Publicación: Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida
dc.contributor.advisor | Espitia Sanjuán, Luis Armando | spa |
dc.contributor.advisor | Colorado Lopera, Henry Alonso | |
dc.contributor.author | Paternina reyes, María José | |
dc.date.accessioned | 2023-02-25T19:10:28Z | |
dc.date.available | 2024-02-24 | |
dc.date.available | 2023-02-25T19:10:28Z | |
dc.date.issued | 2023-02-22 | |
dc.description.abstract | In this work, composite materials with polylactic acid matrix were made, varying the percentages of cashew shell particles 0.5%, 1% and 2% using the fused deposition molding (FDM) technique; The cashew shells were dried at 250ºC and crushed mechanically, using particles with a size smaller than 63 um to manufacture them. Polylactic acid and cashew shells were characterized by FTIR, scanning electron microscopy, thermogravimetric analysis, lignocellulosic analysis, and for the composite materials obtained, mechanical tests were carried out to obtain tensile and flexural mechanical properties according to ASTM D638 and ASTM D790 standards, In addition to the analyzes of the fractures obtained in each test. It was found that the shell has the presence of hemicellulose, cellulose and lignin, in addition to other minerals present in smaller quantities. The drying process at 250ºC managed to eliminate the anacardic acid present in the cashew shell. It was evidenced that the composite materials with 0.5% cashew shell particles had higher values of modulus of elasticity and tensile strength, however, in the yield stress, the 1% composite materials presented the highest properties. On the other hand, in bending, an increase in bending resistance was observed as the percentage of added particles increased. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Mecánica | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | En este trabajo se realizaron materiales compuestos con matriz de ácido poliláctico variando los porcentajes de partículas de cáscara de marañón 0.5%, 1% y 2% mediante la técnica de moldeo por deposición fundida (FDM); las cáscaras de marañón fueron secadas a 250ºC y trituras de forma mecánica utilizando para la fabricación de estos mismo, las partículas con tamaño menor de 63 um. El ácido poliláctico y las cáscaras de marañón fueron caracterizados mediante FTIR, microscopia electrónica de barrido, análisis termogravimétrico, análisis lignocelulósicos y para los materiales compuestos obtenidos se desarrollaron ensayos mecánicos para obtener propiedades mecánicas a tensión y flexión acorde a las normas ASTM D638 y ASTM D790, además de los análisis de las fracturas obtenidas en cada ensayo. Se encontró que la cáscara tiene presencia de hemicelulosa, celulosa y lignina, además de otros minerales presentes en menor cantidad, El proceso de secado a 250ºC logró eliminar el ácido anacárdico presente en la cáscara de marañón. Se evidenció que los materiales compuestos con 0.5% de partículas de cáscaras de marañón tuvieron mayores valores de módulo de elasticidad y resistencia a tensión, no obstante, en el esfuerzo a fluencia los materiales compuestos de 1% presentaron las mayores propiedades. Por su parte en flexión se vio un incremento en la resistencia a flexión a medida que se aumentaba el porcentaje de partículas añadidas. | spa |
dc.description.tableofcontents | RESUMEN ...................................................................................................................... 7 | spa |
dc.description.tableofcontents | ABSTRACT..................................................................................................................... 8 | spa |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación .......................................... 9 | spa |
dc.description.tableofcontents | 1.1. INTRODUCCIÓN............................................................................................................9 | spa |
dc.description.tableofcontents | 1.2. Objetivos. .......................................................................................................................11 | spa |
dc.description.tableofcontents | 1.2.1. Objetivo general................................................................................................................ 11 | spa |
dc.description.tableofcontents | 1.2.2. Objetivos específicos. ...................................................................................................... 11 | spa |
dc.description.tableofcontents | 1.3. Estructura de la tesis....................................................................................................12 | spa |
dc.description.tableofcontents | 1.4. Revisión de literatura....................................................................................................13 | spa |
dc.description.tableofcontents | 1.4.1. Materiales compuestos.................................................................................................... 13 | spa |
dc.description.tableofcontents | 1.4.2. Marañón (Anacardium Occidentale).............................................................................. 14 | spa |
dc.description.tableofcontents | 1.4.3. Moldeo por deposición fundida (FDM) .......................................................................... 18 | spa |
dc.description.tableofcontents | 1.5. Trabajos derivados .......................................................................................................22 | spa |
dc.description.tableofcontents | 2. Capítulo II. DISEÑO DE EXPERIMENTOS............................................................23 | spa |
dc.description.tableofcontents | 2.1. Materiales y métodos ...................................................................................................23 | spa |
dc.description.tableofcontents | 2.1.1. Hipótesis............................................................................................................................. 23 | spa |
dc.description.tableofcontents | 2.1.2. Universo ............................................................................................................................. 23 | spa |
dc.description.tableofcontents | 2.1.3. Variables ............................................................................................................................ 23 | spa |
dc.description.tableofcontents | 2.1.4. Recolección de datos....................................................................................................... 24 | spa |
dc.description.tableofcontents | 3. Capítulo III: Caracterización de materiales .........................................................27 | spa |
dc.description.tableofcontents | 3.1. Introducción ...................................................................................................................27 | spa |
dc.description.tableofcontents | 3.2. Materiales y métodos. ..................................................................................................28 | spa |
dc.description.tableofcontents | 3.3. Resultados.....................................................................................................................30 | spa |
dc.description.tableofcontents | 3.4. Conclusiones .................................................................................................................40 | spa |
dc.description.tableofcontents | 4. Capítulo IV. Obtención de filamentos..................................................................41 | spa |
dc.description.tableofcontents | 4.1. Introducción. ..................................................................................................................41 | spa |
dc.description.tableofcontents | 4.2. Materiales y métodos. ..................................................................................................42 | spa |
dc.description.tableofcontents | 4.3. Resultados .....................................................................................................................43 | spa |
dc.description.tableofcontents | 4.4. Conclusiones .................................................................................................................49 | spa |
dc.description.tableofcontents | 5. Capítulo V. Obtención de Materiales compuestos .............................................50 | spa |
dc.description.tableofcontents | 5.1. Introducción ...................................................................................................................50 | spa |
dc.description.tableofcontents | 5.2. Materiales y métodos. ..................................................................................................51 | spa |
dc.description.tableofcontents | 5.3. Resultados .....................................................................................................................54 | spa |
dc.description.tableofcontents | 5.4. Conclusiones .................................................................................................................58 | spa |
dc.description.tableofcontents | 6. Capítulo VI. Medición de propiedades mecánicas .............................................59 | spa |
dc.description.tableofcontents | 6.1 Introducción ...................................................................................................................59 | spa |
dc.description.tableofcontents | 6.2.1. Ensayo de tensión ................................................................................................................ 59 | spa |
dc.description.tableofcontents | 6.2.2. Ensayos de flexión................................................................................................................ 60 | spa |
dc.description.tableofcontents | 6.3. Resultados ........................................................................................................................61 | spa |
dc.description.tableofcontents | 6.4. Conclusiones ....................................................................................................................77 | spa |
dc.description.tableofcontents | 7. Conclusiones Generales y futuros trabajos .......................................................78 | spa |
dc.description.tableofcontents | 7.1. Futuros trabajos. ...........................................................................................................78 | spa |
dc.description.tableofcontents | 8. Bibliografía.............................................................................................................80 | spa |
dc.description.tableofcontents | 9. Anexos ...................................................................................................................88 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7225 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Cashew shell | eng |
dc.subject.keywords | Composite material | eng |
dc.subject.keywords | Agroindustrial waste | eng |
dc.subject.keywords | Mechanical properties | eng |
dc.subject.keywords | FDM | eng |
dc.subject.proposal | Cascara de marañón | spa |
dc.subject.proposal | Material compuesto | spa |
dc.subject.proposal | residuo agroindustrial | spa |
dc.subject.proposal | Propiedades mecánicas | spa |
dc.subject.proposal | FDM | spa |
dc.title | Caracterización química, física y mecánica de materiales compuestos con matriz de ácido poliláctico y refuerzo particulado de cáscaras de marañón elaborados a través de la técnica de moldeo por deposición fundida | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Meyers, M., & Chawla, K. (2009). Mechanical Behavior of materials. New York: Cambridge University Press. | spa |
dcterms.references | Wu, C.-S., & Tsou, C.-H. (2018). Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. Journal of Polymer Research, 26-44. | spa |
dcterms.references | A. Porras, A. Maranon, & I.A. Ashcroft. (2016). Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B | spa |
dcterms.references | A.A. Bamgbola, O.O. Adeyemi, O.O. Olubomehin, A.K. Akinlabi, O.S. Sojinu, & P.O. Iwuchukwu. (2020). Isolation and characterization of cellulose from cashew (Anacardium occidentale L.) nut shells. Current Research in Green and Sustainable Chemistry | spa |
dcterms.references | A.K.M.Nayab-Ul-Hossain, Salma Katun Sela, Md.Abdul Hasib, Md.Mahbubul Alam, & Hridoy Roy Shetu. (2022). Preparation of graphene based natural fiber (Jute)-synthetic fiber (Glass) composite and evaluation of its multifunctional properties. Composites Part C: Open Access. | spa |
dcterms.references | Adewale George Adeniyi, Damilola Victoria Onifade, Joshua O. Ighalo, & Akorede Samson Adeoye. (2019). A review of coir fiber reinforced polymer composites. Composites Part B. | spa |
dcterms.references | Aditi Sarker Ratna, Anik Ghosh, & Samrat Mukhopadhyay. (2022). Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Production | spa |
dcterms.references | Agronoticias;. (2021). UNAP: estudiantes elaboran compost artesanal con residuos orgánicos. Agronoticias | spa |
dcterms.references | AUTODESK. (2020). Obtenido de https://latinoamerica.autodesk.com/solutions/3d-printing | spa |
dcterms.references | Aycardi Salgado, L., & Tuiran Moreno, H. (2017). Diseño y construcción de una impresora 3D de gran formato con tecnologia de fabricación con filamento fundido tipo core XY basada en arduino. Montería, Córdoba, Colombia: Universidad de Córdoba. | spa |
dcterms.references | Berninches Pintado, M., & Samartín Pulian, C. (Junio de 2017). DISEÑO, CÁLCULO Y FABRICACIÓN DE UNA ESTRUCTURA CENTRAL DE SATELITE EN MATERIAL COMPUESTO. Madrid, España | spa |
dcterms.references | Cabreya Anaya, O. J., & Acosta Machado, S. A. (2018). Evaluación del coeficiente de conductividad térmica y de propiedades mecánicas de un material compuesto con matriz de resina del poliester y fibra del mesocarpio del coco. Montería, Corboba, Colombia | spa |
dcterms.references | Cardona, A. (4 de noviembre de 2017). Agronegocios. Obtenido de https://www.agronegocios.co/agricultura/maranon-es-uno-de-los-cultivos-con-mayor proyeccion-2623049 | spa |
dcterms.references | Cerpa Ospino, J. (julio de 2019). CHARACTERIZATION OF A COMPOSITE MATERIAL, WITH A PLA MATRIX AND NATURAL FIBER OF MANICARIA SACCIFERA PALM AS REINFORCEMENT, MADE BY ADDITIVE MANUFACTURING. Bogota, Colombia: Department of Mechanical Engineering, Universidad de los Andes | spa |
dcterms.references | contexto ganadero. (13 de julio de 2020). Contexto Ganadero una lectura rural de la realidad colombiana. Obtenido de https://www.contextoganadero.com/agricultura/maranon-una planta-con-mucho-potencial | spa |
dcterms.references | De la cuesta Herrera, J., Montoya Rojo, U., Betancurt Parra, S., & Alvarez Lopez, C. (2011). Effect of processing temperature on the mechanical properties of binderless fiberboards. Prospect | spa |
dcterms.references | Dipa, R., & Sarkar, B. (2000). Characterization of Alkali-Treated Jute Fibers for Physical and Mechanical Properties. Calcutta. | spa |
dcterms.references | Disha Deb, & J.M. Jafferson. (2021). Natural fibers reinforced FDM 3D printing filaments. Materials Today: Proceedings. | spa |
dcterms.references | Donald R. Askeland, & Wendelin J. Wright. (2016). Ciencia e ingeniería de materiales septima edición. Cengage Learning | spa |
dcterms.references | Dr.R.Rameshkumar. (2015). Comparative Study on Gasification of Cashew Nut Char and Casuarina Wood in a Down Draft Gasifier. Journal of Recent Research in Engineering and Technology | spa |
dcterms.references | Everton Jose da Silva, Maria Lidiane Marques, Fermin Garcia Velasco, Celso Fornari Junior, Francisco Martínez Luzardo, & Mauro Mitsuuchi Tashima. (2017). A new treatment for coconut fibers to improve the properties of cement-based composites – Combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies. | spa |
dcterms.references | Fan Zhang, Yunan Sun, Jianyuan Li, Hong Su, Zongsheng Zhu, Beibei Yan, . . . Guanyi Chen. (2022). Pyrolysis of 3D printed polylactic acid waste: A kinetic study via TG-FTIR/GC-MS analysis. Journal of Analytical and Applied Pyrolysis. | spa |
dcterms.references | Fernanda M.B. Coutinho, & Thais H.S. Costa. (1999). Performance of polypropylene–wood fiber composites. Polymer Testing | spa |
dcterms.references | Formlabs. (2022). Obtenido de Guía sobre tolerancias, fiabilidad y precisión en la impresión 3D: https://formlabs.com/latam/blog/precision-fiabilidad-tolerancia-impresion-3d/ | spa |
dcterms.references | Furkan H. Isikgor, & Remzi Becer. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry. | spa |
dcterms.references | Fusades. (2021). Aplicaciones y productos extraídos del fruto de marañón. TEK-Report. | spa |
dcterms.references | G. Faludi, G. Dora, K. Renner, J. Móczó, & B. Pukánszky. (2013). Improving interfacial adhesion in pla/wood biocomposites. Composites Science and Technology | spa |
dcterms.references | Gbadeyan Oluwatoyin Joseph, Sarp Adali, Glen Bright, & Bruce Sithole. (2021). Nanofiller/Natural Fiber Filled Polymer Hybrid Composite: A Review. Journal of Engineering Science and Technology Review | spa |
dcterms.references | Gobernación de Cordoba.;. (2020). Plan departamental de extensión agropecuaria. Montería, Córdoba, Colombia. | spa |
dcterms.references | Gomez, J. (2009). DISEÑO DE UN MATERIAL COMPUESTO CON FIBRA NATURAL PARA SUSTITUÍR LA UTILIZACIÓN DE LA FIBRA DE VIDRIO. medellín, Antioquía, Colombia. | spa |
dcterms.references | I Wayan Surata, Tjokorda Gde Tirta Nindhia, & Wayan Edo Yolanda. (2020). Grain size effect on tensile and flexural strength of particulate composites reinforced with Acropora waste. Materials Today: Proceedings | spa |
dcterms.references | IMPRESORAS 3D FDM. (2019). Obtenido de impresoras 3D.org.es: https://impresoras3d.org.es/impresoras-3d-fdm/ | spa |
dcterms.references | Jaramillo Quinceno, N. (2013). Efecto del proceso de mercerización en el comportamiento de la fibra de hoja de piña (FHP) como refuerzo en una matriz de polipropileno. Medellin : Universidad Nacional de Colombia. | spa |
dcterms.references | Jorge Cesar Ferreira, Adriana Teixeira, & Pierre M. Esteves. (2012). A Polyether Glycol Derived from Cashew Nutshell as a Kinetic Inhibitor for Methane Hydrate Formation. Communication | spa |
dcterms.references | Jun Wu, Xueyu Du, Zhibing Yin, Shuang Xu, Shuying Xu, & Yucang Zhang. (2019). Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydrate Polymers. | spa |
dcterms.references | K. Murugan, S. Venkatesh, R. Thirumalai, & S. Nandhakumar. (2021). Fabrication and investigations of kenaf fiber and banana fiber reinforced composite material. Materials Today: Proceedings. | spa |
dcterms.references | Khairul Izwan Ismail, Tze Chuen Yap, & Rehan Ahmed. (2022). 3D-Printed Fiber-Reinforced Polymer Composites by Fused Deposition Modelling (FDM): Fiber Length and Fiber Implementation Techniques. Polymers. | spa |
dcterms.references | L.Y. Mwaikambo, & M.P. Ansell. (2003). Hemp fibre reinforced cashew nut shell liquid composites. composites science and tecnology | spa |
dcterms.references | Laura P. Costa, Bruno F. Oechsler, Amanda L. T. Brandão, Letícia A. Galvão, & José Carlos Pinto. (2019). Copolymerization of Styrene and Cardanol from Cashew Nut Shell Liquid. Part I – Kinetic Modeling of Bulk Copolymerizations. Macromolecular Reaction Engineering. | spa |
dcterms.references | Lisa Klaai, Dalila Hammiche, Amar Boukerrou, Jannick Duchet-Rumeau, Jean-François Gerard, & Noamen Guermazi. (2022). On the use of prickly pear seed fbres as reinforcement in polylactic acid biocomposites. Emergent Materials. | spa |
dcterms.references | Lomelí Ramírez, M., Bolzon de. Muniz, G., Satyanarayana, K., Tanobe, V., & Iwakiri, S. (2010). Preparation and characterization of biodegradable composites based on brazilian cassava starch, corn starch and green coconut fibers. Materia. | spa |
dcterms.references | M. Suriyaprakash, M. Nallusamy, K. Shri Ram Shanjai, N. Akash, & V. Rohith. (2022). Experimental investigation on mechanical properties of Ramie, Hemp fiber and coconut shell particle hybrid composites with reinforced epoxy resin. Materials Today: Proceedings | spa |
dcterms.references | Madison Bardot, & Michael D. Schulz. (2020). Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterials | spa |
dcterms.references | Maha M.Ibrahim, Alain Dufresne, Waleed K. El-Zawawy, & Foster A. Agblevor. (2010). Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers. | spa |
dcterms.references | Mahbub Jamil, & Mahbub Hasan. (2022). Effect of Chemical Treatment on the Properties of Banana Fiber Reinforced Polymer Composites. Encyclopedia of Materials: Plastics and Polymers. | spa |
dcterms.references | Marvin Chávez-Sifontes. (2019). La biomasa: fuente alternativa de combustibles y compuestos químicos. Anales de química | spa |
dcterms.references | Ministerio de Agricultura y desarrollo rural. (Febrero de 2019). "Un campo para el equidad", politica agropecuaria y de desarrollo rural. Colombia. | spa |
dcterms.references | Moti Lal Rinawa, Prashant Chauhan, Amit Kumar Sharma, Hari Kumar Singh, Ankit, & M.S. Karuna. (2022). Water absorption studies of pineapple leaf fiber/nano rice husk powder reinforced epoxy matrix hybrid composites. Materials Today: Proceedings. | spa |
dcterms.references | Muhammad YasirKhalid, Ans Al Rashid, Zia Ullah Arif, Waqas Ahmed, Hassan Arshad, & Asad Ali Zaidi. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering | spa |
dcterms.references | Muthu Dineshkumar R, Meera Sheriffa Begum K.M.K.M, & Anand Ramanathan. (2020). Comprehensive characterization of cashew nutshell for biomass gasification. Materials Today: Proceedings. | spa |
dcterms.references | N. Li, D. Qiao, S. Zhao, Q. Lin, B. Zhang, & F. Xie. (2021). 3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry. | spa |
dcterms.references | Narendra Kumar Patel, Vaibhav Mishra, & Tushar Choudhary. (2022). Fabrication and characterization of epoxy composites reinforced with jute fibers and coconut fibers: A mechanical study. Materials today: Proceedings. | spa |
dcterms.references | Nithesh Naik, B. Shivamurthy, B.H.S. Thimappa, Amogh Govil, Pranshul Gupta, & Ritesh Patra. (2019). Enhancing the mechanical properties of jute fiber reinforced green composites varying cashew nut shell liquid composition and using mercerizing process. Materials Today: Proceedings | spa |
dcterms.references | Nurul Hanan Taharuddin, Ridhwan Jumaidin, Muhd Ridzuan Mansor, Fahmi Asyadi Md Yusof, & Roziela Hanim Alamjuri. (2022). Characterization of Potential Cellulose from Hylocereus Polyrhizus (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties. Journal of Renewable Materials , 131.145 | spa |
dcterms.references | O.P. Balogun, J.A. Omotoyinbo, K.K. Alaneme, & A.A. Adediran. (2020). Physical and mechanical properties of Entada mannii particulates reinforced composite. Heliyon. | spa |
dcterms.references | Oumayma Oulidi, Asmae Nakkabi, Fatima Boukhlifi, Fatima Boukhlifi, Mohamed Fahim, Hassane Lgaz, . . . Noureddine Elmoualij. (2022). Peanut shell from agricultural wastes as a sustainable filler for polyamide biocomposites fabrication. Journal of King Saud University - Science. | spa |
dcterms.references | P.Narayanasamy, P. Balasundar, S. Senthil, M.R. Sanjay, Suchart Siengchin, Anish Khan, & Abdullah M Asiri. (2020). Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules. | spa |
dcterms.references | Pankil Singla, Rajeev Mehta, Dusan Berek, & S. N. Upadhyay. (2012). Microwave Assisted Synthesis of Poly(lactic acid) and its Characterization using Size Exclusion Chromatography. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. | spa |
dcterms.references | Pankil Singla, Rajeev Mehta, Dusan Berek, & S. N. Upadhyay. (2012). Microwave Assisted Synthesis of Poly(lactic acid) and its Characterization using Size Exclusion Chromatography. Macromolecular Science, Part A: Pure and Applied Chemistry. | spa |
dcterms.references | Peñaranda Gonzalez, L., Montenegro Gómez, S., & Giraldo Abad, P. (2017). Exploitation of agroindustrial waste in Colombia. Revista de Investigación Agraria y Ambienta. | spa |
dcterms.references | Perez-Davila , S., Gonzalez-Rodriguez, L., Lama, R., Lopez-Alvarez, M., Leit-Oleira, A., Serra, J., . . . Gonzalez, P. (2022). 3D-Printed PLA Medical Devices: Physicochemical Changes and Biological Response after Sterilisation Treatments. Polymers. | spa |
dcterms.references | R Sundarakannan, V Arumugaprabu, V Manikanda, & S Vigneshwaran. (2019). Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Reseach Express. | spa |
dcterms.references | R. Siva, T.N. Valarmathi, K. Palanikumar, & Antony V. Samrot. (2020). Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers. | spa |
dcterms.references | Rajeshkumar, G., Arvindh Seshadri, S., Devnami, G., Sanjay, M., Suchart Siengchin, Prakash Maran, J., . . . Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Productio | spa |
dcterms.references | Restrepo Carmona, A. (2021). Development, fabrication and characterization of a composite made from the natural fiber Luffa cylindrica and Ethylene Vinyl Acetate copolymer (EVA). Medellin, Antioquia, Colombia: Universidad de Antioquia. | spa |
dcterms.references | Restrepo Duran, J., & Tapia, C. (2019). efecto de los parámetros de construcción en la resistencia a la tensión, resistencia a flexión y tiempo de impresión de piezas fabricadas mediante manufactura aditiva en ácido poliláctico (pla) en la empresa 3d design. Montería, Cordoba, Colombia | spa |
dcterms.references | Revista Semana;. (24 de junio de 2021). En Boyacá, mujeres campesinas transforman calcetas de plátano en artesanías. Revista Semana. | spa |
dcterms.references | Robin Zuluaga, Jean Luc Putaux, Javier Cruz, Juan Vélez, Iñaki Mondragon, & Piedad Gañán. (2009). Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers. | spa |
dcterms.references | Roshan Mishra, Osama Bu Aamiri, Jagannadh Satyavolu, & Kunal Kate. (2022). Effect of process conditions on the filament diameter in single screw extrusion of natural fiber composite. Manufacturing Letters | spa |
dcterms.references | S. Hamat, M.R. Ishak, S.M. Sapuan, N. Yidris, M.S. Hussin, & M.S. Abd Manan. (2022). Influence of filament fabrication parameter on tensile strength and filament size of 3D printing PLA 3D850. Materials Today: Proceedings. | spa |
dcterms.references | S. Kain, J. V. Ecker, A. Haider, M. Musso, & A. Petutschnigg. (2019). Efects of the infll pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites. European Journal of Wood and Wood Products. | spa |
dcterms.references | Sana Ait Laaziz, & El Mokhtar Hilali. (2019). Adhesion and Young’s Modulus Estimation for Chemically Treated Argan Nut Shell Particles Reinforced Poly-Lactic Acid Polymer. Journal of Macromolecular Science, Part B. | spa |
dcterms.references | Sarai Agustin-Salazar, Pierfrancesco Cerruti, Luis Ángel Medina-Juárez, Gennaro Scarinzi, Mario Malinconico, Herlinda Soto-Valdez, & Nohemi Gamez-Meza. (2018). Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macromolecules. | spa |
dcterms.references | Scott Landes, & Todd Letcher. (2020). Mechanical Strength of Bamboo Filled PLA Composite Material in Fused Filament Fabrication. J. Compos. Sci. | spa |
dcterms.references | Shi Jun Loi, Mavinakere Eshwaraiah Raghunandan, Susilawati, & Tan Boon Thong. (2018). Influence of Oil Palm Shell (OPS) on the Compaction Behavior and Strength Improvement of Soil-OPS Composites: A Pilot Study. Sustainable Solutions for Railways and Transportation Engineering. | spa |
dcterms.references | Subhadeep Biswas, Touhidur Rahaman, Pooja Gupta, Rumela Mitra, Smritikana Dutta, Evanylla Kharlyngdoh, . . . Malay Das. (2022). Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass and Bioenergy | spa |
dcterms.references | Taborda-Rios, J., Cañas-Mendoza, L., & Tristancho-Reyes , J. (2017). Comparative study of the mechanical properties of the polyester resin reinforced with bamboo fiber as the substitute material fiberglass. DYNA | spa |
dcterms.references | Tata Alfatah, Eka Marya Mistar, Maliya Syabriyana, & Muhammad Dani Supardan. (2021). Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. Alexandria Engineering Journal. | spa |
dcterms.references | Tejeda Rodriguez, L., Villanoba Ortiz, A., Tejada Tovar, C., & Tejeda Benitez , L. (2004). Acido Polilactico: Un plastico biodegradable a partir de almidon. Teknos. | spa |
dcterms.references | Thermo Fisher Scientific . (s.f.). Obtenido de basic organic functional group reference chart: www.thermoscientific.com/ftir | spa |
dcterms.references | UNIVERSO 3D. (2018). Obtenido de http://www.u3d.com.co/explora/ | spa |
dcterms.references | Vamsi Krishna Balla, Jogi Ganesh Dattatreya Tadimeti, Kunal H. Kate a, & Jagannadh Satyavolu. (2020). 3D printing of modified soybean hull fiber/polymer composites. Materials Chemistry and Physics. | spa |
dcterms.references | Waleed Ahmed, Sidra Siraj, & Ali H. Al-Marzouqi. (2020). 3D Printing PLA Waste to Produce Ceramic Based Particulate Reinforced Composite Using Abundant Silica-Sand: Mechanical Properties Characterization. polymers | spa |
dcterms.references | Xiaoyu Bi Runzhou Huang. (2022). 3D printing of natural fiber and composites: A state-of-the-art review. Materials & Design. | spa |
dcterms.references | Y. Brucely, Manas Ranjan Sahoo, Shubhajit Halder, , M. Thiyagu, A Sathish Kumar, & Lukesh Parida. (2022). Investigating mechanical strength of luffa and pineapple fibre reinforced polymer composite. Materials Today: Proceedings. | spa |
dcterms.references | Yahya Hamzeh, Kamran Pourhooshyar Ziabari, Javad Torkaman, Alireza Ashori, & Mohammad Jafari. (2013). Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber–cement composites. Journal of Environmental Management. | spa |
dcterms.references | Yepes, S., Montoya Naranjo, L., & Orozco Sanchez, F. (2008). Valorización de residuos agroindustriales – frutas – en Medellín y el sur del valle del aburrá, Colombia. Revista Facultad Nacional de agronomia Medellin Vol. 61, 4422-4431. | spa |
dcterms.references | Zanin, T. (febrero de 2022). 10 beneficios del marañón o nuez de la India. Tua Saúde. | spa |
dcterms.references | Zhengjun Shi, Gaofeng Xu, Jia Deng, Mengyao Dong, Vignesh Murugadoss, Chuntai Liu, . . . Zhanhu Guo. (2019). Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chemistry Letters and Reviews. | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- PaterninaReyesMariaJose.pdf
- Tamaño:
- 5.23 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- AutorizaciónPublicación repositorio documento para subir.pdf
- Tamaño:
- 350.12 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: