Publicación:
Abordaje epidemiológico, clínico y entomológico de la Leishmaniasis en el departamento de Córdoba

dc.audience
dc.contributor.advisorYasnot Acosta, María Fernanda
dc.contributor.authorEspitia Delgado, Yeiner Miguel
dc.contributor.juryRicardo Caldera, Dina
dc.contributor.juryAbad Martínez, Lili
dc.date.accessioned2024-08-23T16:22:49Z
dc.date.available2025-08-23
dc.date.available2024-08-23T16:22:49Z
dc.date.issued2024-08-23
dc.description.abstractEste estudio tiene como objetivo determinar el perfil epidemiológico, clínico e inmunológico de la leishmaniasis cutánea en el departamento de Córdoba, así como analizar la composición de la fauna flebotomínea en los sitios de estudio. Materiales y Métodos. Se realizó un estudio transversal descriptivo de la epidemiología de la leishmaniasis en el departamento de Córdoba entre los años 2012 y 2023, utilizando datos del Sistema de Vigilancia en Salud Pública (SIVIGILA) y el Instituto Nacional de Salud (INS) de Colombia. Para el estudio clínico e inmunológico, se involucraron 23 pacientes diagnosticados con leishmaniasis cutánea y 23 controles sanos entre febrero y diciembre de 2023. Las concentraciones plasmáticas de citoquinas (IL-1β, IL-6, TNF-α, IL-10 y TGF-β1) fueron determinadas mediante citometría de flujo. Para la identificación de Lutzomyias spp, se realizó muestreo en las veredas Saiza, Nuevo Paraíso y Castilleral en los municipios de Tierralta, Puerto Escondido y San Andrés de Sotavento respectivamente, utilizando trampas CDC, y para la identificación taxonómica se utilizó la clave de Young & Duncan (1994) Resultados. Entre 2012 y 2023, se reportaron 94,275 casos de leishmaniasis en Colombia, con una alta incidencia en el departamento de Córdoba (98.01%). De los 23 pacientes estudiados, 13 de los pacientes fueron mujeres jóvenes, con una mediana de edad de 29 años. 12 (52.17%) pacientes tuvieron lesiones únicas y 11 (47,83%) pacientes múltiples. Las concentraciones de TNF-α, IL-10, IL-6 y TGF-β1 fueron significativamente más altas en pacientes con leishmaniasis cutánea en comparación con los controles sanos. El análisis entomológico identificó seis especies de flebótomos en la región, destacando Lu. dysponeta y Lu. evansi como las más prevalentes. Conclusiones. La leishmaniasis cutánea (LC) sigue siendo la forma predominante en el departamento de Córdoba, especialmente en Tierralta, Valencia y Puerto Libertador. Los hombres jóvenes presentan mayor frecuencia de LC, y los pacientes con una sola lesión tienen mejor pronóstico. El perfil de citoquinas sugiere una respuesta Th1 y Treg, con TGF-β como posible factor protector.spa
dc.description.abstractThis study aims to determine the epidemiological, clinical, and immunological profile of cutaneous leishmaniasis in the department of Córdoba, as well as to analyze the composition of the phlebotomine fauna in the study sites.Materials and Methods: A descriptive cross-sectional study of the epidemiology of leishmaniasis in the department of Córdoba was conducted between 2012 and 2023, using data from the Public Health Surveillance System (SIVIGILA) and the National Institute of Health (INS) of Colombia. For the clinical and immunological study, 23 patients diagnosed with cutaneous leishmaniasis and 23 healthy controls were involved between February and December 2023. Plasma concentrations of cytokines (IL-1β, IL-6, TNF-α, IL-10, and TGF-β1) were determined by flow cytometry. To identify Lutzomyia spp., sampling was conducted in the villages of Saiza, Nuevo Paraíso, and Castilleral in the municipalities of Tierralta, Puerto Escondido, and San Andrés de Sotavento, respectively, using CDC traps. The taxonomic identification was performed using the key by Young & Duncan (1994). Results. Between 2012 and 2023, 94,275 cases of leishmaniasis were reported in Colombia, with a high incidence in the department of Córdoba (98.01%). Of the 23 patients studied, 13 were young women, with a median age of 29 years. Twelve (52.17%) patients had single lesions and 11 (47.83%) had multiple lesions. The concentrations of TNF-α, IL-10, IL-6, and TGF-β1 were significantly higher in patients with cutaneous leishmaniasis compared to healthy controls.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Microbiología Tropical
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontents1. INTRODUCCIÓN
dc.description.tableofcontents2. JUSTIFICACIÓN
dc.description.tableofcontents3. PLANTEAMIENTO DEL PROBLEMA
dc.description.tableofcontents4. OBJETIVOS
dc.description.tableofcontents4.1. Objetivo general
dc.description.tableofcontents4.2. Objetivos específicos
dc.description.tableofcontents5. CAPITULO 1. GENERALIDADES DE LA LEISHMANIASIS
dc.description.tableofcontents5.1. Agente etiológico
dc.description.tableofcontents5.2. Ciclo de vida parásito
dc.description.tableofcontents5.2.1 Ciclo de vida en el vector
dc.description.tableofcontents5.2.2 Ciclo de vida hospedero mamífero
dc.description.tableofcontents5.3. Manifestaciones clínicas
dc.description.tableofcontents5.4. Respuesta inmune
dc.description.tableofcontents5.4.1 Respuesta inmune innata
dc.description.tableofcontents5.4.2 Respuesta inmune adaptativa
dc.description.tableofcontents5.4.3. Evasión respuesta inmune
dc.description.tableofcontents5.5 Diagnostico
dc.description.tableofcontents6. CAPITULO 2. PERFIL EPIDEMIOLÓGICO DE LA LEISHMANIASIS EN EL DEPARTAMENTO DE CÓRDOBA, EN EL PERIODO COMPRENDIDO ENTRE LOS AÑOS 2012 Y 2023
dc.description.tableofcontents6.1. Introducción
dc.description.tableofcontents6.2. Objetivo
dc.description.tableofcontents6.3. Metodología
dc.description.tableofcontents6.3.1 Tipo de estudio
dc.description.tableofcontents6.3.2 Muestra y Población
dc.description.tableofcontents6.3.3 Análisis estadístico y Análisis distribución espacial
dc.description.tableofcontents6.4. Resultados
dc.description.tableofcontents6.5 Discusión
dc.description.tableofcontents6.6 Conclusiones
dc.description.tableofcontents7. CAPITULO 3. PERFIL CLÍNICO E INMUNOLÓGICO DE CITOQUINAS EN PACIENTES CON LEISHMANIASIS CUTÁNEA
dc.description.tableofcontents7.1 Introducción
dc.description.tableofcontents7.2. Objetivo
dc.description.tableofcontents7.3. Metodología
dc.description.tableofcontents7.3.1 Toma de Muestra frotis directo
dc.description.tableofcontents7.3.2 Diagnostico infección activa por Leishmania spp.
dc.description.tableofcontents7.3.3 Obtención de sueros y plasma.
dc.description.tableofcontents7.3.4 Cuantificación de citoquinas IL-1β, IL-6, TNF-α e IL-10 por citometría de flujo.
dc.description.tableofcontents7.3.5 Cuantificación de citoquina TGF-β1 por citometría de flujo.
dc.description.tableofcontents7.3.6 Análisis de datos
dc.description.tableofcontents7.4. Resultados
dc.description.tableofcontents7.4.1 Característica clínicas y demográficas de la población estudiada.
dc.description.tableofcontents7.4.2 Concentración plasmática de citoquinas.
dc.description.tableofcontents7.5 Discusión
dc.description.tableofcontents7.6 Conclusiones
dc.description.tableofcontents8. CAPITULO 4. COMPOSICIÓN DE LA FAUNA FLEBOTOMÍNEA EN LUGARES CENTINELA DEL DEPARTAMENTO DE CÓRDOBA.
dc.description.tableofcontents8.1. Introducción
dc.description.tableofcontents8.2. Objetivo
dc.description.tableofcontents8.3. Metodología
dc.description.tableofcontents8.4 Resultados
dc.description.tableofcontents8.5 Discusión
dc.description.tableofcontents8.6 Conclusiones
dc.description.tableofcontents9. RECOMENDACIONES GENERALES
dc.description.tableofcontents10. BIBLIOGRAFÍA
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8629
dc.language.isospa
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Microbiología Tropical
dc.relation.references1. Organización Mundial de la Salud. OMS. 2024 [citado el 9 de junio de 2024]. La OMS publica dos documentos históricos sobre la leishmaniasis. Disponible en: https://www.who.int/news/item/03-02-2023-who-publishes-two-landmark-documents-on-leishmaniasis
dc.relation.references2. Urango HJ, Hoyos Lopez R. Sandflies (Psychodidae: Phlebotominae) from peri-urban zone of Montería (Córdoba-Colombia). Acta Biolo Colomb. el 1 de septiembre de 2022;27(3):377–85.
dc.relation.references3. Organización Panamericana de la Salud. Leishmaniasis: Informe epidemiológico de las Américas. Núm. 11 (Diciembre del 2022). 2022.
dc.relation.references4. Hong A, Zampieri RA, Shaw JJ, Floeter-Winter LM, Laranjeira-Silva MF. One health approach to leishmaniases: Understanding the disease dynamics through diagnostic tools. Vol. 9, Pathogens. MDPI AG; 2020. p. 1–24.
dc.relation.references5. Fever B. Leishmaniasis (Cutaneous and Visceral) [Internet]. 2022. Disponible en: www.cfsph.iastate.edu
dc.relation.references6. SIVIGILA. MICRODATOS LEISHMANIASIS . 2022 [citado el 18 de septiembre de 2023]. p. 1–1 LEISHMANIASIS. Disponible en: https://portalsivigila.ins.gov.co/
dc.relation.references7. Andrés Canese, Juan Domingo Maciel, Andrés Canese. MANUAL DE DIAGNÓSTICO Y TRATAMIENTO DE LAS LEISHMANIOSIS. Organización Panamericana de la Salud/Organización Mundial de la Salud . 2011;1–76.
dc.relation.references8. World Health Organization. Leishmaniasis [Internet]. 2023 [citado el 11 de julio de 2023]. p. 1–1. Disponible en: World Health Organization
dc.relation.references9. Abadías-Granado I, Diago A, Cerro PA, Palma-Ruiz AM, Gilaberte Y. Cutaneous and Mucocutaneous Leishmaniasis. Vol. 112, Actas Dermo-Sifiliograficas. Elsevier Doyma; 2021. p. 601–18.
dc.relation.references10. Raj S, Sasidharan S, Balaji S, Dubey V, Saudagar P. Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. J Proteins Proteom. mayo de 2020;11.
dc.relation.references11. Vector biológico de etapas de Leishmania: vector de stock (libre de regalías) 2289801477 | Shutterstock [Internet]. [citado el 10 de julio de 2024]. Disponible en: https://www.shutterstock.com/es/image-vector/biological-vector-leishmania-stages-2289801477
dc.relation.references12. Bates PA. Revising Leishmania’s life cycle. Vol. 3, Nature Microbiology. Nature Publishing Group; 2018. p. 529–30.
dc.relation.references13. Souza M de A, Ramos-Sanchez EM, Muxel SM, Lagos D, Reis LC, Pereira VRA, et al. miR-548d-3p Alters Parasite Growth and Inflammation in Leishmania (Viannia) braziliensis Infection. Front Cell Infect Microbiol. el 10 de junio de 2021;11:687647.
dc.relation.references14. Silva-Oliveira G, Linhares-Lacerda L, de Mattos TRF, Sanches C, Coelho‐Sampaio T, Riederer I, et al. Laminin Triggers Neutrophil Extracellular Traps (NETs) and Modulates NET Release Induced by Leishmania amazonensis. Biomedicines [Internet]. mayo de 2022;10(3):521. Disponible en: https://doi.org/10.3390/biomedicines10030521
dc.relation.references15. Bezemer JM, Freire‐Paspuel B, Schallig HDFH, de Vries HJC, Calvopiña M. Leishmania species and clinical characteristics of Pacific and Amazon cutaneous leishmaniasis in Ecuador and determinants of health-seeking delay: a cross-sectional study. BMC Infect Dis [Internet]. mayo de 2023;23(1). Disponible en: https://doi.org/10.1186/s12879-023-08377-8
dc.relation.references16. 4. CDC. CDC - Leishmaniasis - Resources for Health Professionals. [citado el 11 de julio de 2023]; Disponible en: https://www.cdc.gov/parasites/leishmaniasis/health_professionals/index.html#print
dc.relation.references17. Centers for Disease Control and Prevention CDC. Clinical Overview of Leishmaniasis. 2024 [citado el 18 de mayo de 2024]; Disponible en: https://www.cdc.gov/leishmaniasis/hcp/clinical-overview/index.html
dc.relation.references18. Sanz CR, Miró G, Sevane N, Reyes‐Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Front Immunol [Internet]. mayo de 2022;12. Disponible en: https://doi.org/10.3389/fimmu.2021.794627
dc.relation.references19. Serafim TD, Coutinho-Abreu I V, Dey R, Kissinger R, Valenzuela JG, Oliveira F, et al. Leishmaniasis: the act of transmission. Trends Parasitol [Internet]. mayo de 2021;37(11):976–87. Disponible en: https://doi.org/10.1016/j.pt.2021.07.003
dc.relation.references20. Serafim TD, Coutinho-Abreu I V, Dey R, Kissinger R, Valenzuela JG, Oliveira F, et al. Leishmaniasis: the act of transmission. Trends Parasitol [Internet]. mayo de 2021;37(11):976–87. Disponible en: https://doi.org/10.1016/j.pt.2021.07.003
dc.relation.references21. Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev. enero de 2013;26(1):58–85.
dc.relation.references22. Ana Nilce S. Maia-Elkhoury, Carlos Arturo Hernández, Clemencia Ovalle-Bracho, Jaime Soto, Samantha Valadas. Atlas interactivo de LEISHMANIASIS EN LAS AMÉRICAS. Vol.
dc.relation.references23. Bessat M, Shanat S El. Leishmaniasis: Epidemiology, Control and Future Perspectives with Special Emphasis on Egypt. J Trop Dis [Internet]. mayo de 2015;03(01). Disponible en: https://doi.org/10.4172/2329-891x.1000153
dc.relation.references24. Shmueli M, Ben‐Shimol S. Review of Leishmaniasis Treatment: Can We See the Forest through the Trees? Pharmacy [Internet]. mayo de 2024;12(1):30. Disponible en: https://doi.org/10.3390/pharmacy12010030
dc.relation.references25. Abadías‐Granado I, Diago A, Cerro PA, Palma‐Ruiz AM, Gilaberte Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas dermo-sifiliográficas/Actas dermo-sifiliográficas [Internet]. mayo de 2021; Disponible en: https://doi.org/10.1016/j.adengl.2021.05.011
dc.relation.references26. Gow I, Smith N, Stark D, Ellis JT. Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasit Vectors [Internet]. mayo de 2022;15(1). Disponible en: https://doi.org/10.1186/s13071-022-05524-z
dc.relation.references27. Sandoval-Juárez A, Minaya-Gómez G, Rojas-Palomino N, Cáceres O. Identificación de especies de Leishmania en pacientes derivados al Instituto Nacional de Salud del Perú. Revista peruana de medicina experimental y salud pública/Revista peruana de medicina experimental y salud pública [Internet]. mayo de 2020;37(1):87–92. Disponible en: https://doi.org/10.17843/rpmesp.2020.371.4514
dc.relation.references28. Hurrell BP, Regli IB, Tacchini‐Cottier F. Different Leishmania Species Drive Distinct Neutrophil Functions. Trends Parasitol [Internet]. mayo de 2016;32(5):392–401. Disponible en: https://doi.org/10.1016/j.pt.2016.02.003
dc.relation.references29. Hernández-Bojorge SE, Blass-Alfaro GG, Rickloff MA, Gómez-Guerrero MJ, Izurieta R. Epidemiology of cutaneous and mucocutaneous leishmaniasis in Nicaragua. Parasite Epidemiol Control. el 1 de noviembre de 2020;11.
dc.relation.references30. Poulaki A, Piperaki ET, Voulgarelis M. Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective.
dc.relation.references31. Kumar R, Nylén S. Immunobiology of visceral leishmaniasis. Front Immunol [Internet]. mayo de 2012; Disponible en: https://doi.org/10.3389/fimmu.2012.00251
dc.relation.references32. Silva-Oliveira G, Linhares-Lacerda L, Mattos TRF, Sanches C, Coelho-Sampaio T, Riederer I, et al. Laminin Triggers Neutrophil Extracellular Traps (NETs) and Modulates NET Release Induced by Leishmania amazonensis. Biomedicines. el 1 de marzo de 2022;10(3).
dc.relation.references33. Santarem N, Silvestre R, Tavares J, Silva M, Cabral S, Maciel J, et al. Immune Response Regulation by Leishmania Secreted and Nonsecreted Antigens. mayo de 2007; Disponible en: http://downloads.hindawi.com/journals/bmri/2007/085154.pdf
dc.relation.references34. Rodrigues V, Cordeiro-Da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Vol. 9, Parasites and Vectors. BioMed Central; 2016.
dc.relation.references35. Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X. el 1 de diciembre de 2020;2(4).
dc.relation.references36. Goto Y, Mizobuchi H. Pathological roles of macrophages in Leishmania infections. Vol. 94, Parasitology International. Elsevier Ireland Ltd; 2023.
dc.relation.references37. Almeida FS, Vanderley SER, Comberlang FC, Andrade AG de, Cavalcante-Silva LHA, Silva E dos S, et al. Leishmaniasis: Immune Cells Crosstalk in Macrophage Polarization. Vol. 8, Tropical Medicine and Infectious Disease. Multidisciplinary Digital Publishing Institute (MDPI); 2023.
dc.relation.references38. Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol [Internet]. mayo de 2016;16(9):581–92. Disponible en: https://doi.org/10.1038/nri.2016.72
dc.relation.references40. Kupani M, Pandey RK, Mehrotra S. Neutrophils and Visceral Leishmaniasis: Impact on innate immune response and cross‐talks with macrophages and dendritic cells. J Cell Physiol [Internet]. mayo de 2020; Disponible en: https://doi.org/10.1002/jcp.30029
dc.relation.references41. Innate immune cells. mayo de 2023; Disponible en: https://www.nature.com/subjects/innate-immune-cells
dc.relation.references42. Abhishek K, Das S, Kumar A, Kumar A, Kumar V, Saini S, et al. Leishmania donovani induced Unfolded Protein Response delays host cell apoptosis in PERK dependent manner. PLoS Negl Trop Dis [Internet]. mayo de 2018; Disponible en: https://doi.org/10.1371/journal.pntd.0006646
dc.relation.references43. Gordon S, Plüddemann A. Macrophage Clearance of Apoptotic Cells: A Critical Assessment. Front Immunol [Internet]. mayo de 2018; Disponible en: https://doi.org/10.3389/fimmu.2018.00127
dc.relation.references44. Passelli K, Billion O, Tacchini-Cottier F. The Impact of Neutrophil Recruitment to the Skin on the Pathology Induced by Leishmania Infection. Vol. 12, Frontiers in Immunology. Frontiers Media S.A.; 2021.
dc.relation.references45. Ikeogu N, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, et al. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms [Internet]. mayo de 2020;8(8):1201. Disponible en: https://doi.org/10.3390/microorganisms8081201
dc.relation.references46. Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Vol. 139, Biomedicine and Pharmacotherapy. Elsevier Masson s.r.l.; 2021.
dc.relation.references47. Dubie T, Mohammed Y. Review on the Role of Host Immune Response in Protection and Immunopathogenesis during Cutaneous Leishmaniasis Infection. J Immunol Res. 2020;2020.
dc.relation.references48. Martínez‐López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol [Internet]. mayo de 2018; Disponible en: https://doi.org/10.3389/fmicb.2018.00883
dc.relation.references49. Kima PE. Leishmania molecules that mediate intracellular pathogenesis. Microbes Infect [Internet]. mayo de 2014; Disponible en: https://doi.org/10.1016/j.micinf.2014.07.012
dc.relation.references50. Gregory DJ, Godbout M, Contreras I, Forget G, Olivier M. A novel form of NF-κB is induced by Leishmania infection: Involvement in macrophage gene expression. Eur J Immunol. abril de 2008;38(4):1071–81.
dc.relation.references51. Olivier M, Gregory DJ, Forget G. Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: a Signaling Point of View. mayo de 2005; Disponible en: https://journals.asm.org/doi/10.1128/cmr.18.2.293-305.2005
dc.relation.references52. Tomiotto-Pellissier F, da Silva Bortoleti BT, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, et al. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front Immunol [Internet]. mayo de 2018;9. Disponible en: https://doi.org/10.3389/fimmu.2018.02529
dc.relation.references53. Conde L, Maciel G, de Assis GM, Freire‐de‐Lima L, Nico D, Vale AM, et al. Humoral response in Leishmaniasis. Front Cell Infect Microbiol [Internet]. mayo de 2022;12. Disponible en: https://doi.org/10.3389/fcimb.2022.1063291
dc.relation.references54. Öllinger K, Appelqvist H. The Lysosome -A Central Hub for Cellular Function and Dysfunction. J Cell Signal [Internet]. mayo de 2017; Disponible en: https://doi.org/10.4172/2576-1471.1000143
dc.relation.references55. Gordon S, Plüddemann A. Macrophage Clearance of Apoptotic Cells: A Critical Assessment. Front Immunol [Internet]. mayo de 2018; Disponible en: https://doi.org/10.3389/fimmu.2018.00127
dc.relation.references56. Mansueto P, Vitale G, Lorenzo G Di, Rini GB, Mansueto S, Cillari E. Immunopathology of Leishmaniasis: An Update. Int J Immunopathol Pharmacol [Internet]. mayo de 2007;20(3):435–45. Disponible en: https://doi.org/10.1177/039463200702000302
dc.relation.references57. Soong L. Subversion and Utilization of Host Innate Defense by Leishmania amazonensis. Front Immunol [Internet]. mayo de 2012; Disponible en: https://doi.org/10.3389/fimmu.2012.00058
dc.relation.references58. Ikeogu N, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, et al. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms [Internet]. mayo de 2020;8(8):1201. Disponible en: https://doi.org/10.3390/microorganisms8081201
dc.relation.references59. Carneiro MB, Lopes ME, Hohman LS, Romano A, David BA, Kratofil R, et al. Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir. Cell Host Microbe. el 13 de mayo de 2020;27(5):752-768.e7.
dc.relation.references60. Bamorovat M, Sharifi I, Aflatoonian MR, Karamoozian A, Tahmouresi A, Jafarzadeh A, et al. Prophylactic effect of cutaneous leishmaniasis against COVID-19: a case-control field assessment. International Journal of Infectious Diseases. el 1 de septiembre de 2022;122:155–61.
dc.relation.references61. Carneiro M, Lopes ME, Hohman LS, Romano A, David BA, Kratofil RM, et al. Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir. Cell Host Microbe [Internet]. mayo de 2020;27(5):752-768.e7. Disponible en: https://doi.org/10.1016/j.chom.2020.03.011
dc.relation.references62. Yasmin H, Adhikary A, Al-Ahdal MN, Roy S, Kishore U. Host–Pathogen Interaction in Leishmaniasis: Immune Response and Vaccination Strategies. Immuno. el 9 de marzo de 2022;2(1):218–54.
dc.relation.references63. Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Vol. 24, Immune Network. Korean Association of Immunologists; 2024.
dc.relation.references64. de Franca MNF, Rodrigues LS, Barreto AS, da Cruz GS, Aragão-Santos JC, da Silva AM, et al. CD4+ Th1 and Th17 responses and multifunctional CD8 T lymphocytes associated with cure or disease worsening in human visceral leishmaniasis. Front Immunol. 2024;15.
dc.relation.references65. Gonzalez K, Calzada JE, Corbett CEP, Saldaña A, Laurenti MD. Involvement of the Inflammasome and Th17 Cells in Skin Lesions of Human Cutaneous Leishmaniasis Caused by Leishmania (Viannia) panamensis. Mediators Inflamm. 2020;2020.
dc.relation.references66. Zayats R, Mou Z, Yazdanpanah A, Gupta G, Lopez P, Nayar D, et al. Antigen recognition reinforces regulatory T cell mediated Leishmania major persistence. Nat Commun. el 1 de diciembre de 2023;14(1).
dc.relation.references67. da Silva Santos C, Brodskyn CI. The role of CD4 and CD8 T cells in human cutaneous leishmaniasis. Vol. 2, Frontiers in Public Health. Frontiers Media S. A; 2014.
dc.relation.references68. Mukherjee S, Sengupta R, Mukhopadhyay D, Braun C, Mitra S, Roy S, et al. Impaired activation of lesional CD8+ T-cells is associated with enhanced expression of Programmed Death-1 in Indian Post Kala-azar Dermal Leishmaniasis. Sci Rep. el 1 de diciembre de 2019;9(1).
dc.relation.references69. da Silva ACC, de Oliveira Nascimento D, Ferreira JRM, Guimarães-Pinto K, Freire-de-Lima L, Morrot A, et al. Immune Responses in Leishmaniasis: An Overview. Trop Med Infect Dis [Internet]. mayo de 2022;7(4):54. Disponible en: https://doi.org/10.3390/tropicalmed7040054
dc.relation.references70. Martínez‐López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol [Internet]. mayo de 2018; Disponible en: https://doi.org/10.3389/fmicb.2018.00883
dc.relation.references71. Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, et al. Role of secondary metabolites in plant defense against pathogens. mayo de 2018; Disponibleen: https://www.sciencedirect.com/science/article/pii/S0882401018312786
dc.relation.references72. Jing L, Zhang X, Liu D, Yang Y, Xiong H, Dong G. ACK1 Contributes to the Pathogenesis of Inflammation and Autoimmunity by Promoting the Activation of TLR Signaling Pathways. Front Immunol [Internet]. mayo de 2022; Disponible en: https://doi.org/10.3389/fimmu.2022.864995
dc.relation.references73. Saha S, Basu M, Guin S, Gupta P, Mitterstiller AM, Weiss G, et al. Leishmania donovani Exploits Macrophage Heme Oxygenase-1 To Neutralize Oxidative Burst and TLR Signaling–Dependent Host Defense. mayo de 2019; Disponible en: https://journals.aai.org/jimmunol/article/202/3/827/107167/Leishmania-donovani-Exploits-Macrophage-Heme
dc.relation.references74. Shadab M, Ali N. Evasion of Host Defence byLeishmania donovani: Subversion of Signaling Pathways. Mol Biol Int [Internet]. mayo de 2011; Disponible en: https://doi.org/10.4061/2011/343961
dc.relation.references75. Domínguez DML, Delgado JLG, Caicedo RGG, Bandera NH. Diagnostic management of cutaneous and mucocutaneous leishmaniasis in ecuador-2020. Bol Malariol Salud Ambient. el 1 de julio de 2021;61(3):461–7.
dc.relation.references76. Loor-Vélez KI, Zapata-Cevallos SI, Sabando-Saltos III V, Ponce-Alencastro JI. Leishmaniasis cutánea: Revisión clínica, epidemiológica y terapéutica Cutaneous leishmaniasis: clinical, epidemiological and therapeutic review Leishmaniose tegumentar: revisão clínica, epidemiológica e terapéutica Ciencias de la Salud Artículo de Investigación. 2022;70(9):2021–36. Disponible en: http://polodelconocimiento.com/ojs/index.php/es
dc.relation.references77. Sandoval CM. Diagnóstico de la leishmaniasis: desde la microscopía a la epidemiología molecular [Internet]. 2021. Disponible en: http://www.who.int/leishmaniasis/burden/magnitude/burden_magnitude/
dc.relation.references78. CHOQUEHUANCA JLSLFBD. Estandarización y validacion de pruebas de elisa tipo indirecto para la determinación de los niveles de anticuerpos IgG e IgE antileishmania, como método complementario para el diagnóstico y seguimiento de la respuesta al tratamiento. EVISTA CON-CIENCIA. 2019;7:39–51.
dc.relation.references79. Patiño-Londoño SY, Salazar LM, Acero CT, Bernal IDV. Aspectos socioepidemiológicos y culturales de la leishmaniasis cutánea: Concepciones, actitudes y prácticas en las poblaciones de Tierralta y Valencia, (Córdoba, Colombia). Salud Colect. 2017;13(1):123–38.
dc.relation.references80. Edwin F, Alvarado P. Protocolo de vigilancia de Leishmaniasis Créditos MARTHA LUCÍA OSPINA MARTÍNEZ Directora General.
dc.relation.references81. Muñoz Morales D, Suarez Daza F, Franco Betancur O, Martinez Guevara D, Liscano Y. The Impact of Climatological Factors on the Incidence of Cutaneous Leishmaniasis (CL) in Colombian Municipalities from 2017 to 2019. Pathogens. el 30 de mayo de 2024;13(6):462.
dc.relation.references82. Herrera G, Teherán A, Pradilla I, Vera M, Ramírez JD. Geospatial-temporal distribution of Tegumentary Leishmaniasis in Colombia (2007–2016). PLoS Negl Trop Dis. el 6 de abril de 2018;12(4).
dc.relation.references83. Ching Chacón A, Villalobos Romero B, Jiménez Vargas MF. Leishmaniasis: evaluación clínica y diagnóstico. Revista Medica Sinergia. el 1 de abril de 2022;7(4):e781.
dc.relation.references84. Nasiri Z, Kalantari M, Mohammadi J, Daliri S, Mehrabani D, Azizi K. Cutaneous leishmaniasis in Iran: A review of epidemiological aspects, with emphasis on molecular findings. Vol. 29, Parasite. EDP Sciences; 2022.
dc.relation.references85. Benítez IR, Cacciali P, Maia-Elkhoury ANS, Muñoz M, Aragón MA. Analyses of evidence-based data for epidemiological characterization of leishmaniasis in Paraguay - I: Tegumentary leishmaniasis. Revista del Instituto de Medicina Tropical. el 30 de diciembre de 2020;15(2):29–44.
dc.relation.references86. Jalali H, Enayati AA, Fakhar M, Motevalli-Haghi F, Yazdani Charati J, Dehghan O, et al. Reemergence of zoonotic cutaneous leishmaniasis in an endemic focus, northeastern Iran. Parasite Epidemiol Control. el 1 de mayo de 2021;13.
dc.relation.references87. Rather S, Yaseen A, Shah FY, Wani M, Krishan K, Zirak S, et al. Pediatric Cutaneous Leishmaniasis: A Clinico-Epidemiological Study from North India. Indian Dermatol Online J. el 1 de noviembre de 2021;12(6):852–9.
dc.relation.references88. Fernanda Bejarano Ramírez D, Ciencias De La Salud Y Del Deporte Escuela De Posgrados F DE. CÓRDOBA, COLOMBIA 2016-2020 CLELIA ROSA CALAO RAMOS YINA FERNANDA BULA CORTINEZ PRESENTADO A LA FUNDACION UNIVERSITARIA DEL AREA ANDINA COMO REQUISITO PARA OPTAR POR EL TITULO DE ESPECIALISTA EN EPIDEMIOLOGIA. 2021.
dc.relation.references89. Reithinger R, Dujardin J, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infectious diseases/ The Lancet Infectious diseases [Internet]. mayo de 2007;7(9):581–96. Disponible en: https://doi.org/10.1016/s1473-3099(07)70209-8
dc.relation.references90. Maia-Elkhoury ANS, Lima DM, Salomón OD, Buzanovsky LP, Saboyá-Díaz MI, Valadas SYOB, et al. Interaction among environmental and socioeconomic determinants of risk for cutaneous leishmaniasis in Latin America. Revista Panamericana de Salud Publica/Pan American Journal of Public Health. 2021;45.
dc.relation.references91. Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, et al. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clinical Infectious Diseases. el 15 de diciembre de 2016;63(12):E202–64.
dc.relation.references92. Bacallar O, Faria D, Nascimento M, Cardoso TM, Gollob KJ, Dutra WO, et al. Interleukin 17 production among patients with American cutaneous leishmaniasis. Journal of Infectious Diseases. el 1 de julio de 2009;200(1):75–8.
dc.relation.references93. Polari LP, Carneiro PP, Macedo M, Machado PRL, Scott P, Carvalho EM, et al. Leishmania braziliensis infection enhances toll-like receptors 2 and 4 expression and triggers TNF-α and IL-10 production in human cutaneous leishmaniasis. Front Cell Infect Microbiol. 2019;9(MAY).
dc.relation.references94. Giraud E, Lestinova T, Derrick T, Martin O, Dillon RJ, Volf P, et al. Leishmania proteophosphoglycans regurgitated from infected sand flies accelerate dermal wound repair and exacerbate leishmaniasis via insulin-like growth factor 1-dependent signalling. PLoS Pathog. el 1 de enero de 2018;14(1).
dc.relation.references95. Olías‐molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial drug discovery and development: Time to reset the model? Microorganisms. el 1 de diciembre de 2021;9(12).
dc.relation.references96. Zúñiga PM. Dimensión sociocultural de la Leishmaniasis cutánea entre los cabécares de Chirripó de Turrialba, Costa Rica. 2012.
dc.relation.references97. Carrillo-Bonilla LM, Trujillo JJ, Álvarez-Salas L, Vélez-Bernal ID. Study of knowledge, attitudes, and practices related to leishmaniasis: Evidence of government neglect in the Colombian Darién. Cad Saude Publica. el 1 de octubre de 2014;30(10):2134–44.
dc.relation.references98. Leishmaniasis UBS Manápolis C, Preto da Eva R, Carlos Manuel Collado Hernández Vivian Pérez Núñez B. Clinical-Epidemiological Caracterization of the [Internet]. Disponible en: https://dcmq.com.mx/edici
dc.relation.references99. Andrade-Ochoa S. Enfermedades transmitidas por vectores y cambio climático [Internet]. Disponible en: https://www.redalyc.org/journal/674/67453654012/html/
dc.relation.references100. Thomson MC, Stanberry LR. Climate Change and Vectorborne Diseases. New England Journal of Medicine. el 24 de noviembre de 2022;387(21):1969–78.
dc.relation.references101. Alraey Y. Distribution and epidemiological features of cutaneous leishmaniasis in Asir province, Saudi Arabia, from 2011 to 2020. J Infect Public Health. el 1 de julio de 2022;15(7):757–65.
dc.relation.references102. Vélez ID, Jiménez A, Vásquez D, Robledo SM. Disseminated Cutaneous Leishmaniasis in Colombia: Report of 27 Cases. Case Rep Dermatol. el 1 de diciembre de 2015;7(3):275–86.
dc.relation.references103. Bettaieb J, Toumi A, Ghawar W, Chlif S, Nouira M, Belhaj-Hamida N, et al. A prospective cohort study of cutaneous leishmaniasis due to leishmania major: Dynamics of the leishmanin skin test and its predictive value for protection against infection and disease. PLoS Negl Trop Dis. el 1 de agosto de 2020;14(8):1–16.
dc.relation.references104. Weigle KA, Santrich C, Martinez F, Valderrama L, Saravia NG, Weigle KA, et al. Epidemiology of Cutaneous Leishmaniasis in Colombia: A Longitudinal Study of the Natural History, Prevalence, and Incidence of Infection and Clinical Manifestations. J Infect Dis [Internet]. el 1 de septiembre de 1993 [citado el 24 de junio de 2024];168(3):699–708. Disponible en: https://dx.doi.org/10.1093/infdis/168.3.699
dc.relation.references105. Vélez ID, Carrillo LM, López L, Rodríguez E, Robledo SM. An epidemic outbreak of canine cutaneous leishmaniasis in Colombia caused by Leishmania braziliensis and Leishmania panamensis. Am J Trop Med Hyg [Internet]. mayo de 2012 [citado el 24 de junio de 2024];86(5):807–11. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22556078/
dc.relation.references106. Manamperi NH, Oghumu S, Pathirana N, de Silva MVC, Abeyewickreme W, Satoskar AR, et al. In situ immunopathological changes in cutaneous leishmaniasis due to Leishmania donovani. Parasite Immunol. el 1 de marzo de 2017;39(3).
dc.relation.references107. Kariyawasam KKGDUL, Selvapandiyan A, Siriwardana HVYD, Dube A, Karunanayake P, Senanayake SASC, et al. Dermotropic Leishmania donovani in Sri Lanka: Visceralizing potential in clinical and preclinical studies. Parasitology. el 1 de abril de 2018;145(4):443–52.
dc.relation.references108. de Souza Lima LB, Menolli RA, Ayala TS. Immunomodulation of Macrophages May Benefit Cutaneous Leishmaniasis Outcome. Curr Trop Med Rep [Internet]. el 1 de diciembre de 2023 [citado el 26 de junio de 2024];10(4):281–94. Disponible en: https://link.springer.com/article/10.1007/s40475-023-00303-x
dc.relation.references109. de Souza Lima LB, Menolli RA, Ayala TS. Immunomodulation of Macrophages May Benefit Cutaneous Leishmaniasis Outcome. Curr Trop Med Rep [Internet]. el 1 de diciembre de 2023 [citado el 26 de junio de 2024];10(4):281–94. Disponible en: https://link.springer.com/article/10.1007/s40475-023-00303-x
dc.relation.references110. Almeida FS, Vanderley SER, Comberlang FC, de Andrade AG, Cavalcante-Silva LHA, dos Santos Silva E, et al. Leishmaniasis: Immune Cells Crosstalk in Macrophage Polarization. Trop Med Infect Dis [Internet]. mayo de 2023;8(5):276. Disponible en: https://doi.org/10.3390/tropicalmed8050276
dc.relation.references111. Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health [Internet]. el 17 de agosto de 2016 [citado el 24 de junio de 2024];110(6):247–60. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/20477724.2016.1232042
dc.relation.references112. Mesquita TGR de, Junior J do ES, Silva LDO da, Silva GAV, Araújo FJ de, Pinheiro SK, et al. Distinct plasma chemokines and cytokines signatures in Leishmania guyanensis-infected patients with cutaneous leishmaniasis. Front Immunol. el 25 de agosto de 2022;13.
dc.relation.references113. Sonderegger I, Iezzi G, Maier R, Schmitz N, Kurrer M, Köpf M. GM-CSF mediates autoimmunity by enhancing IL-6–dependent Th17 cell development and survival. The Journal of experimental medicine/ The journal of experimental medicine [Internet]. mayo de 2008; Disponible en: https://doi.org/10.1084/jem.20071119
dc.relation.references114. Galgamuwa LS, Sumanasena B, Iddawela D, Wickramasinghe S, Yatawara L. Assessment of intralesional cytokine profile of cutaneous leishmaniasis caused by Leishmania donovani in Sri Lanka. BMC Microbiol. el 14 de enero de 2019;19(1).
dc.relation.references115. Araujo Flores GV, Sandoval Pacheco CM, Tomokane TY, Sosa Ochoa W, Zúniga Valeriano C, Castro Gomes CM, et al. Evaluation of Regulatory Immune Response in Skin Lesions of Patients Affected by Nonulcerated or Atypical Cutaneous Leishmaniasis in Honduras, Central America. Mediators Inflamm. 2018;2018:3487591.
dc.relation.references116. Saraiva EM, Barbosa ADF, Santos FN, Borja-Cabrera GP, Nico D, Souza LOP, et al. The FML-vaccine (Leishmune®) against canine visceral leishmaniasis: A transmission blocking vaccine. Vaccine. el 20 de marzo de 2006;24(13):2423–31.
dc.relation.references117. Wijesooriya H, Samaranayake N, Karunaweera ND. Cytokine and phenotypic cell profiles in human cutaneous leishmaniasis caused by Leishmania donovani. PLoS One. el 1 de enero de 2023;18(1 January).
dc.relation.references118. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Vol. 5, Frontiers in Immunology. Frontiers Media S.A.; 2014.
dc.relation.references119. Mirzaei A, Maleki M, Masoumi E, Maspi N. A historical review of the role of cytokines involved in leishmaniasis. Cytokine. el 1 de septiembre de 2021;145:155297.
dc.relation.references120. Li S, Deng P, Wang M, Liu X, Jiang M, Jiang B, et al. IL-1α and IL-1β promote NOD2-induced immune responses by enhancing MAPK signaling. Laboratory investigation [Internet]. mayo de 2019; Disponible en: https://doi.org/10.1038/s41374-019-0252-7
dc.relation.references121. Charmoy M, Hurrell BP, Romano A, Lee SH, Ribeiro-Gomes F, Riteau N, et al. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice. Eur J Immunol. el 1 de abril de 2016;46(4):897–911.
dc.relation.references122. Inhibition of host cell signal transduction by Leishmania: observations relevant to the selective impairment of IL-12 responses. Disponible en: https://www.sciencedirect.com/science/article/pii/S1369527499800770
dc.relation.references123. Vargas WG, Úsuga GZ. Especies de Lutzomyia (Diptera: Psychodidae, Phlebotominae) en el área de influencia de la Central Hidroeléctrica Sogamoso (Santander, Colombia). Boletín Científico Centro de Museos Museo de Historia Natural/Boletin cientifico Museo de Historia Natural Universidad de Caldas [Internet]. mayo de 2022;26(1):121–33. Disponible en: https://doi.org/10.17151/bccm.2022.26.1.9
dc.relation.references124. European Centre for Disease Prevention and Control [Internet]. 2023. Phlebotomine sandfly maps.
dc.relation.references125. Leal YJG, Sarmiento DAC, Hoyos-López R. DIVERSIDAD DEL GÉNERO Lutzomyia (Diptera: Psychodidae) EN MUNICIPIOS DEL DEPARTAMENTO DE CÓRDOBA – COLOMBIA. Acta biológica colombiana/Acta Biológica Colombiana [Internet]. mayo de 2022;27(3). Disponible en: https://doi.org/10.15446/abc.v27n3.90684
dc.relation.references126. Sand fly General. mayo de 2023; Disponible en: https://campaign.elanco.com/en-us/vectors/sand-flies/general
dc.relation.references127. Benadine N. Indirect Effects of Climatic Environment on Animal Production. mayo de 2022; Disponible en: https://agric4profits.com/effects-climatic-environment-animal-production/
dc.relation.references128. Úsuga GEZ. Identificación Taxonómica y Distribución de Lutzomyia en el cañón del río Cauca, municipios del proyecto Hidroituango. mayo de 2022;
dc.relation.references129. Bejarano EE, Vivero RJ, Uribe S. First record of the sand fly Warileya (Hertigia) hertigi from Antioquia, Colombia. Biomedica. 2018;38(2):277–81.
dc.relation.references130. Shimabukuro PHF, De Andrade AJ, Galati EAB. Checklist of American sand flies (Diptera, psychodidae, phlebotominae): Genera, species, and their distribution. Zookeys. el 8 de marzo de 2017;2017(660):67–106.
dc.relation.references131. Moreno M, Ferro C, Rosales-Chilama M, Rubiano L, Delgado M, Cossio A, et al. First report of Warileya rotundipennis (Psychodidae: Phlebotominae) naturally infected with Leishmania (Viannia) in a focus of cutaneous leishmaniasis in Colombia. Acta Trop. el 1 de agosto de 2015;148:191–6.
dc.relation.references132. Esteban Zapata Ú suga G. Identificación Taxonómica y Di stribuci ón de Lutzomyia en el cañón del río Cauca, muni cipios del proyecto Hidroituango Taxonomic identification and distribution of Lutzomyia spp. in Cauca River Canyon municipalities of the Hidroituango project.
dc.relation.references133. Bejarano EE. LISTA ACTUALIZADA DE LOS PSICÓDIDOS (DIPTERA: PSYCHODIDAE) DE COLOMBIA. Vol. 45, Folia Entomol. Mex. 2006.
dc.relation.references134. Cera-Vallejo Y, Ardila MM, Herrera L. Phlebotomine (Diptera: Psychodidae) species and their blood meal sources in a new leishmaniasis focus in Los Montes de María, Bolívar, in northern Colombia. Biomédica [Internet]. 2024;44:248–57. Disponible en: https://doi.org/10.7705/biomedica.6876
dc.relation.references135. Toro-Cantillo A, Atencia-Pineda M, Hoyos-López R. Phlebotomine Sandflies (Diptera: Psychodidae) Collected in Rural Area from San Bernardo Del Viento (CóRdoba, Colombia). Rev MVZ Cordoba. el 1 de mayo de 2017;22:6044–9.
dc.relation.references136. Ferro C, López M, Fuya P, Lugo L, Cordovez JM, González C. Spatial distribution of sand fly vectors and eco-epidemiology of cutaneous leishmaniasis transmission in Colombia. PLoS One. el 2 de octubre de 2015;10(10).
dc.relation.references137. Estrada LG, Aponte OA, Bejarano EE. REGISTROS NUEVOS DE ESPECIES DE Lutzomyia (DIPTERA: PSYCHODIDAE) EN EL DEPARTAMENTO DE CESAR, COLOMBIA. Acta biológica colombiana/Acta Biológica Colombiana [Internet]. mayo de 2015;20(3):225–8. Disponible en: https://doi.org/10.15446/abc.v20n3.48853
dc.relation.references138. Salgado-Almario J, Hernández CA, Ovalle-Bracho C. Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica. 2019;39(2).
dc.relation.references139. dos Santos JC, Moreno M, Teufel LU, Chilibroste S, Keating ST, Groh L, et al. Leishmania braziliensis enhances monocyte responses to promote anti-tumor activity. Cell Rep. el 26 de marzo de 2024;43(3).
dc.relation.references140. Paiva MB, Ribeiro-Romão RP, Resende-Vieira L, Braga-Gomes T, Oliveira MP, Saavedra AF, et al. A Cytokine Network Balance Influences the Fate of Leishmania (Viannia) braziliensis Infection in a Cutaneous Leishmaniasis Hamster Model. Front Immunol. el 1 de julio de 2021;12.
dc.relation.references141. Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG, McMahon-Pratt D. Murine model of chronic L. (Viannia) panamensis infection: Role of IL-13 in disease. Eur J Immunol. octubre de 2010;40(10):2816–29.
dc.relation.references142. Restrepo CM, Llanes A, Herrera L, Ellis E, Lleonart R, Fernández PL. Gene expression patterns associated with leishmania panamensis infection in macrophages from BALB/c and C57BL/6 mice. PLoS Negl Trop Dis. el 1 de febrero de 2021;15(2):1–20.
dc.relation.references143. Osorio Y, Melby PC, Pirmez C, Chandrasekar B, Guarín N, Travi BL. The site of cutaneous infection influences the immunological response and clinical outcome of hamsters infected with Leishmania panamensis. Vol. 25, Parasite Immunology. 2003.
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://repositorio.unicordoba.edu.co
dc.subject.keywordsLeishmaniasis
dc.subject.keywordsEpidemiology
dc.subject.keywordsCytokines
dc.subject.keywordsEntomology
dc.subject.keywordsCórdoba
dc.subject.keywordsColombia
dc.subject.proposalLeishmaniasis
dc.subject.proposalEpidemiología
dc.subject.proposalCitoquinas
dc.subject.proposalEntomología
dc.subject.proposalCórdoba
dc.subject.proposalColombia
dc.titleAbordaje epidemiológico, clínico y entomológico de la Leishmaniasis en el departamento de Córdobaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Trabajo de grado final Yeiner Espitia, 2024.pdf
Tamaño:
2.5 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AUTORIZACIÓN.pdf
Tamaño:
258.82 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones