Publicación:
Evaluación de la toxicidad del ácido p-cumárico en Caenorhabditis elegans

dc.contributor.advisorOsorio Martínez, Jorge Armando
dc.contributor.authorCorrea Hernández, Nevis Luz
dc.contributor.juryAycardi Morinelly, Maria Paulina
dc.contributor.juryArias Rios, Jorge Enrique
dc.date.accessioned2025-04-30T20:14:26Z
dc.date.available2025-04-30T20:14:26Z
dc.date.issued2025-04-29
dc.description.abstractEl ácido p-cumárico es un ácido fenólico ampliamente presente en diversas plantas y productos vegetales, conocido por sus propiedades antioxidantes y antiinflamatorias (Khan et al., 2014; Thangavel et al., 2017). Este compuesto ha sido objeto de estudio en diversas disciplinas, desde la nutrición hasta la farmacología, aunque tiene propiedades antioxidantes y puede tener beneficios para la salud, su exceso en el cuerpo puede causar efectos negativos, como reacciones alérgicas o irritación gastrointestinal (Yang et al., 2020). También está relacionado con enfermedades como el cáncer, enfermedades cardiovasculares y trastornos neurodegenerativos; su presencia en alimentos y bebidas plantea desafíos en términos de estabilidad y efectos sensoriales. Aunque su potencial efecto en la salud humana ha sido investigado, los estudios sobre su toxicidad y efectos adversos en organismos vivos son limitados. Esto es especialmente relevante dado su uso en la industria alimentaria y farmacéutica, donde la exposición continua puede representar un riesgo potencial (Ferguson et al., 2019).spa
dc.description.degreelevelPregrado
dc.description.degreenameBiólogo(a)
dc.description.modalityPasantías
dc.description.tableofcontentsIntroducción
dc.description.tableofcontentsObjetivos
dc.description.tableofcontentsMarco Referencial
dc.description.tableofcontentsEstado del arte
dc.description.tableofcontentsMetodología
dc.description.tableofcontentsResultados y discusión
dc.description.tableofcontentsConclusión
dc.description.tableofcontentsBibliografía
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio Universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co/
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/9147
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programBiología
dc.relation.referencesAcosta-Coley I, Duran-Izquierdo M, Rodríguez-Cavallo E, Mercado-Camargo J, MéndezCuadro D, Olivero-Verbel J. (2019). Cuantificación de microplásticos a lo largo de la costa caribeña de Colombia: perfil de contaminación y efectos biológicos en Caenorhabditis elegans.
dc.relation.referencesAlamed J, Chaiyasit W, McClements DJ, Decker EA. (2009). Relaciones entre la eliminación de radicales libres y Actividad antioxidante en los alimentos. J Química agrícola y alimentaria.; 57:2969–76.
dc.relation.referencesArnold, M. C., Badireddy, A. R., Wiesner, M. R., Di Giulio, R. T., & Meyer, J. N. (2013). Cerium Oxide Nanoparticles are More Toxic than Equimolar Bulk Cerium Oxide in Caenorhabditis elegans. Archives of Environmental Contamination and Toxicology, 65(2), 224– 233. https://doi.org/10.1007/s00244-013-9905-5
dc.relation.referencesAvila, D. S., Benedetto, A., Au, C., Bornhorst, J., & Aschner, M. (2016). Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC Pharmacology and Toxicology, 17(1) https://doi.org/10.1186/s40360-016-0097-2
dc.relation.referencesBoyd, W. A., McBride, S. J., Rice, J. R., Snyder, D. W., & Freedman, J. H. (2010). A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicology and Applied Pharmacology, 245(2), 153–9.
dc.relation.referencesUniversidad de Cartagena - Breve Reseña Histórica. Disponible en: https://www.unicartagena.edu.co/universidad/historia
dc.relation.referencesBravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317-333. doi:10.1111/j.1753-4887.1998.tb01670.x
dc.relation.referencesBrenner, S. (1974). The Genetics of Caenorhabdztzs elegans. Genetics, 77, 71–94. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1213120/pdf/71.pdf
dc.relation.referencesCabreiro, F., Au, C., Leung, K. Y., Vergara-Irigaray, N., Cocheme, H. M., Noori, T., Gems, D. (2013). Metformin retards aging in C.elegans by altering microbial folate and methionine metabolism. Cell, 153(1), 228 - 239. doi:10.1016/j.cell.2013.02.035
dc.relation.referencesConsortium* CeS. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282(5396):2012-8.
dc.relation.referencesCorsi AK, Wightman B, Chalfie M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Genetics.;200(2):387-407.
dc.relation.referencesChen, Y., Lee, S.H. (2021). Assessment of the Subchronic Toxicity of Dietary p-Coumaric Acid in Rats. Food and Chemical Toxicology, 152, 112205.
dc.relation.referencesDevi, S., Jena, B., Patra, S., Singh, R., Chawla, S., Raina, S., Koijam, R., & Parida, S. (2022). Acute and sub-acute toxicity evaluation of dihydro-p-coumaric acid isolated from leaves of Tithonia diversifolia (Hemsl.) A. Gray in BALB/c mice. Frontiers in Pharmacology, 13, 1055765.
dc.relation.referencesDuran-Izquierdo M., Taboada-Alquerque M., Sierra-Marquez L., Alvarez-Ortega N., Stashenko E., Olivero-Verbel J. (2022). El extracto hidroalcohólico de Haematoxylum brasiletto protege a Caenorhabditis elegans de la toxicidad inducida por cadmio. BMC Complement. Med. Ther. 22 (1), 184. 10.1186/s12906-022-03654-6
dc.relation.referencesEwald CY, Castillo-Quan JI, Blackwell TK. (2018); Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling. Gerontology. 64(1):96-104.
dc.relation.referencesGao AW, uit de Bos J, Sterken MG, Kammenga JE, Smith RL, Houtkooper RH. (2018) Forward and reverse genetics approaches to uncover metabolic aging pathways in Caenorhabditis elegans. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease.;1864) (9):2697-706
dc.relation.referencesGarcía-Sancho, M. (2012). From the genetic to the computer program: the historicity of ‘data’ and ‘computation’ in the investigations on the nematode worm C. elegans (1963–1998).
dc.relation.referencesStudies in History and Philosophy of Science Part C. Studies in History and Philosophy of Biological and Biomedical Sciences, 43 (1): 16-28.
dc.relation.referencesGiles, A. C., & Rankin, C. H. (2009). Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiology of Learning and Memory, 92(2), 139– 146. https://doi.org/10.1016/J.NLM.2008.08.004
dc.relation.referencesGuven M, Aras AB, Akman T, Sen HM, Ozkan A, Salis O, (2015). Efecto neuroprotector del ácido p-cumárico en un modelo de isquemia cerebral embólica en ratas. Irán J Ciencias Médicas Básicas. 18:356–63.
dc.relation.referencesHa, S., Park, H., Son, W., Lee, SJV (2022). "Respuesta al choque térmico en Caenorhabditis elegans : una perspectiva molecular". Journal of Experimental Biology , 225(5), jeb243901.
dc.relation.referencesHarborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504. doi:10.1016/S0031-9422(00)00235-1
dc.relation.referencesHeiman, Max G. (2014). "Genética 12: 'Cómo hacer una prueba de detección de C. elegans'". www.cureffi.org. Consultado el 23 de diciembre de 2016.
dc.relation.referencesHudson EA, Dinh PA, Kokubun T, Simmonds MS, Gescher A. (2000). Caracterización de fenoles potencialmente quimiopreventivos en extractos de arroz integral que inhiben el crecimiento de células de cáncer de mama y colon humanos. Biomarcadores del epidemiol del cáncer Anterior. 9:1163–70.
dc.relation.referencesHunter, S. E., Gustafson, M. A., Margillo, K. M., Lee, S. A., Ryde, I. T., & Meyer, J. N. (2012). In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient Caenorhabditis elegans. DNA Repair, 11(11), 857–63. https://doi.org/10.1016/j.dnarep.2012.08.002.
dc.relation.referencesHunt PR, Camacho JA, Sprando RL. (2020). Caenorhabditis elegans para la toxicología predictiva. Curr. Opin. Toxicol. 23, 23–28. 10.1016/j.cotox.2020.02.004.
dc.relation.referencesJin SY, Li DQ, Lu S., Han LT, Liu DH, Huang Z., (2019). Ethanol extracts of Panax notoginseng increase lifespan and protect against oxidative stress in Caenorhabditis elegans through the insulin/glucose signaling pathway.IGF-1. J. Funct. Foods. 58, 218–226. 10.1016/j.jff.2019.04.031
dc.relation.referencesKhan, NS, Ahmad, A., Hadi, SM (2000). "Antioxidant and prooxidant properties of tannic acid and its binding to DNA". Chemical and Biological Interactions, 125(3), 177-189.
dc.relation.referencesKiliç I, Yeşiloğlu Y. (2013) Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim Acta A Mol Biomol Spectrosc.; 115:719–24, http://dx.doi.org/10.1016/j.saa.2013.06.110.
dc.relation.referencesKim, S, Nam, S, An, Y. (2012). Interaction of Silver Nanoparticles with Biological Surfaces of Caenorhabditis elegans. Ecotoxicology and Environmental Safety. 77 (1): 64-70.
dc.relation.referencesKim, S, Nam, S, An, Y. (2012). Interaction of Silver Nanoparticles with Biological Surfaces of Caenorhabditis elegans. Ecotoxicology and Environmental Safety. 77 (1): 64-70.
dc.relation.referencesLee, J., Li, X, Wu, D. (2020). Toxicity Assessment of p-Coumaric Acid in Experimental Animals. Journal of Toxicology and Environmental Health, Part A, 83(10), 385-396.
dc.relation.referencesMarkaki M., Tavernarakis N. (2020). Caenorhabditis elegans como sistema modelo para enfermedades humanas. Curr. Opin. Biotechnol. 63, 118–125. 10.1016/j.copbio.2019.12.011.
dc.relation.referencesMartins AC, Gubert P., Li J., Ke T., Nicolai MM, Moura AV, (2022). Caenorhabditis elegans como modelo para estudiar la neurotoxicidad inducida por manganeso. Biomoléculas 12 (10), 1396. 10.3390/biom12101396
dc.relation.referencesMeyer, J, Lord, C, Yang, X, Turner, E, Badireddy, A, Marinakos, S, Chilkoti, A, Wiesner, M, Auffan, M. (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic Toxicology. 100 (2): 140-150.
dc.relation.referencesNiu, L., Xu, R., Sun, Y., Yang, M., Guo, T., Zheng, Y., & Wang, J. Protective effect of exogenous p-coumaric acid against oxidative damage of Rhizopus nigricans. Scientific Reports, 7(1), 1-11.
dc.relation.referencesOlsen H, Aaby K, Borge GI. (2010). Characterization, quantification and annual variation of natural polyphenols in a common red kale variety (Brassica oleracea L. convar. acephala var. sabellica cv, 'Redbor'). J Química agrícola y alimentaria. 58:11346–54
dc.relation.referencesOsorio Martínez, J. A. (2023). POLVO URBANO: RESERVORIO DE ELEMENTOS POTENCIALMENTE TÓXICOS EN UNA CIUDAD INDUSTRIALIZADA DEL CARIBE COLOMBIANO, [Tesis doctoral]. Universidad de Cartagena.
dc.relation.referencesParada Ferro LK, Bustos AVG, Mora MRS. (2017). Caracterización fenotípica de la cepa N2 de Caenorhabditis elegans como un modelo en enfermedades neurodegenerativas. Nova, 15(28):69-78.
dc.relation.referencesPei K, Ou J, Huang J, Ou S. (2017). p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric. ;96(9):2952-2962. doi: 10.1002/jsfa.7578
dc.relation.referencesPoon, Vivian Y.; Klassen, Mateo P.; Shen, K. (2008). "UNC-6/netrina y su receptor UNC5 excluyen localmente los componentes presinápticos de las dendritas" . Naturaleza. 455 (7213): 669–73. Código Bib: 2008Natur.455.669P. doi: 10.1038/naturaleza07291.
dc.relation.referencesRaizen DM, Zimmerman JE, Maycock MH, Ta UD, You Y-j, Sundaram MV. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature. 451(7178):569-72.
dc.relation.referencesReid, P, Olejnik, N, Sprando, R. (2012). Toxicity ranking of heavy metals with screening methods using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat. Food and Chemical Toxicology. In Press.
dc.relation.referencesSilva-Ávila, D, Somlyai, G, Somlyai, I, Aschner, M. (2012). Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicology Letters 211 (3): 319-324.
dc.relation.referencesScalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306. doi:10.1080/1040869059096
dc.relation.referencesShaala, N. M. A., Zulkifli, S. Z., Ismail, A., Azmai, M. N. A., & Mohamat-Yusuff, F. (2015). Lethal Concentration 50 (LC50) and Effects of Diuron on Morphology of Brine Shrimp Artemia Salina (Branchiopoda: Anostraca) Nauplii. Procedia Environmental Sciences, 30, 279– 284. https://doi.org/10.1016/J.PROENV.2015.10.050
dc.relation.referencesShen, L, Xiao, J, Ye, H, Wang, D. Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environmental Toxicology and Pharmacology. (2009). 28 (1): 125132
dc.relation.referencesStadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., ... & Hayat, K. (2002). Acrylamide from Maillard reaction products. Nature, 419(6906), 449-450 Stanley Mainzen Príncipe P, Roy AJ. (2013). p-Coumaric acid attenuates apoptosis in rats with isoproterenol-induced myocardial infarction by inhibiting oxidative stress. Int J Cardiol; 168:3259–66, http:// dx.doi.org/10.1016/j.ijcard.2013.04.138.
dc.relation.referencesTejeda, L., & Olivero, J. (2016). Caenorhabditis elegans, a Biological Model for Research in Toxicology. In Reviews of environmental contamination and toxicology (Vol. 237, pp. 1–35). https://doi.org/10.1007/978-3-319-23573-8_1
dc.relation.referencesVauzour D, Crown G, Spencer JP. (2010). Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine-induced neurotoxicity. Biophysics of Arch Biochem. 501:106–11, http://dx.doi.org/10.1016/j.abb.2010.03.016.
dc.relation.referencesWang, D, Liu, P, Yang, Y, Shen, L. (2010). Formation of a combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 73 (6):1221-1230.
dc.relation.referencesWang, L., Yang, Y, Shen, L. (2020). Toxicity of p-Coumaric Acid to Aquatic Organisms. Environmental Toxicology and Chemistry, 39(7), 1453-1460. Williams, P. L., & Dusenbery, D. B. (1990). Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environmental Toxicology and Chemistry, 9(10), 1285–1290. https://doi.org/10.1002/etc.5620091007
dc.relation.referencesWilson, R. (1999). How the worm won: the C. elegans genome sequencing project. Trends in Genetics. 15: 51-58.
dc.relation.referencesXu J., Du P., Liu X., Xu X., Ge Y., Zhang C. (2023). La suplementación con curcumina aumenta la longevidad y la capacidad antioxidante en Caenorhabditis elegans. Portada. Pharmacol. 14, 1195490. 10.3389/fphar.2023.1195490.
dc.relation.referencesYang, Y., Zhang, L., Fan, X., Qin, C., Liu, J. (2020). "Toxic effects of p-coumaric acid: a review of recent evidence". Toxicology Reports, 7, 746-756. Yang, C., Zhang, L., & Zheng, Y. (2020). The toxic effects of p-coumaric acid on liver, kidney, and reproductive system of common carp (Cyprinus carpio L.). Environmental Science and Pollution Research International, 27(29), 36305-36314.
dc.relation.referencesYu, Z., Chen, X., Zhang, J., Wang, R., & Yin, D. (2013). Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicology and Environmental Safety, 88, 178–184. https://doi.org/10.1016/J.ECOENV.2012.11.012
dc.relation.referencesZhu A., Zheng F., Zhang W., Li L., Li Y., Hu H., (2022). Oxidación y antioxidación de productos naturales en el organismo modelo Caenorhabditis elegans. Antioxidantes (Basilea, Suiza. (2022). 11 (4), 705. 10.3390/antiox11040705
dc.relation.referencesZhang, H., Zhao, Y., Wu, Q. (2019). Impact of p-Coumaric Acid on Soil Microbial Communities. Soil Biology and Biochemistry, 138, 107592.
dc.relation.referencesZhuang, Z., Zhao, Y., Wu, Q., Li, M., Liu, H., Sun, L., … Wang, D. (2014). Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism. PLoS ONE, 9(1), e85482. https://doi.org/10.1371/journal.pone.0085482.
dc.rightsCopyright Universidad de Córdoba, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsp-Coumaric acideng
dc.subject.keywordsBioassayseng
dc.subject.keywordsBioassayseng
dc.subject.keywordsTransgenic strainseng
dc.subject.keywordsBiological modeleng
dc.subject.keywordsNematodeseng
dc.subject.proposalAcido p-cumáricospa
dc.subject.proposalBioensayosspa
dc.subject.proposalCepas transgénicasspa
dc.subject.proposalModelo biológicospa
dc.subject.proposalNematodosspa
dc.titleEvaluación de la toxicidad del ácido p-cumárico en Caenorhabditis elegans
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
CorreaHernándezNevis.pdf
Tamaño:
1.04 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
431.11 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: