Publicación:
Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios

dc.contributor.advisorOrtega Lopez, Cesar
dc.contributor.advisorCasiano Jimenez, Gladys Rocio
dc.contributor.authorMeléndez Martínez, Raúl Francisco
dc.contributor.editorEspitia Rico, Miguel
dc.contributor.juryAlcalá Varilla, Luis
dc.contributor.juryEspriella Vélez, Nicolás De la
dc.date.accessioned2024-01-30T23:18:15Z
dc.date.available2024-01-30T23:18:15Z
dc.date.issued2024-01-30
dc.description.abstractEn este trabajo, se hace un estudio de las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (densidad de estados (DOS), bandas y carga Bader) del sulfuro de galio (GaS) en su fase hexagonal (β-GaS), tanto en volumen como en la monocapa. Los cálculos se realizan utilizando la teoría del funcional de la densidad (DFT: del inglés Density Functional Theory) dentro de la aproximación del gradiente generalizado (GGA: del inglés Generalized Gradient Approximation) parametrizada por Perdew-Burke-Ernzerhof (PBE), junto con pseudopotenciales atómicos y una base de ondas planas implementada en el paquete QuantumESPRESSO. Para dar cuenta de las interacciones débiles de Van der Waals, se usan las correcciones de Grimme D2 y D3 (o GGA + D2 y GGA + D3)spa
dc.description.abstractIn this work, a study is carried out on the structural properties (lattice constant, bond length, etc.) and electronic properties (density of states (DOS), bands, and Bader charge) of gallium sulfide (GaS) in its hexagonal phase (β-GaS), both in bulk and monolayer. The calculations are performed using Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE), along with atomic pseudopotentials and a plane-wave basis set implemented in the QuantumESPRESSO package. To account for weak Van der Waals interactions, Grimme D2 and D3 corrections (or GGA+D2 and GGA+D3) are employed.eng
dc.description.degreelevelPregrado
dc.description.degreenameFísico(a)
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.notesEste trabajo se realizo usando el paquete computacional Quantum Espresso con los programas auxiliares de Xcrysden y Bader en los computadores proporcionados por el grupo GAMASCO.spa
dc.description.tableofcontentsIntroducción………………………………………………………………………… 4spa
dc.description.tableofcontentsMarco Teórico………………………………………………………………………. 5spa
dc.description.tableofcontentsEl problema de la estructura de la materia……………………..…………………….. 5spa
dc.description.tableofcontentsAproximación adiabática (Born-Oppenheimer) ……………….……………………. 6spa
dc.description.tableofcontentsEnfoques químicos……………………………………………..……………………. 6spa
dc.description.tableofcontentsTeoría del funcional de la densidad (DFT)………………………………………….. 7spa
dc.description.tableofcontentsAproximación densidad local (LDA)………………………....….…… ……………. 10spa
dc.description.tableofcontentsAproximación gradiente generalizado (GGA)……………………………………… 11spa
dc.description.tableofcontentsAproximación al pseudopotencial…………………………....………...……………. 12spa
dc.description.tableofcontentsConjuntos bases………………………………………………………..…………….. 13spa
dc.description.tableofcontentsDispersión………………………………………………….....………...……………. 15spa
dc.description.tableofcontentsCarga Bader………………………………………………...………….……………. 17spa
dc.description.tableofcontentsDetalles Computacionales y Condiciones de Cálculo………...…………………… 19spa
dc.description.tableofcontentsResultados y Análisis…………………………………………..…………………… 20spa
dc.description.tableofcontentsβ-GaS en volumen…………………………………………..………………………. 20spa
dc.description.tableofcontentsEstabilidad del sistema y parámetros estructurales…......……………………………. 21spa
dc.description.tableofcontentsPropiedades electrónicas del β-GaS en volumen……….……………………………. 24spa
dc.description.tableofcontentsβ-GaS en monocapa………………………………………..………………………... 27spa
dc.description.tableofcontentsEstabilidad del sistema y parámetros estructurales...…...……………………………. 28spa
dc.description.tableofcontentsPropiedades electrónicas del β-GaS en monocapa……..…………………………….. 32spa
dc.description.tableofcontentsConclusiones…………………………………………………..……………………... 35spa
dc.description.tableofcontentsReferencias…………………………………………………………………………... 36spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniveridad de Córdoba
dc.identifier.reponamehttps://repositorio.unicordoba.edu.co
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8156
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programFísica
dc.relation.references[1] A. Seral-Ascaso, S. Metel, A. Pokle, C. Backes, C. Zhang, H. Nerl, K. Rode, N. Berner, C. Downing, N. McEvoy, and E. Muñoz, Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes, Nanoscale 8 (2016), pp. 11698–11706.
dc.relation.references[2] X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H.H. Wang, W. Weng, L. Trahey, C.P. Canlas, and J.W. Elam, Gallium sulfide–single-walled carbon nanotube composites: Highperformance anodes for lithium-ion batteries, Adv. Funct. Mater. 24 (2014), pp. 5435–5442.
dc.relation.references[3] J. Molloy, M. Naftaly, Y.M. Andreev, K. Kokh, G. Lanskii, and V. Svetlichnyi, Solid solution GaSe 1- x S x crystals for THz applications, in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE, 2014, pp. 1–2
dc.relation.references[4] Z.M. Huang, J.G. Huang, Y.Q. Gao, Q.J. Yang, Y.M. Andreev, K. Kokh, G. Lanskii, A. Lisenko, and V. Svetlichnyi, Down-converters with doped solid solution crystals GaSe 1-x S x for THz spectrometry, in Fourth International Symposium on Laser Interaction with Matter, Vol. 10173. International Society for Optics and Photonics, 2017, p. 101731W
dc.relation.references[5] J. Luxa, Y. Wang, Z. Sofer, and M. Pumera, Layered post-transition-metal dichalcogenides (xm- m- x) and their properties, Chem. A Eur. J. 22 (2016), pp. 18810–18816.
dc.relation.references[6] D.T. Do, S.D. Mahanti, and C.W. Lai, Spin splitting in 2d monochalcogenide semiconductors, Sci. Rep. 5 (2015), p. 17044.
dc.relation.references[7] A. Kuhn, A. Chevy, and R. Chevalier, Refinement of the 2h gas β-type, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 (1976), pp. 983–984.
dc.relation.references[8] M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110 (2009), pp. 132–145.
dc.relation.references[9] A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, and S. Winters, Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts, Chem. Mater. 27 (2015), pp. 3483–3493.
dc.relation.references[10] S. Yang, Y. Li, X. Wang, N. Huo, J.B. Xia, S.S. Li, and J. Li, High performance few-layer gas photodetector and its unique photo-response in different gas environments, Nanoscale 6 (2014), pp. 2582–2587.
dc.relation.references[11] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao, Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates, Nano. Lett. 13 (2013), pp. 1649–1654.
dc.relation.references[12] W. Huang, L. Gan, H. Li, Y. Ma, and T. Zhai, 2d layered group iiia metal chalcogenides: Synthesis, properties and applications in electronics and optoelectronics, CrystEngComm 18 (2016), pp. 3968–3984.
dc.relation.references[13] K. Xu, L. Yin, Y. Huang, T.A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wang and J. He, Synthesis, properties and applications of 2d layered m iii x vi (m= ga, in; x= s, se, te) materials, Nanoscale 8 (2016), pp. 16802–16818.
dc.relation.references[14] S. Zhou, C.C. Liu, J. Zhao, and Y. Yao, Monolayer group-iii monochalcogenides by oxygen functionalization: A promising class of two-dimensional topological insulators, npj Quantum Materials3 (2018), pp. 16.
dc.relation.references[15] Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang, Tunable electronic and dielectric behavior of gas and gase monolayers, Phys. Chem. Chem. Phys. 15 (2013), pp. 7098–7105.
dc.relation.references[16] S. Wu, X. Dai, H. Yu, H. Fan, J. Hu, and W. Yao, Magnetisms in p-type monolayer gallium chalcogenides (gase, gas), arXiv preprint arXiv:1409.4733 (2014)
dc.relation.references[17] L. Huang, Z. Chen, and J. Li, Effects of strain on the band gap and effective mass in twodimensional monolayer gax (x= s, se, te), RSC. Adv. 5 (2015), pp. 5788–5794.
dc.relation.references[18] S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and electronic properties of monolayer group iii monochalcogenides, Phys. Rev. B 95 (2017), p. 115409.
dc.relation.references[19] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002.
dc.relation.references[20] Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124.
dc.relation.references[21] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339
dc.relation.references[22] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210– 211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2
dc.relation.references[23] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math 23 (1977), 22-116
dc.relation.references[24] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
dc.relation.references[25] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133.
dc.relation.references[26] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.
dc.relation.references[27] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865
dc.relation.references[28] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN
dc.relation.references[29] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.
dc.relation.references[30] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.
dc.relation.references[31] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.
dc.relation.references[32] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.
dc.relation.references[33] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620.
dc.relation.references[34] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods.
dc.relation.references[35] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.
dc.relation.references[36] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.
dc.relation.references[37] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30.
dc.relation.references[38] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487.
dc.relation.references[39] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006).
dc.relation.references[40] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15.
dc.relation.references[41] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201.
dc.relation.references[42] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.
dc.relation.references[43] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.
dc.relation.references[44] arXiv:0906.2569v2. J. Phys.: Condens. Matter 21, 395502 (2009) https://doi.org/10.48550/arXiv.0906.2569
dc.relation.references[45] Häglund, J., Fernandez Guillermet, A., Grimvall, G., & Korling, M. (1993). Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B, 48, 11685–11691.
dc.relation.references[46] D. M. Hoat (2019). Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philosophical Magazine, 99(6), 736-751.
dc.relation.references[47] H.F. Lin, L.M. Liu, and J. Zhao, Electronic and magnetic properties of transition metal decorated monolayer gas, Phys. E: Low-Dimens. Syst. Nanostruct. 101 (2018), pp. 131– 138.
dc.relation.references[48] Debbichi, L., Kim, H., Bjorkman, T., Eriksson, O., & Lebegue, S. (2016). First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers. Phys. Rev. B, 93, 245307.
dc.relation.references[49] Mounet, N., Gibertini, M., Schwaller, P. et al. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds. Nature Nanotech 13, 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
dc.relation.references[50] Bjorkman, T., Gulans, A., Krasheninnikov, A., & Nieminen, R. (2012). van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett., 108, 235502.
dc.relation.references[51] Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9), 3570–3582. doi:10.1021/ja01348a011
dc.relation.references[52] Li, W., Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 8, 3796–3802 (2015). https://doi.org/10.1007/s12274-015-0878-8
dc.relation.references[53] Pushkar Mishra, Deobrat Singh, Yogesh Sonvane, & Rajeev Ahuja (2020). Enhancement of hydrogen storage capacity on co-functionalized GaS monolayer under external electric field. International Journal of Hydrogen Energy, 45(22), 12384-12393.
dc.relation.references[54] Çınar, M. N., Sargın, G. Ö., Sevim, K., Özdamar, B., Kurt, G., & Sevinçli, H. (2021). Ballistic thermoelectric transport properties of two-dimensional group III-VI monolayers. Physical Review B, 103(16), 165422. doi:10.1103/PhysRevB.103.165422
dc.relation.references[55] Rodrigues Del Grande, Rafael & Menezes, Marcos & Capaz, Rodrigo. (2019). Layer breathing and shear modes in multilayer graphene: A DFT-vdW study.
dc.relation.references[56] Jung, J., Park, C.H., & Ihm, J. (2018). A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 18(5), 2759-2765.
dc.relation.references[57] Zhuang, H., & Hennig, R. (2013). Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts. The Journal of Physical Chemistry C, 117(40), 20440-20445.
dc.relation.references[58] An, Y., Hou, Y., Gong, S., Wu, R., Zhao, C., Wang, T., Jiao, Z., Wang, H., & Liu, W. (2020). Evaluating the exfoliation of two-dimensional materials with a Green's function surface model. Phys. Rev. B, 101, 075416.
dc.relation.references[59] Choudhary, K., Kalish, I., Beams, R. et al. High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Sci Rep 7, 5179 (2017). https://doi.org/10.1038/s41598-017-05402-0
dc.relation.references[60] Casiano Jiménez, G. (2019). Estudio de la interfaz grafeno/BN mediante DFT
dc.relation.references[61] Yael Gutiérrez, Dilson Juan, Stefano Dicorato, Gonzalo Santos, Matthias Duwe, Peter H. Thiesen, Maria M. Giangregorio, Fabio Palumbo, Kurt Hingerl, Christoph Cobet, Pablo GarcíaFernández, Javier Junquera, Fernando Moreno, and Maria Losurdo, "Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films," Opt. Express 30, 27609-27622 (2022).
dc.rightsCopyright Universidad de Córdoba, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://repositorio.unicordoba.edu.co
dc.subject.keywordsTwo-dimensional systemseng
dc.subject.keywordsHexagonal,eng
dc.subject.keywordsMonolayereng
dc.subject.keywordsDFTeng
dc.subject.keywordsAb initioeng
dc.subject.keywordsGallium sulfideeng
dc.subject.keywordsGaSeng
dc.subject.proposalSistemas bidimensionalesspa
dc.subject.proposalHexagonalspa
dc.subject.proposalMonocapaspa
dc.subject.proposalDFTspa
dc.subject.proposalPrimeros principiosspa
dc.subject.proposalSulfuro de galiospa
dc.subject.proposalGaSspa
dc.titleEnergéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principiosspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
MelendezMartinezRaul.pdf
Tamaño:
1.7 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
1.66 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: