Publicación: Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
dc.contributor.advisor | Ortega Lopez, Cesar | |
dc.contributor.advisor | Casiano Jimenez, Gladys Rocio | |
dc.contributor.author | Meléndez Martínez, Raúl Francisco | |
dc.contributor.editor | Espitia Rico, Miguel | |
dc.contributor.jury | Alcalá Varilla, Luis | |
dc.contributor.jury | Espriella Vélez, Nicolás De la | |
dc.date.accessioned | 2024-01-30T23:18:15Z | |
dc.date.available | 2024-01-30T23:18:15Z | |
dc.date.issued | 2024-01-30 | |
dc.description.abstract | En este trabajo, se hace un estudio de las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (densidad de estados (DOS), bandas y carga Bader) del sulfuro de galio (GaS) en su fase hexagonal (β-GaS), tanto en volumen como en la monocapa. Los cálculos se realizan utilizando la teoría del funcional de la densidad (DFT: del inglés Density Functional Theory) dentro de la aproximación del gradiente generalizado (GGA: del inglés Generalized Gradient Approximation) parametrizada por Perdew-Burke-Ernzerhof (PBE), junto con pseudopotenciales atómicos y una base de ondas planas implementada en el paquete QuantumESPRESSO. Para dar cuenta de las interacciones débiles de Van der Waals, se usan las correcciones de Grimme D2 y D3 (o GGA + D2 y GGA + D3) | spa |
dc.description.abstract | In this work, a study is carried out on the structural properties (lattice constant, bond length, etc.) and electronic properties (density of states (DOS), bands, and Bader charge) of gallium sulfide (GaS) in its hexagonal phase (β-GaS), both in bulk and monolayer. The calculations are performed using Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE), along with atomic pseudopotentials and a plane-wave basis set implemented in the QuantumESPRESSO package. To account for weak Van der Waals interactions, Grimme D2 and D3 corrections (or GGA+D2 and GGA+D3) are employed. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Físico(a) | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.notes | Este trabajo se realizo usando el paquete computacional Quantum Espresso con los programas auxiliares de Xcrysden y Bader en los computadores proporcionados por el grupo GAMASCO. | spa |
dc.description.tableofcontents | Introducción………………………………………………………………………… 4 | spa |
dc.description.tableofcontents | Marco Teórico………………………………………………………………………. 5 | spa |
dc.description.tableofcontents | El problema de la estructura de la materia……………………..…………………….. 5 | spa |
dc.description.tableofcontents | Aproximación adiabática (Born-Oppenheimer) ……………….……………………. 6 | spa |
dc.description.tableofcontents | Enfoques químicos……………………………………………..……………………. 6 | spa |
dc.description.tableofcontents | Teoría del funcional de la densidad (DFT)………………………………………….. 7 | spa |
dc.description.tableofcontents | Aproximación densidad local (LDA)………………………....….…… ……………. 10 | spa |
dc.description.tableofcontents | Aproximación gradiente generalizado (GGA)……………………………………… 11 | spa |
dc.description.tableofcontents | Aproximación al pseudopotencial…………………………....………...……………. 12 | spa |
dc.description.tableofcontents | Conjuntos bases………………………………………………………..…………….. 13 | spa |
dc.description.tableofcontents | Dispersión………………………………………………….....………...……………. 15 | spa |
dc.description.tableofcontents | Carga Bader………………………………………………...………….……………. 17 | spa |
dc.description.tableofcontents | Detalles Computacionales y Condiciones de Cálculo………...…………………… 19 | spa |
dc.description.tableofcontents | Resultados y Análisis…………………………………………..…………………… 20 | spa |
dc.description.tableofcontents | β-GaS en volumen…………………………………………..………………………. 20 | spa |
dc.description.tableofcontents | Estabilidad del sistema y parámetros estructurales…......……………………………. 21 | spa |
dc.description.tableofcontents | Propiedades electrónicas del β-GaS en volumen……….……………………………. 24 | spa |
dc.description.tableofcontents | β-GaS en monocapa………………………………………..………………………... 27 | spa |
dc.description.tableofcontents | Estabilidad del sistema y parámetros estructurales...…...……………………………. 28 | spa |
dc.description.tableofcontents | Propiedades electrónicas del β-GaS en monocapa……..…………………………….. 32 | spa |
dc.description.tableofcontents | Conclusiones…………………………………………………..……………………... 35 | spa |
dc.description.tableofcontents | Referencias…………………………………………………………………………... 36 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Univeridad de Córdoba | |
dc.identifier.reponame | https://repositorio.unicordoba.edu.co | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8156 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Física | |
dc.relation.references | [1] A. Seral-Ascaso, S. Metel, A. Pokle, C. Backes, C. Zhang, H. Nerl, K. Rode, N. Berner, C. Downing, N. McEvoy, and E. Muñoz, Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes, Nanoscale 8 (2016), pp. 11698–11706. | |
dc.relation.references | [2] X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H.H. Wang, W. Weng, L. Trahey, C.P. Canlas, and J.W. Elam, Gallium sulfide–single-walled carbon nanotube composites: Highperformance anodes for lithium-ion batteries, Adv. Funct. Mater. 24 (2014), pp. 5435–5442. | |
dc.relation.references | [3] J. Molloy, M. Naftaly, Y.M. Andreev, K. Kokh, G. Lanskii, and V. Svetlichnyi, Solid solution GaSe 1- x S x crystals for THz applications, in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE, 2014, pp. 1–2 | |
dc.relation.references | [4] Z.M. Huang, J.G. Huang, Y.Q. Gao, Q.J. Yang, Y.M. Andreev, K. Kokh, G. Lanskii, A. Lisenko, and V. Svetlichnyi, Down-converters with doped solid solution crystals GaSe 1-x S x for THz spectrometry, in Fourth International Symposium on Laser Interaction with Matter, Vol. 10173. International Society for Optics and Photonics, 2017, p. 101731W | |
dc.relation.references | [5] J. Luxa, Y. Wang, Z. Sofer, and M. Pumera, Layered post-transition-metal dichalcogenides (xm- m- x) and their properties, Chem. A Eur. J. 22 (2016), pp. 18810–18816. | |
dc.relation.references | [6] D.T. Do, S.D. Mahanti, and C.W. Lai, Spin splitting in 2d monochalcogenide semiconductors, Sci. Rep. 5 (2015), p. 17044. | |
dc.relation.references | [7] A. Kuhn, A. Chevy, and R. Chevalier, Refinement of the 2h gas β-type, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 (1976), pp. 983–984. | |
dc.relation.references | [8] M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110 (2009), pp. 132–145. | |
dc.relation.references | [9] A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, and S. Winters, Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts, Chem. Mater. 27 (2015), pp. 3483–3493. | |
dc.relation.references | [10] S. Yang, Y. Li, X. Wang, N. Huo, J.B. Xia, S.S. Li, and J. Li, High performance few-layer gas photodetector and its unique photo-response in different gas environments, Nanoscale 6 (2014), pp. 2582–2587. | |
dc.relation.references | [11] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao, Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates, Nano. Lett. 13 (2013), pp. 1649–1654. | |
dc.relation.references | [12] W. Huang, L. Gan, H. Li, Y. Ma, and T. Zhai, 2d layered group iiia metal chalcogenides: Synthesis, properties and applications in electronics and optoelectronics, CrystEngComm 18 (2016), pp. 3968–3984. | |
dc.relation.references | [13] K. Xu, L. Yin, Y. Huang, T.A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wang and J. He, Synthesis, properties and applications of 2d layered m iii x vi (m= ga, in; x= s, se, te) materials, Nanoscale 8 (2016), pp. 16802–16818. | |
dc.relation.references | [14] S. Zhou, C.C. Liu, J. Zhao, and Y. Yao, Monolayer group-iii monochalcogenides by oxygen functionalization: A promising class of two-dimensional topological insulators, npj Quantum Materials3 (2018), pp. 16. | |
dc.relation.references | [15] Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang, Tunable electronic and dielectric behavior of gas and gase monolayers, Phys. Chem. Chem. Phys. 15 (2013), pp. 7098–7105. | |
dc.relation.references | [16] S. Wu, X. Dai, H. Yu, H. Fan, J. Hu, and W. Yao, Magnetisms in p-type monolayer gallium chalcogenides (gase, gas), arXiv preprint arXiv:1409.4733 (2014) | |
dc.relation.references | [17] L. Huang, Z. Chen, and J. Li, Effects of strain on the band gap and effective mass in twodimensional monolayer gax (x= s, se, te), RSC. Adv. 5 (2015), pp. 5788–5794. | |
dc.relation.references | [18] S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and electronic properties of monolayer group iii monochalcogenides, Phys. Rev. B 95 (2017), p. 115409. | |
dc.relation.references | [19] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002. | |
dc.relation.references | [20] Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124. | |
dc.relation.references | [21] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339 | |
dc.relation.references | [22] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210– 211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2 | |
dc.relation.references | [23] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math 23 (1977), 22-116 | |
dc.relation.references | [24] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864. | |
dc.relation.references | [25] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133. | |
dc.relation.references | [26] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079. | |
dc.relation.references | [27] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865 | |
dc.relation.references | [28] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN | |
dc.relation.references | [29] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497. | |
dc.relation.references | [30] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895. | |
dc.relation.references | [31] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991. | |
dc.relation.references | [32] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993. | |
dc.relation.references | [33] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620. | |
dc.relation.references | [34] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods. | |
dc.relation.references | [35] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory. | |
dc.relation.references | [36] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. | |
dc.relation.references | [37] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30. | |
dc.relation.references | [38] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487. | |
dc.relation.references | [39] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006). | |
dc.relation.references | [40] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15. | |
dc.relation.references | [41] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201. | |
dc.relation.references | [42] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173. | |
dc.relation.references | [43] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506. | |
dc.relation.references | [44] arXiv:0906.2569v2. J. Phys.: Condens. Matter 21, 395502 (2009) https://doi.org/10.48550/arXiv.0906.2569 | |
dc.relation.references | [45] Häglund, J., Fernandez Guillermet, A., Grimvall, G., & Korling, M. (1993). Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B, 48, 11685–11691. | |
dc.relation.references | [46] D. M. Hoat (2019). Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philosophical Magazine, 99(6), 736-751. | |
dc.relation.references | [47] H.F. Lin, L.M. Liu, and J. Zhao, Electronic and magnetic properties of transition metal decorated monolayer gas, Phys. E: Low-Dimens. Syst. Nanostruct. 101 (2018), pp. 131– 138. | |
dc.relation.references | [48] Debbichi, L., Kim, H., Bjorkman, T., Eriksson, O., & Lebegue, S. (2016). First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers. Phys. Rev. B, 93, 245307. | |
dc.relation.references | [49] Mounet, N., Gibertini, M., Schwaller, P. et al. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds. Nature Nanotech 13, 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5 | |
dc.relation.references | [50] Bjorkman, T., Gulans, A., Krasheninnikov, A., & Nieminen, R. (2012). van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett., 108, 235502. | |
dc.relation.references | [51] Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9), 3570–3582. doi:10.1021/ja01348a011 | |
dc.relation.references | [52] Li, W., Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 8, 3796–3802 (2015). https://doi.org/10.1007/s12274-015-0878-8 | |
dc.relation.references | [53] Pushkar Mishra, Deobrat Singh, Yogesh Sonvane, & Rajeev Ahuja (2020). Enhancement of hydrogen storage capacity on co-functionalized GaS monolayer under external electric field. International Journal of Hydrogen Energy, 45(22), 12384-12393. | |
dc.relation.references | [54] Çınar, M. N., Sargın, G. Ö., Sevim, K., Özdamar, B., Kurt, G., & Sevinçli, H. (2021). Ballistic thermoelectric transport properties of two-dimensional group III-VI monolayers. Physical Review B, 103(16), 165422. doi:10.1103/PhysRevB.103.165422 | |
dc.relation.references | [55] Rodrigues Del Grande, Rafael & Menezes, Marcos & Capaz, Rodrigo. (2019). Layer breathing and shear modes in multilayer graphene: A DFT-vdW study. | |
dc.relation.references | [56] Jung, J., Park, C.H., & Ihm, J. (2018). A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 18(5), 2759-2765. | |
dc.relation.references | [57] Zhuang, H., & Hennig, R. (2013). Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts. The Journal of Physical Chemistry C, 117(40), 20440-20445. | |
dc.relation.references | [58] An, Y., Hou, Y., Gong, S., Wu, R., Zhao, C., Wang, T., Jiao, Z., Wang, H., & Liu, W. (2020). Evaluating the exfoliation of two-dimensional materials with a Green's function surface model. Phys. Rev. B, 101, 075416. | |
dc.relation.references | [59] Choudhary, K., Kalish, I., Beams, R. et al. High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Sci Rep 7, 5179 (2017). https://doi.org/10.1038/s41598-017-05402-0 | |
dc.relation.references | [60] Casiano Jiménez, G. (2019). Estudio de la interfaz grafeno/BN mediante DFT | |
dc.relation.references | [61] Yael Gutiérrez, Dilson Juan, Stefano Dicorato, Gonzalo Santos, Matthias Duwe, Peter H. Thiesen, Maria M. Giangregorio, Fabio Palumbo, Kurt Hingerl, Christoph Cobet, Pablo GarcíaFernández, Javier Junquera, Fernando Moreno, and Maria Losurdo, "Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films," Opt. Express 30, 27609-27622 (2022). | |
dc.rights | Copyright Universidad de Córdoba, 2024 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://repositorio.unicordoba.edu.co | |
dc.subject.keywords | Two-dimensional systems | eng |
dc.subject.keywords | Hexagonal, | eng |
dc.subject.keywords | Monolayer | eng |
dc.subject.keywords | DFT | eng |
dc.subject.keywords | Ab initio | eng |
dc.subject.keywords | Gallium sulfide | eng |
dc.subject.keywords | GaS | eng |
dc.subject.proposal | Sistemas bidimensionales | spa |
dc.subject.proposal | Hexagonal | spa |
dc.subject.proposal | Monocapa | spa |
dc.subject.proposal | DFT | spa |
dc.subject.proposal | Primeros principios | spa |
dc.subject.proposal | Sulfuro de galio | spa |
dc.subject.proposal | GaS | spa |
dc.title | Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: