 319-326.spa
dcterms.references[8] QU,Wenqi, et al. Density Functional Theory Studies of the Adsorption and Interactions between Selenium Species and Mercury on Activated Carbon. Energy & Fuels, 2020, vol. 34, no 8, p. 9779-9786.spa
dcterms.references[9] HADI, Pejman, et al. Aqueous mercury adsorption by activated carbons. Water Research, 2015, vol. 73, p. 37-55.spa
dcterms.references[10] MOHAN, Dines, et al. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, vol. 177, no 2-3, p. 169-181spa
dcterms.references[11] PADAK, Bihter; WILCOX, Jennifer. Understanding mercury binding on activated carbon. Carbon, 2009, vol. 47, no 12, p. 2855-2864.spa
dcterms.references[12] SUN, Wei; YAN, Nai-qiang; JIA, Jin-ping. Removal of elemental mercury in flue gas by brominated activated carbon. CHINA ENVIRONMENTAL SCIENCE CHINESE EDITION-, 2006, vol. 26, no 3, p. 257.spa
dcterms.references[13] SKODRAS, G., et al. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. Journal of hazardous materials, 2008, vol. 158, no 1, p. 1-13.spa
dcterms.references[14] GOMEZ-SERRANO, V., et al. Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Research, 1998, vol. 32, no 1, p. 1-4.spa
dcterms.references[15] SUN, Shujuan, et al. Density functional theory study of mercury adsorption and oxidation on CuO (1 1 1) surface. Chemical Engineering Journal, 2014, vol. 258, p. 128-135.spa
dcterms.references[16] SASMAZ, Erdem; WILCOX, Jennifer. Mercury species and SO2 adsorption on CaO (100). The Journal of Physical Chemistry C, 2008, vol. 112, no 42, p. 16484-16490.spa
dcterms.references[17] ZHAO, Li, et al. Mechanism of mercury adsorption and oxidation by oxygen over the CeO2 (111) surface: A DFT study. Materials, 2018, vol. 11, no 4, p. 485.spa
dcterms.references[18] ZHANG, Bingkai, et al. Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst: Insights from first principles. Chemical Engineering Journal, 2015, vol. 280, p. 354-362.spa
dcterms.references[19] ZHANG, Bingkai, et al. Theoretical study of mercury species adsorption mechanism on MnO2 (1 1 0) surface. Chemical Engineering Journal, 2014, vol. 256, p. 93-100.spa
dcterms.references[20] SCALA, Fabrizio; ANACLERIA, Concetta; CIMINO, Stefano. Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas. Fuel, 2013, vol. 108, p. 13-18.spa
dcterms.references[21] WIATROS-MOTYKA, Malgorzata M., et al. High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 2013, vol. 109, p. 559-562.spa
dcterms.references[22] JI, Lei, et al. Manganese oxide/titania materials for removal of NO x and elemental mercury from flue gas. Energy & Fuels, 2008, vol. 22, no 4, p. 2299-2306.spa
dcterms.references[23] QIAO, Shaohua, et al. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnO x/alumina. Industrial & engineering chemistry research, 2009, vol. 48, no 7, p. 3317-3322.spa
dcterms.references[24] LI, Jianfeng, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures. Environmental Science & Technology, 2010, vol. 44, no 1, p. 426-431.spa
dcterms.references[25] OMOMO, Yoshitomo, et al. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. Journal of the American Chemical Society, 2003, vol. 125, no 12, p. 3568-3575.spa
dcterms.references[26] FUKUDA, Katsutoshi, et al. Structure analysis of exfoliated unilamellar crystallites of manganese oxide nanosheets. The Journal of Physical Chemistry B, 2006, vol. 110, no 34, p. 17070-17075.spa
dcterms.references[27] YANG, Xiaojing, et al. Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chemistry of Mate- rials, 2004, vol. 16, no 26, p. 5581-5588.spa
dcterms.references[28] SONG, Min-Kyu, et al. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano letters, 2012, vol. 12, no 7, p. 3483-3490.spa
dcterms.references[29] WU, Muyu, et al. Manganese dioxide nanosheets: from preparation to biomedical applications. International journal of nanomedicine, 2019, vol. 14, p. 4781.spa
dcterms.references[30] ATACA, Can; SAHIN, Hasan; CIRACI, Salim. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 2012, vol. 116, no 16, p. 8983-8999.spa
dcterms.references[31] PENG, Lele, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano letters, 2013, vol. 13, no 5, p. 2151-2157.spa
dcterms.references[32] LU, Li, et al. Graphene–MnO2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. The Journal of Physical Chemistry C, 2016, vol. 120, no 41, p. 23660-23668.spa
dcterms.references[33] GAN, Li-Yong, et al. Two-dimensional MnO2/Graphene interface: half-metallicity and quantum anomalous hall state. The Journal of Physical Chemistry C, 2016, vol. 120, no 4, p. 2119-2125.spa
dcterms.references[34] WU, Shiyun, et al. Two-dimensional MnO2/graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 2016, vol. 30, no 27, p. 1650208.spa
dcterms.references[35] VAN NOORDEN, Richard; MAHER, Brendan; NUZZO, Regina. The top 100 papers. Nature News, 2014, vol. 514, no 7524, p. 550.spa
dcterms.references[36] ENGEL, Eberhard; DREIZLER, Reiner M. Density functional theory. Springer Verlag Berlin An, 2013.spa
dcterms.references[37] BURKE, Kieron, et al. The abc of dft. Department of Chemistry, University of California, 2007, p. 40.spa
dcterms.references[38] KOHANOFF, Jorge. Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press, 2006.spa
dcterms.references[39] BORN, Max; OPPENHEIMER, Robert. Zur quantentheorie der molekeln. Annalen der physik, 1927, vol. 389, no 20, p. 457-484.spa
dcterms.references[40] CAMPOS, Diógenes; ROMERO, Diógenes Campos. Fundamentos de física atómica y molecular. Univ. Nacional de Colombia, 1997.spa
dcterms.references[41] HOHENBERG, Pierre; KOHN, Walter. Inhomogeneous electron gas. Physical review, 1964, vol. 136, no 3B, p. B864.spa
dcterms.references[42] BORT, Juan Andrés. Química teórica y computacional. Publicacions de la Universitat Jaume I, 2001.spa
dcterms.references[43] KOHN, Walter; SHAM, Lu Jeu. Self-consistent equations including exchange and correlation effects. Physical review, 1965, vol. 140, no 4A, p. A1133.spa
dcterms.references[44] FIOLHAIS, Carlos; NOGUEIRA, Fernando; MARQUES, Miguel AL (ed.). A primer in density functional theory. Springer Science & Business Media, 2003.spa
dcterms.references[45] PERDEW, John P.; SCHMIDT, Karla. Jacob’s ladder of density functional approximations for the exchange-correlation energy. En AIP Conference Proceedings. American Institute of Physics, 2001. p. 1-20.spa
dcterms.references[46] PERDEW, John P.; ZUNGER, A. Self-consistent equations including exchange and correlation effects Phys. Rev. B, 1981, vol. 23, p. 5048-79.spa
dcterms.references[47] MARTIN, Richard M. Electronic structure: basic theory and practical methods. Cambridge university press, 2020.spa
dcterms.references[48] PERDEW, J. P.; BURKE, K.; ERNZERHOF, M. Perdew, burke, and ernzerhof reply. Physical Review Letters, 1998, vol. 80, no 4, p. 891.spa
dcterms.references[49] KAXIRAS, Efthimios, et al. Atomic and electronic structure of solids. Cambridge University Press, 2003.spa
dcterms.references[50] HAMANN, D. R.; SCHLÜTER, M.; CHIANG, C. Norm-conserving pseudopotentials. Physical Review Letters, 1979, vol. 43, no 20, p. 1494.spa
dcterms.references[51] MEYER, Bernd. The pseudopotential plane wave approach. Computational Nanoscience: do it yourself, 2006, vol. 31, p. 71-83.spa
dcterms.references[52] KITTEL, Charles; MCEUEN, Paul. Introduction to solid state physics. New York: Wiley, 1976.spa
dcterms.references[53] RAZEGHI, Manijeh. Fundamentals of solid state engineering. Springer Berlin Heidelberg, 2006.spa
dcterms.references[54] MONKHORST, Hendrik J.; PACK, James D. Special points for Brillouin-zone integrations. Physical review B, 1976, vol. 13, no 12, p. 5188.spa
dcterms.references[55] SHOLL, David; STECKEL, Janice A. Density functional theory: a practical introduction. John Wiley & Sons, 2011.spa
dcterms.references[56] CHOUDHARY, Kamal; TAVAZZA, Francesca. Convergence and machine lear- ning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high throughput DFT calculations. Computational materials science, 2019, vol. 161, p. 300-308.spa
dcterms.references[57] GERSTNER, Ed. Nobel prize 2010: Andre geim & konstantin novoselov. Nature Physics, 2010, vol. 6, no 11, p. 836-836.spa
dcterms.references[58] ALLEN, Matthew J.; TUNG, Vincent C.; KANER, Richard B. Honeycomb carbon: a review of graphene. Chemical reviews, 2010, vol. 110, no 1, p. 132-145.spa
dcterms.references[59] DE RECERCA, TREBALL; COCH, DANIEL BOSCH. Estudio, aplicaciones y obtención del grafeno.spa
dcterms.references[60] NOVOSELOV, K. S., et al. 2D materials and van der Waals heterostructures. Science, 2016, vol. 353, no 6298.spa
dcterms.references[61] SINGH, Virendra, et al. Graphene based materials: past, present and future. Progress in materials science, 2011, vol. 56, no 8, p. 1178-1271.spa
dcterms.references[62] KITCHAEV, Daniil A., et al. Energetics of MnO 2 polymorphs in density functional theory. Physical Review B, 2016, vol. 93, no 4, p. 045132.spa
dcterms.references[63] WEI, Weifeng, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical society reviews, 2011, vol. 40, no 3, p. 1697- 1721.spa
dcterms.references[64] SUBRAMANIAN, V., et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B, 2005, vol. 109, no 43, p. 20207-20214.spa
dcterms.references[65] TANG, Nian, et al. Facile synthesis of α-MnO2 nanostructures for supercapacitors. Materials research bulletin, 2009, vol. 44, no 11, p. 2062-2067.spa
dcterms.references[66] YAN, Jun, et al. Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Materials Research Bulletin, 2010, vol. 45, no 2, p. 210-215.spa
dcterms.references[67] QU, Qunting, et al. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. The Journal of Physical Chemistry C, 2009, vol. 113, no 31, p. 14020-14027.spa
dcterms.references[68] BEAUDROUET, E.; LA SALLE, A. Le Gal; GUYOMARD, Dominique. Nanostruc- tured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochimica Acta, 2009, vol. 54, no 4, p. 1240-1248.spa
dcterms.references[69] WANG, X.; YUAN, A.; WANG, Y. Supercapacitive behaviors and their temperature dependence of sol–gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. Journal of Power Sources 2007, 172, 1007-1011.spa
dcterms.references[70] YU, Peng, et al. Solution-combustion synthesis of ε-MnO2 for supercapacitors. Materials Letters, 2010, vol. 64, no 1, p. 61-64.spa
dcterms.references[71] XIA, Hui; LAI, Man On; LU, Li. Nanostructured manganese oxide thin films as electrode material for supercapacitors. Jom, 2011, vol. 63, no 1, p. 54-59.spa
dcterms.references[72] SHINDE, Pragati A., et al. Hydrothermal synthesis of manganese oxide thin films using different oxidizing agents for supercapacitor application. Int. J. Eng. Res. Technol., 2017, vol. 10, no 1, p. 532-537.spa
dcterms.references[73] DENG, Shuo, et al. Two-dimensional MnO2 as a better cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 2015, vol. 119, no 52, p. 28783-28788.spa
dcterms.references[74] ZHOU, Baozeng, et al. Superior spin-polarized electronic structure in MoS2/MnO 2 heterostructures with an efficient hole injection. Physical Chemistry Chemical Physics, 2019, vol. 21, no 20, p. 10706-10715.spa
dcterms.references[75] KAN, M., et al. The intrinsic ferromagnetism in a MnO2 monolayer. The journal of physical chemistry letters, 2013, vol. 4, no 20, p. 3382-3386.spa
dcterms.references[76] LEONG, Chon Chio; PAN, Hui; HO, Sut Kam. Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries. Physical Chemistry Chemical Physics, 2016, vol. 18, no 10, p. 7527-7534.spa
dcterms.references[77] XI, Yongjie; REN, Ji-Chang. Design of a CO oxidation catalyst based on two-dimensional MnO2. The Journal of Physical Chemistry C, 2016, vol. 120, no 42, p. 24302-24306.spa
dcterms.references[78] WANG, Yang, et al. Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano energy, 2020, vol. 68, p. 104306.spa
dcterms.references[79] WANG, Yong, et al. Oxygen vacancy induced structural variations of exfoliated monolayer MnO 2 sheets. Physical Review B, 2010, vol. 81, no 8, p. 081401.spa
dcterms.references[80] WANG, Hui, et al. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angewandte Chemie, 2015, vol. 127, no 4, p. 1211-1215.spa
dcterms.references[81] SUN, Chenghua, et al. A formation mechanism of oxygen vacancies in a MnO2 monolayer: a DFT+ U study. Physical Chemistry Chemical Physics, 2011, vol. 13, no 23, p. 11325-11328.spa
dcterms.references[82] SOLÍS-FERNÁNDEZ, Pablo; BISSETT, Mark; AGO, Hiroki. Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, vol. 46, no 15, p. 4572-4613.spa
dcterms.references[83] SONG, Zhi; MA, Yu-Long; LI, Cong-Er. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Science of the Total Environment, 2019, vol. 651, p. 580-590.spa
dcterms.references[84] LIU, Yuge, et al. An amperometric glucose biosensor based on a MnO 2/graphene composite modified electrode. RSC advances, 2016, vol. 6, no 22, p. 18654-18661.spa
dcterms.references[85] LEE, Hyuck, et al. MnO 2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. Journal of Materials Chemistry, 2011, vol. 21, no 45, p. 18215-18219.spa
dcterms.references[86] GAO, Xiaoping, et al. Exploring adsorption behavior and oxidation mechanism of mercury on monolayer Ti2CO2 (MXenes) from first principles. Applied Surface Science, 2019, vol. 464, p. 53-60.spa
dcterms.references[87] MU, Xue-liang, et al. Density functional theory study of the adsorption of elemental mercury on a 1T-MoS 2 monolayer. Journal of Zhejiang University SCIENCE A, 2018, vol. 19, no 1, p. 60-67.spa
dcterms.references[88] ZHAO, Haitao, et al. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. Journal of hazardous materials, 2019, vol. 366, p. 240-249.spa
dcterms.references[89] LI, Hailong, et al. Density functional theory study of mercury adsorption on CuS surface: effect of typical flue gas components. Energy & Fuels, 2019, vol. 33, no 2, p. 1540-1546.spa
dcterms.references[90] LIU, Shuai, et al. DFT Study of the Oxidation of Hg0 by O2 on an Mn-doped Buckled g-C3N4 Catalyst. Current Applied Physics, 2020.spa
dcterms.references[91] WANG, Zhen, et al. Effect of the mechanism of H2S on elemental mercury removal using the MnO2 sorbent during coal gasification. Energy & Fuels, 2017, vol. 32, no 4, p. 4453-4460.spa
dcterms.references[92] LIU, Zhong, et al. DFT study on Al-doped defective graphene towards adsorption of elemental mercury. Applied Surface Science, 2018, vol. 427, p. 547-553.spa
dcterms.references[93] GAO, Zhengyang, et al. On the adsorption of elemental mercury on single-atom TM (TM= V, Cr, Mn, Co) decorated graphene substrates. Applied Surface Science, 2020, p. 146037.spa
dcterms.references[94] XU, Haomiao, et al. MnO x/graphene for the catalytic oxidation and adsorption of elemental mercury. Environmental Science & Technology, 2015, vol. 49, no 11, p. 6823-6830.spa
dcterms.references[95] GARRITY, Kevin F., et al. Pseudopotentials for high-throughput DFT calculations. Computational Materials Science, 2014, vol. 81, p. 446-452.spa
dcterms.references[96] GIANNOZZI, Paolo, et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 2017, vol. 29, no 46, p. 465901.spa
dcterms.references[97] GIANNOZZI, Paolo, et al. Quantum ESPRESSO toward the exascale. The Journal of chemical physics, 2020, vol. 152, no 15, p. 154105.spa
dcterms.references[98] PERDEW, John P.; BURKE, Kieron; ERNZERHOF, Matthias. Generalized gradient approximation made simple. Physical review letters, 1996, vol. 77, no 18, p. 3865.spa
dcterms.references[99] GRIMME, Stefan, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 2010, vol. 132, no 15, p. 154104.spa
dcterms.references[100] BADER, Richard FW. Atoms in molecules. Accounts of Chemical Research, 1985, vol. 18, no 1, p. 9-15.spa
dcterms.references[101] HENKELMAN, Graeme; ARNALDSSON, Andri; JÓNSSON, Hannes. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, vol. 36, no 3, p. 354-360.spa
dcterms.references[102] OUYANG, Tianhong, et al. Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: Ab initio exposure. Applied Surface Science, 2018, vol. 462, p. 615-622.spa
dcterms.references[103] ZHAO, Haitao, et al. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. Journal of hazardous materials, 2019, vol. 366, p. 240-249.spa
dcterms.references[104] MURNAGHAN, F. D. The compressibility of media under extreme pressures. Proceedings of the national academy of sciences of the United States of America, 1944, vol. 30, no 9, p. 244.spa
dcterms.references[105] KOKALJ, Anton. XCrySDen—a new program for displaying crystalline structu- res and electron densities. Journal of Molecular Graphics and Modelling, 1999, vol. 17, no 3-4, p. 176-179.spa
dcterms.references[106] JAIN, Anubhav, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, 2013, vol. 1, no 1, p. 011002.spa
dcterms.references[107] CHOUDHARY, Kamal, et al. High-throughput identification and characteriza- tion of two-dimensional materials using density functional theory. Scientific Reports, 2017, vol. 7, no 1, p. 1-16.spa
dcterms.references[108] WANG, Jian; WANG, Shao-Qing. Surface energy and work function of fcc and bcc crystals: Density functional study. Surface science, 2014, vol. 630, p. 216- 224.spa
dcterms.references[109] WANG, Mingjie, et al. Investigation on Mg3Sb2/Mg2Si Heterogeneous Nucleation Interface Using Density Functional Theory. Materials, 2020, vol. 13, no 7, p. 1681.spa
dcterms.references[110] FAN, Yingcai, et al. Theoretical design of an InSe/GaTe vdW heterobilayer: A potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 2018, vol. 122, no 49, p. 27803-27810.spa
dcterms.references[111] WANG, F.; LI, K.; ZHOU, N. G. First-principles calculations on Mg/Al2CO interfaces. Applied surface science, 2013, vol. 285, p. 879-884.spa
dcterms.references[112] BJÖRKMAN, Torbjörn, et al. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Physical review letters, 2012, vol. 108, no 23, p. 235502.spa
dcterms.references[113] WANG, H. Y., et al. The simulation of adhesion, stability, electronic structure of W/ZrB2 interface using first-principles. Surface and Coatings Technology, 2013, vol. 228, p. S583-S587.spa
dcterms.references[114] INGLEZAKIS, Vassilis J.; ZORPAS, Antonis A. Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalination and water treatment, 2012, vol. 39, no 1-3, p. 149-157.spa
dcterms.references115] SHEN, Shaobo, et al. Adsorption of Pd (II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. Journal of colloid and interface science, 2010, vol. 345, no 1, p. 12-18.spa
dcterms.references[116] GAO, Xiaoping, et al. Unveiling adsorption mechanisms of elemental mercury on defective boron nitride monolayer: a computational study. Energy & Fuels, 2018, vol. 32, no 4, p. 5331-5337.spa
dcterms.references[117] SCHABEL, Matthias C.; MARTINS, José Luís. Energetics of interplanar binding in graphite. Physical review B, 1992, vol. 46, no 11, p. 7185.spa
dcterms.references[118] YIN, M. T.; COHEN, Marvin L. Structural theory of graphite and graphitic silicon. Physical Review B, 1984, vol. 29, no 12, p. 6996.spa
dcterms.references[119] DONOHUE, Jerry. Structures of the Elements. 1974.spa
dcterms.references[120] RIBEIRO-SOARES, Jenaina, et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 2014, vol. 90, no 11, p. 115438.spa
dcterms.references[121] JAIN, Anubhav, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, 2013, vol. 1, no 1, p. 011002.spa
dcterms.references[122] ESPITIA-RICO, Miguel, et al. Graphene monolayers on GaN (0 0 0 1). Applied Surface Science, 2015, vol. 326, p. 7-11.spa
dcterms.references[123] NOVOSELOV, Kostya S., et al. Electric field effect in atomically thin carbon films. science, 2004, vol. 306, no 5696, p. 666-669.spa
dcterms.references[124] KOSKINEN, Pekka; MALOLA, Sami; HÄKKINEN, Hannu. Self-passivating edge reconstructions of graphene. Physical review letters, 2008, vol. 101, no 11, p. 115502.spa
dcterms.references[125] VAN ENGERS, Christian D., et al. Direct measurement of the surface energy of graphene. Nano letters, 2017, vol. 17, no 6, p. 3815-3821.spa
dcterms.references[126] CASIANO, Gladys, R. 2020. Estudio de la interfaz grafeno/BN mediante DFT (Tesis de Doctorado).spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
morinsonnegretejuan.pdf
Tamaño:
27.82 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
formatodeautorización.pdf
Tamaño:
639.59 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones