Publicación:
Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida

dc.contributor.advisorEspitia Sanjuán, Luis Armandospa
dc.contributor.advisorColorado Lopera, Henry Alonso
dc.contributor.authorPaternina reyes, María José
dc.date.accessioned2023-02-25T19:10:28Z
dc.date.available2024-02-24
dc.date.available2023-02-25T19:10:28Z
dc.date.issued2023-02-22
dc.description.abstractIn this work, composite materials with polylactic acid matrix were made, varying the percentages of cashew shell particles 0.5%, 1% and 2% using the fused deposition molding (FDM) technique; The cashew shells were dried at 250ºC and crushed mechanically, using particles with a size smaller than 63 um to manufacture them. Polylactic acid and cashew shells were characterized by FTIR, scanning electron microscopy, thermogravimetric analysis, lignocellulosic analysis, and for the composite materials obtained, mechanical tests were carried out to obtain tensile and flexural mechanical properties according to ASTM D638 and ASTM D790 standards, In addition to the analyzes of the fractures obtained in each test. It was found that the shell has the presence of hemicellulose, cellulose and lignin, in addition to other minerals present in smaller quantities. The drying process at 250ºC managed to eliminate the anacardic acid present in the cashew shell. It was evidenced that the composite materials with 0.5% cashew shell particles had higher values of modulus of elasticity and tensile strength, however, in the yield stress, the 1% composite materials presented the highest properties. On the other hand, in bending, an increase in bending resistance was observed as the percentage of added particles increased.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEn este trabajo se realizaron materiales compuestos con matriz de ácido poliláctico variando los porcentajes de partículas de cáscara de marañón 0.5%, 1% y 2% mediante la técnica de moldeo por deposición fundida (FDM); las cáscaras de marañón fueron secadas a 250ºC y trituras de forma mecánica utilizando para la fabricación de estos mismo, las partículas con tamaño menor de 63 um. El ácido poliláctico y las cáscaras de marañón fueron caracterizados mediante FTIR, microscopia electrónica de barrido, análisis termogravimétrico, análisis lignocelulósicos y para los materiales compuestos obtenidos se desarrollaron ensayos mecánicos para obtener propiedades mecánicas a tensión y flexión acorde a las normas ASTM D638 y ASTM D790, además de los análisis de las fracturas obtenidas en cada ensayo. Se encontró que la cáscara tiene presencia de hemicelulosa, celulosa y lignina, además de otros minerales presentes en menor cantidad, El proceso de secado a 250ºC logró eliminar el ácido anacárdico presente en la cáscara de marañón. Se evidenció que los materiales compuestos con 0.5% de partículas de cáscaras de marañón tuvieron mayores valores de módulo de elasticidad y resistencia a tensión, no obstante, en el esfuerzo a fluencia los materiales compuestos de 1% presentaron las mayores propiedades. Por su parte en flexión se vio un incremento en la resistencia a flexión a medida que se aumentaba el porcentaje de partículas añadidas.spa
dc.description.tableofcontentsRESUMEN ...................................................................................................................... 7spa
dc.description.tableofcontentsABSTRACT..................................................................................................................... 8spa
dc.description.tableofcontents1. Capítulo I. Descripción del trabajo de investigación .......................................... 9spa
dc.description.tableofcontents1.1. INTRODUCCIÓN............................................................................................................9spa
dc.description.tableofcontents1.2. Objetivos. .......................................................................................................................11spa
dc.description.tableofcontents1.2.1. Objetivo general................................................................................................................ 11spa
dc.description.tableofcontents1.2.2. Objetivos específicos. ...................................................................................................... 11spa
dc.description.tableofcontents1.3. Estructura de la tesis....................................................................................................12spa
dc.description.tableofcontents1.4. Revisión de literatura....................................................................................................13spa
dc.description.tableofcontents1.4.1. Materiales compuestos.................................................................................................... 13spa
dc.description.tableofcontents1.4.2. Marañón (Anacardium Occidentale).............................................................................. 14spa
dc.description.tableofcontents1.4.3. Moldeo por deposición fundida (FDM) .......................................................................... 18spa
dc.description.tableofcontents1.5. Trabajos derivados .......................................................................................................22spa
dc.description.tableofcontents2. Capítulo II. DISEÑO DE EXPERIMENTOS............................................................23spa
dc.description.tableofcontents2.1. Materiales y métodos ...................................................................................................23spa
dc.description.tableofcontents2.1.1. Hipótesis............................................................................................................................. 23spa
dc.description.tableofcontents2.1.2. Universo ............................................................................................................................. 23spa
dc.description.tableofcontents2.1.3. Variables ............................................................................................................................ 23spa
dc.description.tableofcontents2.1.4. Recolección de datos....................................................................................................... 24spa
dc.description.tableofcontents3. Capítulo III: Caracterización de materiales .........................................................27spa
dc.description.tableofcontents3.1. Introducción ...................................................................................................................27spa
dc.description.tableofcontents3.2. Materiales y métodos. ..................................................................................................28spa
dc.description.tableofcontents3.3. Resultados.....................................................................................................................30spa
dc.description.tableofcontents3.4. Conclusiones .................................................................................................................40spa
dc.description.tableofcontents4. Capítulo IV. Obtención de filamentos..................................................................41spa
dc.description.tableofcontents4.1. Introducción. ..................................................................................................................41spa
dc.description.tableofcontents4.2. Materiales y métodos. ..................................................................................................42spa
dc.description.tableofcontents4.3. Resultados .....................................................................................................................43spa
dc.description.tableofcontents4.4. Conclusiones .................................................................................................................49spa
dc.description.tableofcontents5. Capítulo V. Obtención de Materiales compuestos .............................................50spa
dc.description.tableofcontents5.1. Introducción ...................................................................................................................50spa
dc.description.tableofcontents5.2. Materiales y métodos. ..................................................................................................51spa
dc.description.tableofcontents5.3. Resultados .....................................................................................................................54spa
dc.description.tableofcontents5.4. Conclusiones .................................................................................................................58spa
dc.description.tableofcontents6. Capítulo VI. Medición de propiedades mecánicas .............................................59spa
dc.description.tableofcontents6.1 Introducción ...................................................................................................................59spa
dc.description.tableofcontents6.2.1. Ensayo de tensión ................................................................................................................ 59spa
dc.description.tableofcontents6.2.2. Ensayos de flexión................................................................................................................ 60spa
dc.description.tableofcontents6.3. Resultados ........................................................................................................................61spa
dc.description.tableofcontents6.4. Conclusiones ....................................................................................................................77spa
dc.description.tableofcontents7. Conclusiones Generales y futuros trabajos .......................................................78spa
dc.description.tableofcontents7.1. Futuros trabajos. ...........................................................................................................78spa
dc.description.tableofcontents8. Bibliografía.............................................................................................................80spa
dc.description.tableofcontents9. Anexos ...................................................................................................................88spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7225
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ingeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsCashew shelleng
dc.subject.keywordsComposite materialeng
dc.subject.keywordsAgroindustrial wasteeng
dc.subject.keywordsMechanical propertieseng
dc.subject.keywordsFDMeng
dc.subject.proposalCascara de marañónspa
dc.subject.proposalMaterial compuestospa
dc.subject.proposalresiduo agroindustrialspa
dc.subject.proposalPropiedades mecánicasspa
dc.subject.proposalFDMspa
dc.titleCaracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundidaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesMeyers, M., & Chawla, K. (2009). Mechanical Behavior of materials. New York: Cambridge University Press.spa
dcterms.referencesWu, C.-S., & Tsou, C.-H. (2018). Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. Journal of Polymer Research, 26-44.spa
dcterms.referencesA. Porras, A. Maranon, & I.A. Ashcroft. (2016). Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part Bspa
dcterms.referencesA.A. Bamgbola, O.O. Adeyemi, O.O. Olubomehin, A.K. Akinlabi, O.S. Sojinu, & P.O. Iwuchukwu. (2020). Isolation and characterization of cellulose from cashew (Anacardium occidentale L.) nut shells. Current Research in Green and Sustainable Chemistryspa
dcterms.referencesA.K.M.Nayab-Ul-Hossain, Salma Katun Sela, Md.Abdul Hasib, Md.Mahbubul Alam, & Hridoy Roy Shetu. (2022). Preparation of graphene based natural fiber (Jute)-synthetic fiber (Glass) composite and evaluation of its multifunctional properties. Composites Part C: Open Access.spa
dcterms.referencesAdewale George Adeniyi, Damilola Victoria Onifade, Joshua O. Ighalo, & Akorede Samson Adeoye. (2019). A review of coir fiber reinforced polymer composites. Composites Part B.spa
dcterms.referencesAditi Sarker Ratna, Anik Ghosh, & Samrat Mukhopadhyay. (2022). Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Productionspa
dcterms.referencesAgronoticias;. (2021). UNAP: estudiantes elaboran compost artesanal con residuos orgánicos. Agronoticiasspa
dcterms.referencesAUTODESK. (2020). Obtenido de https://latinoamerica.autodesk.com/solutions/3d-printingspa
dcterms.referencesAycardi Salgado, L., & Tuiran Moreno, H. (2017). Diseño y construcción de una impresora 3D de gran formato con tecnologia de fabricación con filamento fundido tipo core XY basada en arduino. Montería, Córdoba, Colombia: Universidad de Córdoba.spa
dcterms.referencesBerninches Pintado, M., & Samartín Pulian, C. (Junio de 2017). DISEÑO, CÁLCULO Y FABRICACIÓN DE UNA ESTRUCTURA CENTRAL DE SATELITE EN MATERIAL COMPUESTO. Madrid, Españaspa
dcterms.referencesCabreya Anaya, O. J., & Acosta Machado, S. A. (2018). Evaluación del coeficiente de conductividad térmica y de propiedades mecánicas de un material compuesto con matriz de resina del poliester y fibra del mesocarpio del coco. Montería, Corboba, Colombiaspa
dcterms.referencesCardona, A. (4 de noviembre de 2017). Agronegocios. Obtenido de https://www.agronegocios.co/agricultura/maranon-es-uno-de-los-cultivos-con-mayor proyeccion-2623049spa
dcterms.referencesCerpa Ospino, J. (julio de 2019). CHARACTERIZATION OF A COMPOSITE MATERIAL, WITH A PLA MATRIX AND NATURAL FIBER OF MANICARIA SACCIFERA PALM AS REINFORCEMENT, MADE BY ADDITIVE MANUFACTURING. Bogota, Colombia: Department of Mechanical Engineering, Universidad de los Andesspa
dcterms.referencescontexto ganadero. (13 de julio de 2020). Contexto Ganadero una lectura rural de la realidad colombiana. Obtenido de https://www.contextoganadero.com/agricultura/maranon-una planta-con-mucho-potencialspa
dcterms.referencesDe la cuesta Herrera, J., Montoya Rojo, U., Betancurt Parra, S., & Alvarez Lopez, C. (2011). Effect of processing temperature on the mechanical properties of binderless fiberboards. Prospectspa
dcterms.referencesDipa, R., & Sarkar, B. (2000). Characterization of Alkali-Treated Jute Fibers for Physical and Mechanical Properties. Calcutta.spa
dcterms.referencesDisha Deb, & J.M. Jafferson. (2021). Natural fibers reinforced FDM 3D printing filaments. Materials Today: Proceedings.spa
dcterms.referencesDonald R. Askeland, & Wendelin J. Wright. (2016). Ciencia e ingeniería de materiales septima edición. Cengage Learningspa
dcterms.referencesDr.R.Rameshkumar. (2015). Comparative Study on Gasification of Cashew Nut Char and Casuarina Wood in a Down Draft Gasifier. Journal of Recent Research in Engineering and Technologyspa
dcterms.referencesEverton Jose da Silva, Maria Lidiane Marques, Fermin Garcia Velasco, Celso Fornari Junior, Francisco Martínez Luzardo, & Mauro Mitsuuchi Tashima. (2017). A new treatment for coconut fibers to improve the properties of cement-based composites – Combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies.spa
dcterms.referencesFan Zhang, Yunan Sun, Jianyuan Li, Hong Su, Zongsheng Zhu, Beibei Yan, . . . Guanyi Chen. (2022). Pyrolysis of 3D printed polylactic acid waste: A kinetic study via TG-FTIR/GC-MS analysis. Journal of Analytical and Applied Pyrolysis.spa
dcterms.referencesFernanda M.B. Coutinho, & Thais H.S. Costa. (1999). Performance of polypropylene–wood fiber composites. Polymer Testingspa
dcterms.referencesFormlabs. (2022). Obtenido de Guía sobre tolerancias, fiabilidad y precisión en la impresión 3D: https://formlabs.com/latam/blog/precision-fiabilidad-tolerancia-impresion-3d/spa
dcterms.referencesFurkan H. Isikgor, & Remzi Becer. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry.spa
dcterms.referencesFusades. (2021). Aplicaciones y productos extraídos del fruto de marañón. TEK-Report.spa
dcterms.referencesG. Faludi, G. Dora, K. Renner, J. Móczó, & B. Pukánszky. (2013). Improving interfacial adhesion in pla/wood biocomposites. Composites Science and Technologyspa
dcterms.referencesGbadeyan Oluwatoyin Joseph, Sarp Adali, Glen Bright, & Bruce Sithole. (2021). Nanofiller/Natural Fiber Filled Polymer Hybrid Composite: A Review. Journal of Engineering Science and Technology Reviewspa
dcterms.referencesGobernación de Cordoba.;. (2020). Plan departamental de extensión agropecuaria. Montería, Córdoba, Colombia.spa
dcterms.referencesGomez, J. (2009). DISEÑO DE UN MATERIAL COMPUESTO CON FIBRA NATURAL PARA SUSTITUÍR LA UTILIZACIÓN DE LA FIBRA DE VIDRIO. medellín, Antioquía, Colombia.spa
dcterms.referencesI Wayan Surata, Tjokorda Gde Tirta Nindhia, & Wayan Edo Yolanda. (2020). Grain size effect on tensile and flexural strength of particulate composites reinforced with Acropora waste. Materials Today: Proceedingsspa
dcterms.referencesIMPRESORAS 3D FDM. (2019). Obtenido de impresoras 3D.org.es: https://impresoras3d.org.es/impresoras-3d-fdm/spa
dcterms.referencesJaramillo Quinceno, N. (2013). Efecto del proceso de mercerización en el comportamiento de la fibra de hoja de piña (FHP) como refuerzo en una matriz de polipropileno. Medellin : Universidad Nacional de Colombia.spa
dcterms.referencesJorge Cesar Ferreira, Adriana Teixeira, & Pierre M. Esteves. (2012). A Polyether Glycol Derived from Cashew Nutshell as a Kinetic Inhibitor for Methane Hydrate Formation. Communicationspa
dcterms.referencesJun Wu, Xueyu Du, Zhibing Yin, Shuang Xu, Shuying Xu, & Yucang Zhang. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydrate Polymers.spa
dcterms.referencesK. Murugan, S. Venkatesh, R. Thirumalai, & S. Nandhakumar. (2021). Fabrication and investigations of kenaf fiber and banana fiber reinforced composite material. Materials Today: Proceedings.spa
dcterms.referencesKhairul Izwan Ismail, Tze Chuen Yap, & Rehan Ahmed. (2022). 3D-Printed Fiber-Reinforced Polymer Composites by Fused Deposition Modelling (FDM): Fiber Length and Fiber Implementation Techniques. Polymers.spa
dcterms.referencesL.Y. Mwaikambo, & M.P. Ansell. (2003). Hemp fibre reinforced cashew nut shell liquid composites. composites science and tecnologyspa
dcterms.referencesLaura P. Costa, Bruno F. Oechsler, Amanda L. T. Brandão, Letícia A. Galvão, & José Carlos Pinto. (2019). Copolymerization of Styrene and Cardanol from Cashew Nut Shell Liquid. Part I – Kinetic Modeling of Bulk Copolymerizations. Macromolecular Reaction Engineering.spa
dcterms.referencesLisa Klaai, Dalila Hammiche, Amar Boukerrou, Jannick Duchet-Rumeau, Jean-François Gerard, & Noamen Guermazi. (2022). On the use of prickly pear seed fbres as reinforcement in polylactic acid biocomposites. Emergent Materials.spa
dcterms.referencesLomelí Ramírez, M., Bolzon de. Muniz, G., Satyanarayana, K., Tanobe, V., & Iwakiri, S. (2010). Preparation and characterization of biodegradable composites based on brazilian cassava starch, corn starch and green coconut fibers. Materia.spa
dcterms.referencesM. Suriyaprakash, M. Nallusamy, K. Shri Ram Shanjai, N. Akash, & V. Rohith. (2022). Experimental investigation on mechanical properties of Ramie, Hemp fiber and coconut shell particle hybrid composites with reinforced epoxy resin. Materials Today: Proceedingsspa
dcterms.referencesMadison Bardot, & Michael D. Schulz. (2020). Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterialsspa
dcterms.referencesMaha M.Ibrahim, Alain Dufresne, Waleed K. El-Zawawy, & Foster A. Agblevor. (2010). Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers.spa
dcterms.referencesMahbub Jamil, & Mahbub Hasan. (2022). Effect of Chemical Treatment on the Properties of Banana Fiber Reinforced Polymer Composites. Encyclopedia of Materials: Plastics and Polymers.spa
dcterms.referencesMarvin Chávez-Sifontes. (2019). La biomasa: fuente alternativa de combustibles y compuestos químicos. Anales de químicaspa
dcterms.referencesMinisterio de Agricultura y desarrollo rural. (Febrero de 2019). "Un campo para el equidad", politica agropecuaria y de desarrollo rural. Colombia.spa
dcterms.referencesMoti Lal Rinawa, Prashant Chauhan, Amit Kumar Sharma, Hari Kumar Singh, Ankit, & M.S. Karuna. (2022). Water absorption studies of pineapple leaf fiber/nano rice husk powder reinforced epoxy matrix hybrid composites. Materials Today: Proceedings.spa
dcterms.referencesMuhammad YasirKhalid, Ans Al Rashid, Zia Ullah Arif, Waqas Ahmed, Hassan Arshad, & Asad Ali Zaidi. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineeringspa
dcterms.referencesMuthu Dineshkumar R, Meera Sheriffa Begum K.M.K.M, & Anand Ramanathan. (2020). Comprehensive characterization of cashew nutshell for biomass gasification. Materials Today: Proceedings.spa
dcterms.referencesN. Li, D. Qiao, S. Zhao, Q. Lin, B. Zhang, & F. Xie. (2021). 3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry.spa
dcterms.referencesNarendra Kumar Patel, Vaibhav Mishra, & Tushar Choudhary. (2022). Fabrication and characterization of epoxy composites reinforced with jute fibers and coconut fibers: A mechanical study. Materials today: Proceedings.spa
dcterms.referencesNithesh Naik, B. Shivamurthy, B.H.S. Thimappa, Amogh Govil, Pranshul Gupta, & Ritesh Patra. (2019). Enhancing the mechanical properties of jute fiber reinforced green composites varying cashew nut shell liquid composition and using mercerizing process. Materials Today: Proceedingsspa
dcterms.referencesNurul Hanan Taharuddin, Ridhwan Jumaidin, Muhd Ridzuan Mansor, Fahmi Asyadi Md Yusof, & Roziela Hanim Alamjuri. (2022). Characterization of Potential Cellulose from Hylocereus Polyrhizus (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties. Journal of Renewable Materials , 131.145spa
dcterms.referencesO.P. Balogun, J.A. Omotoyinbo, K.K. Alaneme, & A.A. Adediran. (2020). Physical and mechanical properties of Entada mannii particulates reinforced composite. Heliyon.spa
dcterms.referencesOumayma Oulidi, Asmae Nakkabi, Fatima Boukhlifi, Fatima Boukhlifi, Mohamed Fahim, Hassane Lgaz, . . . Noureddine Elmoualij. (2022). Peanut shell from agricultural wastes as a sustainable filler for polyamide biocomposites fabrication. Journal of King Saud University - Science.spa
dcterms.referencesP.Narayanasamy, P. Balasundar, S. Senthil, M.R. Sanjay, Suchart Siengchin, Anish Khan, & Abdullah M Asiri. (2020). Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules.spa
dcterms.referencesPankil Singla, Rajeev Mehta, Dusan Berek, & S. N. Upadhyay. (2012). Microwave Assisted Synthesis of Poly(lactic acid) and its Characterization using Size Exclusion Chromatography. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry.spa
dcterms.referencesPankil Singla, Rajeev Mehta, Dusan Berek, & S. N. Upadhyay. (2012). Microwave Assisted Synthesis of Poly(lactic acid) and its Characterization using Size Exclusion Chromatography. Macromolecular Science, Part A: Pure and Applied Chemistry.spa
dcterms.referencesPeñaranda Gonzalez, L., Montenegro Gómez, S., & Giraldo Abad, P. (2017). Exploitation of agroindustrial waste in Colombia. Revista de Investigación Agraria y Ambienta.spa
dcterms.referencesPerez-Davila , S., Gonzalez-Rodriguez, L., Lama, R., Lopez-Alvarez, M., Leit-Oleira, A., Serra, J., . . . Gonzalez, P. (2022). 3D-Printed PLA Medical Devices: Physicochemical Changes and Biological Response after Sterilisation Treatments. Polymers.spa
dcterms.referencesR Sundarakannan, V Arumugaprabu, V Manikanda, & S Vigneshwaran. (2019). Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Reseach Express.spa
dcterms.referencesR. Siva, T.N. Valarmathi, K. Palanikumar, & Antony V. Samrot. (2020). Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers.spa
dcterms.referencesRajeshkumar, G., Arvindh Seshadri, S., Devnami, G., Sanjay, M., Suchart Siengchin, Prakash Maran, J., . . . Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Productiospa
dcterms.referencesRestrepo Carmona, A. (2021). Development, fabrication and characterization of a composite made from the natural fiber Luffa cylindrica and Ethylene Vinyl Acetate copolymer (EVA). Medellin, Antioquia, Colombia: Universidad de Antioquia.spa
dcterms.referencesRestrepo Duran, J., & Tapia, C. (2019). efecto de los parámetros de construcción en la resistencia a la tensión, resistencia a flexión y tiempo de impresión de piezas fabricadas mediante manufactura aditiva en ácido poliláctico (pla) en la empresa 3d design. Montería, Cordoba, Colombiaspa
dcterms.referencesRevista Semana;. (24 de junio de 2021). En Boyacá, mujeres campesinas transforman calcetas de plátano en artesanías. Revista Semana.spa
dcterms.referencesRobin Zuluaga, Jean Luc Putaux, Javier Cruz, Juan Vélez, Iñaki Mondragon, & Piedad Gañán. (2009). Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers.spa
dcterms.referencesRoshan Mishra, Osama Bu Aamiri, Jagannadh Satyavolu, & Kunal Kate. (2022). Effect of process conditions on the filament diameter in single screw extrusion of natural fiber composite. Manufacturing Lettersspa
dcterms.referencesS. Hamat, M.R. Ishak, S.M. Sapuan, N. Yidris, M.S. Hussin, & M.S. Abd Manan. (2022). Influence of filament fabrication parameter on tensile strength and filament size of 3D printing PLA 3D850. Materials Today: Proceedings.spa
dcterms.referencesS. Kain, J. V. Ecker, A. Haider, M. Musso, & A. Petutschnigg. (2019). Efects of the infll pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites. European Journal of Wood and Wood Products.spa
dcterms.referencesSana Ait Laaziz, & El Mokhtar Hilali. (2019). Adhesion and Young’s Modulus Estimation for Chemically Treated Argan Nut Shell Particles Reinforced Poly-Lactic Acid Polymer. Journal of Macromolecular Science, Part B.spa
dcterms.referencesSarai Agustin-Salazar, Pierfrancesco Cerruti, Luis Ángel Medina-Juárez, Gennaro Scarinzi, Mario Malinconico, Herlinda Soto-Valdez, & Nohemi Gamez-Meza. (2018). Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macromolecules.spa
dcterms.referencesScott Landes, & Todd Letcher. (2020). Mechanical Strength of Bamboo Filled PLA Composite Material in Fused Filament Fabrication. J. Compos. Sci.spa
dcterms.referencesShi Jun Loi, Mavinakere Eshwaraiah Raghunandan, Susilawati, & Tan Boon Thong. (2018). Influence of Oil Palm Shell (OPS) on the Compaction Behavior and Strength Improvement of Soil-OPS Composites: A Pilot Study. Sustainable Solutions for Railways and Transportation Engineering.spa
dcterms.referencesSubhadeep Biswas, Touhidur Rahaman, Pooja Gupta, Rumela Mitra, Smritikana Dutta, Evanylla Kharlyngdoh, . . . Malay Das. (2022). Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass and Bioenergyspa
dcterms.referencesTaborda-Rios, J., Cañas-Mendoza, L., & Tristancho-Reyes , J. (2017). Comparative study of the mechanical properties of the polyester resin reinforced with bamboo fiber as the substitute material fiberglass. DYNAspa
dcterms.referencesTata Alfatah, Eka Marya Mistar, Maliya Syabriyana, & Muhammad Dani Supardan. (2021). Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. Alexandria Engineering Journal.spa
dcterms.referencesTejeda Rodriguez, L., Villanoba Ortiz, A., Tejada Tovar, C., & Tejeda Benitez , L. (2004). Acido Polilactico: Un plastico biodegradable a partir de almidon. Teknos.spa
dcterms.referencesThermo Fisher Scientific . (s.f.). Obtenido de basic organic functional group reference chart: www.thermoscientific.com/ftirspa
dcterms.referencesUNIVERSO 3D. (2018). Obtenido de http://www.u3d.com.co/explora/spa
dcterms.referencesVamsi Krishna Balla, Jogi Ganesh Dattatreya Tadimeti, Kunal H. Kate a, & Jagannadh Satyavolu. (2020). 3D printing of modified soybean hull fiber/polymer composites. Materials Chemistry and Physics.spa
dcterms.referencesWaleed Ahmed, Sidra Siraj, & Ali H. Al-Marzouqi. (2020). 3D Printing PLA Waste to Produce Ceramic Based Particulate Reinforced Composite Using Abundant Silica-Sand: Mechanical Properties Characterization. polymersspa
dcterms.referencesXiaoyu Bi Runzhou Huang. (2022). 3D printing of natural fiber and composites: A state-of-the-art review. Materials & Design.spa
dcterms.referencesY. Brucely, Manas Ranjan Sahoo, Shubhajit Halder, , M. Thiyagu, A Sathish Kumar, & Lukesh Parida. (2022). Investigating mechanical strength of luffa and pineapple fibre reinforced polymer composite. Materials Today: Proceedings.spa
dcterms.referencesYahya Hamzeh, Kamran Pourhooshyar Ziabari, Javad Torkaman, Alireza Ashori, & Mohammad Jafari. (2013). Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber–cement composites. Journal of Environmental Management.spa
dcterms.referencesYepes, S., Montoya Naranjo, L., & Orozco Sanchez, F. (2008). Valorización de residuos agroindustriales – frutas – en Medellín y el sur del valle del aburrá, Colombia. Revista Facultad Nacional de agronomia Medellin Vol. 61, 4422-4431.spa
dcterms.referencesZanin, T. (febrero de 2022). 10 beneficios del marañón o nuez de la India. Tua Saúde.spa
dcterms.referencesZhengjun Shi, Gaofeng Xu, Jia Deng, Mengyao Dong, Vignesh Murugadoss, Chuntai Liu, . . . Zhanhu Guo. (2019). Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chemistry Letters and Reviews.spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PaterninaReyesMariaJose.pdf
Tamaño:
5.23 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación repositorio documento para subir.pdf
Tamaño:
350.12 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones