Publicación:
Evaluación de la contaminación y riesgo ecológico potencial por metales pesados en sedimentos de la Ciénaga Grande del Bajo Sinú, transecto Loríca – Purísima, departamento de Córdoba

dc.audience
dc.contributor.advisorPaternina Uribe, Roberth
dc.contributor.advisorPinedo Hernandez, José Joaquin
dc.contributor.authorVega Melendez Lorelys Del Carmen
dc.date.accessioned2024-06-11T16:18:39Z
dc.date.available2024-06-11T16:18:39Z
dc.date.issued2024-06-11
dc.description.abstractLos procesos sistemáticos de contaminación con metales pesados producto de las actividades antrópicas en los ecosistemas acuáticos de Colombia como la Ciénaga Grande de la cuenca baja del río Sinú, representan uno de los principales tensores que originan el deterioro de la salud y la estabilidad ambiental en diversas escalas. Obedeciendo a esta problemática, en la presente investigación se determinó el contenido de metales pesados (As, Cd, Hg y Pb) en los sedimentos de siete puntos del tramo fluvial entre los municipios de Lorica y Purísima, en el área de influencia de la Ciénaga Grande del bajo Sinú en el departamento de Córdoba, con el propósito de evaluar el grado de contaminación y el riesgo ecológico potencial derivados de este fenómeno. En este sentido, las concentraciones de Hg fueron cuantificadas por medio de descomposición térmica, amalgamación y espectrometría de absorción atómica (US EPA-7473), las concentraciones de As mediante espectrometría de absorción atómica con generación de hidruros (HGAAS SM-3114), en tanto que el Cd y el Pb fueron medidos a través de espectrofotometría absorción atómica (AAE) (US EPA-3051A). Así mismo, se ejecutó un análisis de componentes principales (PCA) y un análisis de cluster jerárquico (HCA), para determinar asociaciones entre la distribución espacial de los metales en los sedimentos de las estaciones y entre posibles fuentes comunes de emisión.spa
dc.description.abstractThe systematic processes of heavy metal pollution resulting from human activities in aquatic ecosystems in Colombia, such as the Ciénaga Grande in the lower Sinú River basin, are one of the main stressors causing environmental degradation and health deterioration at various scales. Addressing this issue, this study determined the heavy metal contents (As, Cd, Hg, and Pb) in the sediments at seven sites along the river stretch between the municipalities of Lorica and Purísima in the influence area of the Ciénaga Grande in the lower Sinú River basin, department of Córdoba, with the aim of evaluating the degree of contamination and potential ecological risk resulting from this phenomenon. For this purpose, Hg concentrations were quantified using thermal decomposition, amalgamation, and atomic absorption spectrometry (US EPA7473), As concentrations were measured using atomic absorption spectrometry with hydride generation (HGAAS SM-3114), while Cd and Pb were measured using atomic absorption spectrophotometry (AAE) (US EPA-3051A). In addition, a principal component analysis (PCA) and a hierarchical cluster analysis (HCA) were performed to determine associations between the spatial distribution of metals in the sediment samples and possible common emission sources.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Ambientales
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsTABLA DE CONTENIDOspa
dc.description.tableofcontents1. INTRODUCCIÓN..........12spa
dc.description.tableofcontents2. MARCO TEÓRICO........14spa
dc.description.tableofcontents2.1 Contaminación con As en sedimentos y ecosistemas acuáticos.........14spa
dc.description.tableofcontents2.2. Contaminación con Cd en sedimentos y ecosistemas acuáticos......15spa
dc.description.tableofcontents2.3 Contaminación con Hg en sedimentos y ecosistemas acuáticos.....16spa
dc.description.tableofcontents2.4 Contaminación con Pb en sedimentos y ecosistemas acuáticos......18spa
dc.description.tableofcontents2.5 Evaluación del grado de contaminación y el riesgo ecológico potencial con As, Cd, Hg y Pb en los sedimentos....19spa
dc.description.tableofcontents2.5.1. Factor de contaminación.......19spa
dc.description.tableofcontents2.5.2 Factor de enriquecimiento......20spa
dc.description.tableofcontents2.5.3 Índice de geoacumulación.......21spa
dc.description.tableofcontents2.6 Guías de calidad de sedimentos (SQG).......22spa
dc.description.tableofcontents2.6.1 Evaluación del Riesgo ecológico potencial........22spa
dc.description.tableofcontents2.6.2 Cociente ERM medio (m-ERM-Q)......23spa
dc.description.tableofcontents2.6.3 Índice de carga contaminante (PLI) ......24spa
dc.description.tableofcontents2.7 Biodisponibilidad (BIM - BIT)........24spa
dc.description.tableofcontents3. OBJETIVOS .......27spa
dc.description.tableofcontents3.1 Objetivo General......27spa
dc.description.tableofcontents3.2 Objetivos Específicos......27spa
dc.description.tableofcontents4. METODOLOGÍA........28spa
dc.description.tableofcontents4.1 Área de estudio.......28spa
dc.description.tableofcontents4.2 Recolección de muestras de sedimentos.......29spa
dc.description.tableofcontents4.3 Determinación de As, Cd, Hg y Pb en sedimentos y control de calidad......30spa
dc.description.tableofcontents4.3.1 Control de calidad de la determinación de As, Cd, Hg y Pb........31spa
dc.description.tableofcontents4.4 Evaluación del riesgo ecológico potencial y grado de contaminación con As, Cd, Hg y Pb en los sedimentos......31spa
dc.description.tableofcontents4.4.1 Evaluación del grado de contaminación.......31spa
dc.description.tableofcontents4.4.2 Evaluación del grado de contaminación........32spa
dc.description.tableofcontents4.4.3 Clasificación e interpretación del riesgo...........32spa
dc.description.tableofcontents4.4.4 Biodisponibilidad (BIM - BIT)................32spa
dc.description.tableofcontents4.5 Tratamiento estadístico.................32spa
dc.description.tableofcontents5. RESULTADOS y DISCUSIÓN..............34spa
dc.description.tableofcontents5.1 Evaluación del riesgo ecológico potencial, grado de contaminación y biodisponibilidad producto de la contaminación con As, Cd, Hg y Pb en los sedimentos 37spa
dc.description.tableofcontents5.2 Análisis estadísticos........47spa
dc.description.tableofcontents6. CONCLUSIONES........53spa
dc.description.tableofcontents7. RECOMENDACIONES........55spa
dc.description.tableofcontents8. REFERENCIAS BIBLIOGRÁFICAS........56spa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8307
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ciencias Ambientales
dc.relation.referencesAmador, C., Luna, J., Puello, E. (2017). Prácticas empleadas por fumigadores de plaguicidas del medio y bajo Sinú departamento de Córdoba. Temas Agrarios, (Vol. 22:(1), 29 - 40.
dc.relation.referencesAnderson, K., Hillwalker, W. (2008). Bioavailability. Encyclopedia Of Ecology, 348- 357. doi: 10.1016/b978-008045405-4.00375-x
dc.relation.referencesAlcaldía de Santa Cruz de Lorica. (2011). Informe de auditoría gubernamental con enfoque integral modalidad especial, línea ambiental “desarrollo sostenible del departamento de córdoba”.
dc.relation.referencesAlcaldía Municipal De Santa Cruz De Lorica - Córdoba. (2012) [online] Available at:<http://www.santacruzdelorica-cordoba.gov.co/municipio/nuestro- municipio>.
dc.relation.referencesAlcaldía de Purísima. (2011). Informe de auditoría gubernamental con enfoque integral modalidad especial, línea ambiental “Desarrollo Sostenible Del Departamento De Córdoba”.
dc.relation.referencesAlcaldía Municipal De Purisima – Cordoba, (2016). Plan De Desarrollo Municipal Del Municipio De Purisima – Cordoba para el período constitucional 2016 – 2019. ANLA: Autoridad Nacional de Licencias Ambientales, 2015. Diagnóstico Ambiental De Alternativas Para La Construcción De La Variante Lorica, Departamento De Córdoba.
dc.relation.referencesAliomrani, M., Sahraian, M. A., Shirkhanloo, H., Sharifzadeh, M., Khoshayand, M. R., & Ghahremani, M. H. (2016). Blood concentrations of cadmium and lead in multiple sclerosis patients from Iran. Iranian journal of pharmaceutical research: IJPR, 15(4), 825
dc.relation.referencesAlonso, D. L., Pérez, R., Okio, C. K. Y. A., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. In Journal of Environmental Management (Vol. 264, p. 110478). Elsevier BV. https://doi.org/10.1016/j.jenvman.2020.110478
dc.relation.referencesAntunes dos Santos, A., Ferrer, B., Marques Gonçalves, F., Tsatsakis, A., Renieri, E., Skalny, A., Farina, M., Rocha, J., & Aschner, M. (2018). Oxidative Stress in Methylmercury-Induced Cell Toxicity. In Toxics (Vol. 6, Issue 3, p. 47). MDPI AG. https://doi.org/10.3390/toxics6030047
dc.relation.referencesAssi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. In Veterinary World (Vol. 9, Issue 6, pp. 660–671). Veterinary World. https://doi.org/10.14202/vetworld.2016.660-671
dc.relation.referencesBarbieri, M. J. J. G. G. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys, 5(1), 1-4.
dc.relation.referencesBarral-Fraga, L., Barral, M. T., MacNeill, K. L., Martiñá-Prieto, D., Morin, S., Rodríguez-Castro, M. C., Tuulaikhuu, B.-A., & Guasch, H. (2020). Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 7, p. 2331). MDPI AG. https://doi.org/10.3390/ijerph17072331
dc.relation.referencesBowell, R. J., Alpers, C. N., Jamieson, H. E., Nordstrom, D. K., & Majzlan, J. (2014). The Environmental Geochemistry of Arsenic -- An Overview --. In Reviews in Mineralogy and Geochemistry (Vol. 79, Issue 1, pp. 1–16). Mineralogical Society of America. https://doi.org/10.2138/rmg.2014.79.1
dc.relation.referencesBoskabady, M., Marefati, N., Farkhondeh, T., Shakeri, F., Farshbaf, A., & Boskabady, M. H. (2018). The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. In Environment International (Vol. 120, pp. 404–420). Elsevier BV. https://doi.org/10.1016/j.envint.2018.08.013
dc.relation.referencesBravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., García, F. J., Moreno, M. M., Sánchez-Ormeño, M., & Higueras, P. (2017). Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). In Journal of Geochemical Exploration (Vol. 174, pp. 79–83). Elsevier BV. https://doi.org/10.1016/j.gexplo.2015.12.012
dc.relation.referencesBurgos Doria, R. (2015). Significado de valor cultural, natural y ambiental del humedal ciénaga grande del bajo sinú para los habitantes de la vereda caño viejo (lorica – córdoba – colombia). (Maestría), Universidad de Manizales, Manizales.
dc.relation.referencesBustamante, N., Danoucaras, N., McIntyre, N., Díaz-Martínez, J. C., & Restrepo-Baena, O. J. (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, (79), 163-172.
dc.relation.referencesCamargo, J. A. (2002). Contribution of Spanish–American silver mines (1570–1820) to the present high mercury concentrations in the global environment: a review. In Chemosphere (Vol. 48, Issue 1, pp. 51–57). Elsevier BV. https://doi.org/10.1016/s0045-6535(02)00047-4
dc.relation.referencesCastor, J. M. R., Portugal, L., Ferrer, L., Hinojosa-Reyes, L., Guzmán-Mar, J. L., Hernández-Ramírez, A., & Cerdà, V. (2016). An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry. In Food Chemistry (Vol. 204, pp. 475–482). Elsevier BV. https://doi.org/10.1016/j.foodchem.2016.02.149
dc.relation.referencesCastro González, M. I., Méndez Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26. doi:10.1016/j.etap.2008.06.001
dc.relation.referencesCastro, M., Almeida, J., Ferrer, J., Díaz, D. (2014). Indicadores de la calidad del agua: evolución y tendencias a nivel global. Ingeniería Solidaria, 10(17). doi:http://dx.doi.org/10.16925/in.v9i17.811
dc.relation.referencesCavoura, O., Brombach, C., Cortis, R., Davidson, C., Gajdosechova, Z., Keenan, H., y Krupp, E. (2017). Mercury alkylation in freshwater sediments from Scottish canals. Chemosphere, 183, 27-35. doi: 10.1016/j.chemosphere.2017.05.077 CMEE: Canadian sediment quality guidelines for the protection of aquatic life; bNOAA: National Oceanic and Atmospheric Administration, USA.
dc.relation.referencesChe-Abdullah, M. I., Md Sah, A. S. R., & Haris, H. (2020). Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. In Tropical Life Sciences Research (Vol. 31, Issue 3, pp. 109–125). Penerbit Universiti Sains Malaysia. https://doi.org/10.21315/tlsr2020.31.3.8
dc.relation.referencesChen, C. Y., Pickhardt, P. C., Xu, M. Q., & Folt, C. L. (2007). Mercury and Arsenic Bioaccumulation and Eutrophication in Baiyangdian Lake, China. In Water, Air, and Soil Pollution (Vol. 190, Issues 1–4, pp. 115–127). Springer Science and Business Media LLC. https://doi.org/10.1007/s11270-007-9585-8
dc.relation.referencesChen, C.-F., Lim, Y. C., Ju, Y.-R., Albarico, F. P. J. B., Chen, C.-W., & Dong, C.-D. (2023). A novel pollution index to assess the metal bioavailability and ecological risks in sediments. In Marine Pollution Bulletin (Vol. 191, p. 114926). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2023.114926
dc.relation.referencesCheng, H., & Hu, Y. (2010). Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. In Environmental Pollution (Vol. 158, Issue 5, pp. 1134–1146). Elsevier BV. https://doi.org/10.1016/j.envpol.2009.12.028
dc.relation.referencesCullen, J.T., Maldonado, M.T. (2013). Biogeochemistry of Cadmium and Its Release to the Environment. In: Sigel, A., Sigel, H., Sigel, R. (eds) Cadmium: From Toxicity to Essentiality. Metal Ions in Life Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5179-8_2
dc.relation.referencesCVS: Corporación autonoma regional de los valles del sinú y san jorge. (2015). Plan departamental de adaptación al cambio climático para el departamento de Córdoba 2016 - 2027.
dc.relation.referencesCVS:Corporación Autonoma Regional de los Valles del Sinú y San Jorge . (2017). Actualización del plan general de ordenación forestal del departamento de Córdoba.
dc.relation.referencesCVS: Corporación Autonoma Regional de los Valles de Sinú y SanJorge (CVS). (2017). Solicitud de sustracción del Distrito Regional de Manejo Integrado, del complejo Cenagoso del Bajo Sinú (pp. 70-71).
dc.relation.referencesCorrea, P., Vélez, J., Smith, R., Vélez, A., Barrientos, A., y Gómez, J. (2006). Metodología de balance híddrico y de sedimentos comoherramienta de apoyo para la gestión integral del complejo lagunar del bajo Sinú. Avances en recursos hidráulicos, 14.
dc.relation.referencesCosta, P.G. et al. (2022) ‘Temporal and spatial variations in metals and arsenic contamination in water, sediment and biota of freshwater, marine and coastal environments after the Fundão Dam Failure’, Science of The Total Environment, 806, p. 151340. doi:10.1016/j.scitotenv.2021.151340.
dc.relation.referencesChen, M., Ding, S., Lin, J., Fu, Z., Tang, W., y Fan, X. et al. (2019). Seasonal changes of lead mobility in sediments in algae- and macrophyte-dominated zones of the lake. Science Of The Total Environment, 660, 484-492. doi: 10.1016/j.scitotenv.2019.01.010
dc.relation.referencesChen, L., Zhou, S., Shi, Y., Wang, C., Li, B., Li, Y., y Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science Of The Total Environment, 615, 141-149. doi: 10.1016/j.scitotenv.2017.09.230
dc.relation.referencesCruz-Esquivel, Á., Viloria-Rivas, J., & Marrugo-Negrete, J. (2017). Genetic damage in Rhinella marina populations in habitats affected by agriculture in the middle region of the Sinú River, Colombia. In Environmental Science and Pollution Research (Vol. 24, Issue 35, pp. 27392–27401). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-017-0134-8
dc.relation.referencesDai, L., Wang, L., Li, L., Liang, T., Zhang, Y., Ma, C., y Xing, B. (2018). Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Science Of The Total Environment, 621, 1433-1444. doi: 10.1016/j.scitotenv.2017.10.085.
dc.relation.referencesDeng, R., Huang, D., Xue, W., Lei, L., Chen, S., y Zhou, C. et al. (2020). Eco-friendly remediation for lead-contaminated riverine sediment by sodium lignin sulfonate stabilized nano-chlorapatite. Chemical Engineering Journal, 397, 125396. doi: 10.1016/j.cej.2020.125396
dc.relation.referencesDinu, C., Vasile, G.-G., Buleandra, M., Popa, D. E., Gheorghe, S., & Ungureanu, E.-M. (2020). Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. In Journal of Soils and Sediments (Vol. 20, Issue 4, pp. 2141–2154). Springer Science and Business Media LLC. https://doi.org/10.1007/s11368-019-02550-w
dc.relation.referencesDong, C.-D., Chen, C.-W., & Chen, C.-F. (2013). Distribution, enrichment, accumulation and potential ecological risks of mercury in the sediments of Kaohsiung Harbor, Taiwan. In Chemistry and Ecology (Vol. 29, Issue 8, pp. 693–708). Informa UK Limited. https://doi.org/10.1080/02757540.2013.817564
dc.relation.referencesDu, S., Zhou, Y., & Zhang, L. (2021). The potential of arsenic biomagnification in marine ecosystems: A systematic investigation in Daya Bay in China. In Science of The Total Environment (Vol. 773, p. 145068). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2021.145068
dc.relation.referencesDuarte-Restrepo, E., Noguera-Oviedo, K., Butryn, D., Wallace, J. S., Aga, D. S., & Jaramillo-Colorado, B. E. (2020). Spatial distribution of pesticides, organochlorine compounds, PBDEs, and metals in surface marine sediments from Cartagena Bay, Colombia. In Environmental Science and Pollution Research (Vol. 28, Issue 12, pp. 14632–14653). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-020-11504-6
dc.relation.referencesDuodu, G., Goonetilleke, A., Ayoko, G. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin, 117(1-2), 523- 531. doi: 10.1016/j.marpolbul.2017.02.017
dc.relation.referencesDung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. In Reviews in Environmental Science and Bio/Technology (Vol. 12, Issue 4, pp. 335–353). Springer Science and Business Media LLC. https://doi.org/10.1007/s11157-013-9315-1
dc.relation.referencesEl-Hassanin, A. S., Samak, M. R., Abdel-Rahman, G. N., Abu-Sree, Y. H., & Saleh, E. M. (2020). Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. In Toxicology Reports (Vol. 7, pp. 10–15). Elsevier BV. https://doi.org/10.1016/j.toxrep.2019.11.018
dc.relation.referencesEl Zrelli, R., Yacoubi, L., Wakkaf, T., Castet, S., Grégoire, M., Mansour, L., Courjault-Radé, P., & Rabaoui, L. (2021). Surface sediment enrichment with trace metals in a heavily human-impacted lagoon (Bizerte Lagoon, Southern Mediterranean Sea): Spatial distribution, ecological risk assessment, and implications for environmental protection. In Marine Pollution Bulletin (Vol. 169, p. 112512). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2021.112512
dc.relation.referencesEspitia, N. (2014). Determinación de metales pesados en sedimentos superficiales en cuerpos de agua del canal del dique en las poblaciones de Gambote y Soplaviento (Bolívar). Rev. del Instituto de Investigación (RIIGEO), FIGMMG- UNMSM, 17(34).
dc.relation.referencesEdelstein, M., Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431-444. doi: 10.1016/j.scienta.2017.12.039
dc.relation.referencesFeria, J. J., Marrugo, J. L., González, H. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America. Revista Facultad de Ingeniería Universidad de Antioquia, 55.
dc.relation.referencesFernandez-Maestre, R., Johnson-Restrepo, B., & Olivero-Verbel, J. (2018). Heavy Metals in Sediments and Fish in the Caribbean Coast of Colombia: Assessing the Environmental Risk. In International Journal of Environmental Research (Vol. 12, Issue 3, pp. 289–301). Springer Science and Business Media LLC. https://doi.org/10.1007/s41742-018-0091-1
dc.relation.referencesFerreira, S. L. C., da Silva, J. B., Junior, dos Santos, I. F., de Oliveira, O. M. C., Cerda, V., & Queiroz, A. F. S. (2022). Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments – Practical aspects. In Trends in Environmental Analytical Chemistry (Vol. 35, p. e00169). Elsevier BV. https://doi.org/10.1016/j.teac.2022.e00169
dc.relation.referencesForsyth, J. E., Saiful Islam, M., Parvez, S. M., Raqib, R., Sajjadur Rahman, M., Marie Muehe, E., Fendorf, S., & Luby, S. P. (2018). Prevalence of elevated blood lead levels among pregnant women and sources of lead exposure in rural Bangladesh: A case control study. In Environmental Research (Vol. 166, pp. 1–9). Elsevier BV. https://doi.org/10.1016/j.envres.2018.04.019
dc.relation.referencesFuentes Gandara, F., Pinedo Hernández, J., Marrugo Negrete, J., Díaz, S. (2016). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health. doi:10.1007/s10653-016-9896-z
dc.relation.referencesFuentes-Gandara, F., Pinedo-Hernández, J., Gutiérrez, E., Marrugo-Negrete, J., & Díez, S. (2021). Heavy metal pollution and toxicity assessment in Mallorquin swamp: A natural protected heritage in the Caribbean Sea, Colombia. In Marine Pollution Bulletin (Vol. 167, p. 112271). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2021.112271
dc.relation.referencesFuentes Hernandez, M., Saguinetti Gamboa, O., &amp; Rojas de Astudillo, L. (2018, September 1). EVALUACIÓN del riesgo ambiental de metales pesados en los sedimentos superficiales del saco del golfo de cariaco. Revista Internacional de Contaminación Ambientañ, 35(num. 1), 101–114.
dc.relation.referencesFu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G.Z., Luo, Y., Zhao, D., An, S., Zhu, H., (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials. 270, 102– 109
dc.relation.referencesGao, L., Li, S., Wang, Z., Liang, Z., Chen, J., Liang, B. (2018). Contamination, potential mobility, and origins of lead in sediment cores from the Shima River, south China. Environmental Pollution, 242, 1128-1136. doi: 10.1016/j.envpol.2018.07.104
dc.relation.referencesGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 11, p. 3782). MDPI AG. https://doi.org/10.3390/ijerph17113782
dc.relation.referencesGhosh, D., Ghosh, A., & Bhadury, P. (2022). Arsenic through aquatic trophic levels: effects, transformations and biomagnification—a concise review. In Geoscience Letters (Vol. 9, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s40562-022-00225-y
dc.relation.referencesGong, X., Huang, D., Liu, Y., Zeng, G., Chen, S., Wang, R. et al. (2019). Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. Science Of The Total Environment, 666, 1126-1133. doi: 10.1016/j.scitotenv.2019.02.215
dc.relation.referencesGworek, B., Dmuchowski, W., & Baczewska-Dąbrowska, A. H. (2020). Mercury in the terrestrial environment: a review. In Environmental Sciences Europe (Vol. 32, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12302-020-00401-x
dc.relation.referencesHanh, H. T., Kim, J.-Y., Bang, S., & Kim, K.-W. (2010). Sources and Fate of As in the Environment. In Geosystem Engineering (Vol. 13, Issue 1, pp. 35–42). Informa UK Limited. https://doi.org/10.1080/12269328.2010.10541307 Hsu-Kim, H., Eckley, C., Achá, D., Feng, X., Gilmour, C., Jonsson, S., Mitchell, C. (2018). Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 47(2), 141-169. doi: 10.1007/s13280-017- 1006-7
dc.relation.referencesIslam M.A., Al-mamun A., Hossain F., Quraishi S.B., Naher K., Khan R., Das S., Hossain S.M., Nahid F., Tamim U. (2017). Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest, Bangladesh. Marine Pollution Bulletin 124 356–366
dc.relation.referencesJabbar-Khan, A., Akhter, G., Gabriel, H. F., & Shahid, M. (2020). Anthropogenic Effects of Coal Mining on Ecological Resources of the Central Indus Basin, Pakistan. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 4, p. 1255). MDPI AG. https://doi.org/10.3390/ijerph17041255
dc.relation.referencesJabeen, R., Tahir, M., & Waqas, S. (2010). Teratogenic effects of lead acetate on kidney. Journal of Ayub Medical College Abbottabad, 22(1), 76-79.
dc.relation.referencesJimenez, P. A. J., Díaz, X., Silva, M. L. N., Vega, A., & Curi, N. (2023). Assessing and Understanding Arsenic Contamination in Agricultural Soils and Lake Sediments from Papallacta Rural Parish, Northeastern Ecuador, via Ecotoxicology Factors, for Environmental Embasement. In Sustainability (Vol. 15, Issue 5, p. 3951). MDPI AG. https://doi.org/10.3390/su1505395
dc.relation.referencesLoska, K., & Wiechuła, D. (2006). Comparison of Sample Digestion Procedures for the Determination of Arsenic in Bottom Sediment Using Hydride Generation AAS. In Microchimica Acta (Vol. 154, Issues 3–4, pp. 235–240). Springer Science and Business Media LLC. https://doi.org/10.1007/s00604-006-581-2
dc.relation.referencesKafilat-Adebola, B.-A., Joseph Kayode, S., & Adebayo Akeem, O. (2017). Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West, Nigeria. In Human and Ecological Risk Assessment: An International Journal (Vol. 24, Issue 2, pp. 377–397). Informa UK Limited. https://doi.org/10.1080/10807039.2017.138469
dc.relation.referencesKaradede Akin, H., Ünlü, E. (2007). Heavy Metal Concentrations in Water, Sediment, Fish and Some Benthic Organisms from Tigris River, Turkey. Environ Monit Assess. doi:10.1007/s10661-006-9478-0
dc.relation.referencesKarimi-Nezhad, M. T., Mohammadi, K., Gholami, A., Hani, A., & Shariati, M. S. (2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran: Distribution, relationship with soil characteristics and multivariate analysis of contamination sources. In Geoderma (Vols. 219–220, pp. 177–185). Elsevier BV. https://doi.org/10.1016/j.geoderma.2013.12.021
dc.relation.referencesKe, X., Gui, S., Huang, H., Zhang, H., Wang, C., Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473-481. doi: 10.1016/j.chemosphere.2017.02.029
dc.relation.referencesKhanam, R., Kumar, A., Nayak, A. K., Shahid, Md., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B. S., & Pathak, H. (2020). Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. In Science of The Total Environment (Vol. 699, p. 134330). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2019.134330
dc.relation.referencesKim, R.-Y., Yoon, J.-K., Kim, T.-S., Yang, J. E., Owens, G., & Kim, K.-R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. In Environmental Geochemistry and Health (Vol. 37, Issue 6, pp. 1041–1061). Springer Science and Business Media LLC. https://doi.org/10.1007/s10653-015-9695-y
dc.relation.referencesKubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. In Applied Geochemistry (Vol. 108, p. 104388). Elsevier BV. https://doi.org/10.1016/j.apgeochem.2019.104388
dc.relation.referencesKumar, V., Pandita, S., & Setia, R. (2022). A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. In Gondwana Research (Vol. 103, pp. 487–501). Elsevier BV. https://doi.org/10.1016/j.gr.2021.10.028
dc.relation.referencesLans, E., Díaz, B., Paez, M. (2011). Compuestos organoclorados residuales en dos especies ícticas de la Ciénaga Grande del. MVZ Córdoba, 16(1).
dc.relation.referencesLans, E., Marrugo, J., Díaz, B. (2008). Study of contamination by organochlorine pesticides in the cienaga grande waters of the low sinu river valley. Temas Agrarios, 13(1), 50, 51.
dc.relation.referencesLans Ceballos, E., Lombana Gómez, M., Pinedo Hernández, J. (2018). Residuos de pesticidas organoclorados en leche pasteurizada distribuida en Montería, Colombia. Salud Pública, (20) (2), 208-214.
dc.relation.referencesLiu, G., Tao, L., Liu, X., Hou, J., Wang, A., & Li, R. (2013). Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. In Journal of Geochemical Exploration (Vol. 132, pp. 156–163). Elsevier BV. https://doi.org/10.1016/j.gexplo.2013.06.017
dc.relation.referencesLondoño Franco , L. F., Londoño Muñoz, P. T., Muñoz García, F. G. (2016). RISK OF Heavy metals in human and animal health. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 147. doi:10.18684/BSAA(14)145-153
dc.relation.referencesLong, E.R., Morgan, L.G., (1991). The potential for biological effects of sediment- sorbed contaminants tested in the national status and trends program. In: NOAA Technical Memorandum NOS OMA 52. US National Oceanic and Atmospheric Administration, Seattle, Washington.
dc.relation.referencesLong, E.R., MacDonald, D.D., Severn, C.G., Hong, B.C., (2000). Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ. Toxicol. 19, 2598–2601
dc.relation.referencesMadero G, A., & Marrugo-Negrete, J. (2011). Detection of heavy metals in cattle, in the valleys of the Sinu and San Jorge rivers, department of Cordoba, Colombia. Revista MVZ Córdoba, 16(1), 2391-2401.
dc.relation.referencesMacdonald, D.D., Ingersoll, C.G., Berger, T.A., (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39 (1), 20-31
dc.relation.referencesMaity, J. P., Chen, G.-S., Huang, Y.-H., Sun, A.-C., & Chen, C.-Y. (2019). Ecofriendly Heavy Metal Stabilization: Microbial Induced Mineral Precipitation (MIMP) and Biomineralization for Heavy Metals within the Contaminated Soil by Indigenous Bacteria. In Geomicrobiology Journal (Vol. 36, Issue 7, pp. 612–623). Informa UK Limited. https://doi.org/10.1080/01490451.2019.1597216
dc.relation.referencesMancera Rodriguez, N. J., Alvarez León, R. (2006). Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuicolas de colombia. Acta Biológica Colombiana, 11(1).
dc.relation.referencesMarrugo Negrete, J., Pinedo Hernández, J., Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. http://dx.doi.org/10.1016/j.envres.2017.01.021
dc.relation.referencesMarrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E., Bravo, A., Díez, S. (2019). Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation and Development, 30(17), 2139-2149. doi: 10.1002/ldr.3398
dc.relation.referencesMarrugo-Negrete, J., Pinedo-Hernández, J., Marrugo-Madrid, S., & Díez, S. (2020). Assessment of trace element pollution and ecological risks in a river basin impacted by mining in Colombia. In Environmental Science and Pollution Research (Vol. 28, Issue 1, pp. 201–210). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-020-10356-4
dc.relation.referencesMartínez-Mera, E.E., Ana Carolina, T.-E., Tito José, C.-B., José Luis, M.-N., & Luis Carlos, G.-M. (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. In Heliyon (Vol. 5, Issue 8, p. e02217). Elsevier BV. https://doi.org/10.1016/j.heliyon.2019.e02217
dc.relation.referencesMohiuddin, K.M., Ogawa, Y., Zakir, H.M., Otomo, K., Shikazono, N., (2011). Trace elements contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 8, 723–736.
dc.relation.referencesNabi, S. (2014). Toxic Effects of Mercury. Springer India. https://doi.org/10.1007/978-81-322-1922-
dc.relation.referencesNabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. In Environmental Nanotechnology, Monitoring &amp; Management (Vol. 16, p. 100509). Elsevier BV. https://doi.org/10.1016/j.enmm.2021.100509
dc.relation.referencesNOAA, (2012). National Oceanic and Atmospheric Administration, USA (Chapter 173–204 WAC, 1991/95, WA Dept. of Ecology).
dc.relation.referencesNordberg, G. F. (2009). Historical perspectives on cadmium toxicology. In Toxicology and Applied Pharmacology (Vol. 238, Issue 3, pp. 192–200). Elsevier BV. https://doi.org/10.1016/j.taap.2009.03.015
dc.relation.referencesNoreña Ramirez, D. A., Murillo Perea, E., Guio Duque, J. A., Méndez Arteaga, J. J. (2012). Heavy metals (Cd, Pb and Ni) in fish species commercially important from Magdalena river, Tolima tract, Colombia. Revista Tumbaga,, 2(7).
dc.relation.referencesOliveri, E., Salvagio Manta, D., Bonsignore, M., Cappello, S., Tranchida, G., Bagnato, E., Sabatino, N., Santisi, S., & Sprovieri, M. (2016). Mobility of mercury in contaminated marine sediments: Biogeochemical pathways. In Marine Chemistry (Vol. 186, pp. 1–10). Elsevier BV. https://doi.org/10.1016/j.marchem.2016.07.002
dc.relation.referencesOMS, O.M.d.l.S. (2017). Cadmio. Retrieved from http://www.who.int/ipcs/assessment/public_health/cadmium/es/
dc.relation.referencesOrtiz Romero, L., Delgado Tascón, J., Pardo Rodríguez, D., Murillo Perea, E., y Guio Duque, A. (2015). Heavy metals determination and quality indexes in water and sediments from magdalena river – tolima tract, colombia. Revista Tumbaga, 2(10).
dc.relation.referencesPaul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals Of Agrarian Science, 15(2), 278-286. doi: 10.1016/j.aasci.2017.04.001
dc.relation.referencesOsuna-Martínez, C. C., Armienta, M. A., Bergés-Tiznado, M. E., & Páez-Osuna, F. (2021). Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. In Science of The Total Environment (Vol. 752, p. 142062). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2020.142062
dc.relation.referencesPeña Salamanca, E., Cantera Kintz, J. and Muñoz, E., (2012). Evaluacion De La Contaminación en Ecosistemas Acuaticos: Un Estudio De Caso En La Laguna De Sonso, En La Cuenca Alta Del Río Cauca. Cali: Programa editorial univer, pp.146,147.
dc.relation.referencesPerera, P., Sundarabarathy, T., Sivananthawerl, T., Kodithuwakku, S., Edirisinghe, U. (2016). Arsenic and Cadmium Contamination in Water, Sediments and Fish is a Consequence of Paddy Cultivation: Evidence of River Pollution in Sri Lanka. Achievements In The Life Sciences, 10(2), 144-160. doi: 10.1016/j.als.2016.11.002
dc.relation.referencesPerin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M.L., Orio, A.A. (1985). Heavy Metal Speciation in the Sediments Northern Adriatic Sea: A New Approach for Environmental Toxicity Determination, Volume 2. CEP Consultants, Edinburgh, pp. 454–456
dc.relation.referencesPinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. In Chemosphere (Vol. 119, pp. 1289–1295). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2014.09.044
dc.relation.referencesPoulin J, Gibb H. Mercurio: Evaluación de la carga de morbilidad ambiental a nivel nacional y local. Editora, Prüss-Üstün A. Organización Mundial de la Salud, Ginebra, (2008). (OMS, Serie Carga de Morbilidad Ambiental, n.º 16)
dc.relation.referencesRamachandra, T., Sudarshan, P., Mahesh, M. and Vinay, S., (2018). Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. Journal of Environmental Management, 206, pp.1204- 1210.
dc.relation.referencesRan, H., Guo, Z., Yi, L., Xiao, X., Zhang, L., Hu, Z., Li, C., & Zhang, Y. (2021). Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. In Journal of Hazardous Materials (Vol. 413, p. 125382). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2021.125382
dc.relation.referencesRasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M. N., Li, C., & Zhou, Y. (2018). Fluorescent sensor-based models for the detection of environmentally-related toxic heavy metals. In Science of The Total Environment (Vol. 615, pp. 476–485). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2017.09.126
dc.relation.referencesRauret, G.,López-Sánchez, J.F.,Sahuquillo, A., Barahona, E., Lachica, M., Ure, A.M., Davidson, C.M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntau, H., Quevauviller, P., (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monit. 2, 228-233
dc.relation.referencesReyes, Y., Vergara, I., Torres, O., Díaz, M., González, E. (2016). Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria. Ingeniería Investigación Y Desarrollo, 16(2). doi: 10.19053/1900771x.v16.n2.2016.5447
dc.relation.referencesRice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental Mercury and Its Toxic Effects. In Journal of Preventive Medicine &amp; Public Health (Vol. 47, Issue 2, pp. 74–83). Korean Society for Preventive Medicine. https://doi.org/10.3961/jpmph.2014.47.2.74
dc.relation.referencesRodríguez-Espinosa, P., Shruti, V., Jonathan, M., Martinez-Tavera, E. (2018). Metal concentrations and their potential ecological risks in fluvial sediments of Atoyac River basin, Central Mexico: Volcanic and anthropogenic influences. Ecotoxicology And Environmental Safety, 148, 1020-1033. doi: 10.1016/j.ecoenv.2017.11.068
dc.relation.referencesRoqueme, J., Pinedo H, J., Marrugo N., J., Aparicio, A. (2014). Metales pesados en suelos agrícolas del valle medio y bajo del rio Sinú, departamento de Córdoba. Memorias Del II Seminario De Ciencias Ambientales Sue-Caribe & VII Seminario Internacional De Gestión Ambiental, 106-111.
dc.relation.referencesRúa Cardona, A., Flórez Molina, M., Palacio Baena, J. (2013). Variación espacial y temporal en los contenidos de mercurio, plomo, cromo y materia orgánica en sedimento del complejo de humedales de Ayapel, Córdoba, noroccidente colombiano. Facultad Ingenieria Universidad De Antioquia, N. º69, pp. 244- 255.
dc.relation.referencesSadiq, M., Zaidi, T., Al-Mohana, M. (1991). Sample weight and digestion temperature as critical factors in mercury determination in fish. Bulletin of Environmental Contamination and Toxicology
dc.relation.referencesSalazar Mejia, I. (2008). Lugar encantado de las aguas: Aspectos económicos de la Ciénaga Grande del Bajo Sinú. Cartagena.
dc.relation.referencesSartipi Yarahmadi, S., Ansari, M. (2018). Ecological risk assessment of heavy metals (Zn, Cr, Pb, As and Cu) in sediments of Dohezar River, North of Iran, Tonekabon city. Acta Ecologica Sinica, 38(2), 126-134. doi: 10.1016/j.chnaes.2017.06.018
dc.relation.referencesSatarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, Environmental Exposure, and Health Outcomes. In Environmental Health Perspectives (Vol. 118, Issue 2, pp. 182–190). Environmental Health Perspectives. https://doi.org/10.1289/ehp.0901234
dc.relation.referencesSchmitz, H., Maher, W., Taylor, A., Krikowa, F. (2015). Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster
dc.relation.referencesSekabira, K., Origa, H. O., Basamba, T. A., Mutumba, G., & Kakudidi, E. (2010). Assessment of heavy metal pollution in the urban stream sediments and its tributaries. In International Journal of Environmental Science &amp; Technology (Vol. 7, Issue 3, pp. 435–446). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03326153
dc.relation.referencesSepulveda Vargas, r. (2015). Environmental conflicts in the lower basin of the Sinu river, Colombia. Revista Direitos Emergentes Na Sociedade Global, 4(1), 23- 43. doi: 10.5902/23163054
dc.relation.referencesShaheen, N., Irfan, N., Khan, I., Islam, S., Islam, M., Ahmed, M. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere,152, 431-438. http://dx.doi.org/10.1016/j.chemosphere.2016.02.060 Saccostrea glomerata. Aquatic Toxicology, 160, 22-30. doi: 10.1016/j.aquatox.2014.12.019
dc.relation.referencesSheng, P. X., Ting, Y.-P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. In Journal of Colloid and Interface Science (Vol. 275, Issue 1, pp. 131–141). Elsevier BV. https://doi.org/10.1016/j.jcis.2004.01.036
dc.relation.referencesSmedley, P.L., Kinniburgh, D.G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568
dc.relation.referencesSpiller, H. A. (2018). Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. In Clinical Toxicology (Vol. 56, Issue 5, pp. 313–326). Informa UK Limited. https://doi.org/10.1080/15563650.2017.1400555
dc.relation.referencesSungur, A., Soylak, M., & Ozcan, H. (2014). Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. In Chemical Speciation &amp; Bioavailability (Vol. 26, Issue 4, pp. 219–230). Informa UK Limited. https://doi.org/10.3184/095422914x14147781158674
dc.relation.referencesSuresh, G., Ramasamy, V., Sundarrajan, M., Paramasivam, K., (2015). Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala. India. Mar. Pollut. Bull 91 (1), 389-400.
dc.relation.referencesTang, W.-L., Liu, Y.-R., Guan, W.-Y., Zhong, H., Qu, X.-M., & Zhang, T. (2020). Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. In Science of The Total Environment (Vol. 714, p. 136827). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2020.136827
dc.relation.referencesTasneem, F., Abbasi, N. A., Iqbal Chaudhry, M. J., Mashiatullah, A., Ahmad, S. R., Qadir, A., & Malik, R. N. (2020). Dietary proxies (δ15N, δ13C) as signature of metals and arsenic exposure in birds from aquatic and terrestrial food chains. In Environmental Research (Vol. 183, p. 109191). Elsevier BV. https://doi.org/10.1016/j.envres.2020.1091
dc.relation.referencesTchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012). Heavy Metal Toxicity and the Environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6
dc.relation.referencesTejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. In Environmental Pollution (Vol. 212, pp. 238–250). Elsevier BV. https://doi.org/10.1016/j.envpol.2016.01.057
dc.relation.referencesThawornchaisit, U., & Polprasert, C. (2009). Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. In Journal of Hazardous Materials (Vol. 165, Issues 1–3, pp. 1109–1113). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2008.10.103
dc.relation.referencesTomlinson, D.C., Wilson, J.G., Harris, C.R., Jeffery, D.W., (1980). Problems in the assessment of trace elements levels in estuaries and the formation of a pollution index. Helgoländer Meeresun. 33, 566–575.
dc.relation.referencesTorregroza-Espinosa, A. C., Martínez-Mera, E., Castañeda-Valbuena, D., González-Márquez, L. C., & Torres-Bejarano, F. (2018). Contamination Level and Spatial Distribution of Heavy Metals in Water and Sediments of El Guájaro Reservoir, Colombia. In Bulletin of Environmental Contamination and Toxicology (Vol. 101, Issue 1, pp. 61–67). Springer Science and Business Media LLC. https://doi.org/10.1007/s00128-018-2365-x
dc.relation.referencesTosic, M., Restrepo, J. D., Lonin, S., Izquierdo, A., & Martins, F. (2019). Water and sediment quality in Cartagena Bay, Colombia: Seasonal variability and potential impacts of pollution. In Estuarine, Coastal and Shelf Science (Vol. 216, pp. 187–203). Elsevier BV. https://doi.org/10.1016/j.ecss.2017.08.013
dc.relation.referencesUluturhan, E., Kontas, A., Can, E., (2011). Sediment concentrations of trace elements in the Homa Lagoon (Eastern Aegean Sea): assessment of contamination and ecological risks. Mar. Pollut. Bull. 62, 1989–1997.
dc.relation.referencesU.S. EPA, (1998). "Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry," Revision 0. Washington, DC. [online] Available at : https://www.epa.gov/esam/epa-method-7473-sw-846-mercury-solids- and-solutions-thermal-decomposition-amalgamation-and
dc.relation.referencesU.S. EPA, (2007). “Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils,” Revision 1. Washington, DC.(p.30). [online] Available at: https://www.epa.gov/esam/us-epa- method-3051a-microwave-assisted-acid-digestion-sediments-sludges- and-oils
dc.relation.referencesVallejo Toro, P. P., Vásquez Bedoya, L. F., Correa, I. D., Bernal Franco, G. R., Alcántara-Carrió, J., & Palacio Baena, J. A. (2016). Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia. In Marine Pollution Bulletin (Vol. 111, Issues 1–2, pp. 311–320). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2016.06.093
dc.relation.referencesVöröš, D., DíazSomoano, M., Geršlová, E., Sýkorová, I., Suárez-Ruiz, I. (2018). Mercury contamination of stream sediments in the North Bohemian Coal District (Czech Republic): Mercury speciation and the role of organic matter. Chemosphere, 211, 664-673. doi: 10.1016/j.chemosphere.2018.07.196
dc.relation.referencesVu, C., Lin, C., Shern, C., Yeh, G., Le, V., Tran, H., 2017. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, pp.32-42.
dc.relation.referencesWang, S., Wu, Z., & Luo, J. (2018). Transfer Mechanism, Uptake Kinetic Process, and Bioavailability of P, Cu, Cd, Pb, and Zn in Macrophyte Rhizosphere Using Diffusive Gradients in Thin Films. In Environmental Science &amp; Technology (Vol. 52, Issue 3, pp. 1096–1108). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.7b01578
dc.relation.referencesWalker, S.R., Parsons, M.B., Jamieson, H.E., et al. (2009). Arsenic mineralogy of near-surface tailings and soils: influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. Can. Miner. 47(3), 533–556
dc.relation.referencesWang, J., Jiang, Y., Sun, J., She, J., Yin, M., Fang, F. et al. (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicology And Environmental Safety, 196, 110529. doi: 10.1016/j.ecoenv.2020.110529 Wu, H., Liu, J., Bi, X., Lin, G., Feng, C.C., Li, Z., Qi, F., Zheng, T., Xie, L., (2017). Trace elements in sediments and benthic animals from aquaculture ponds near a mangrove wetland in southern China. Mar. Pollut. Bull
dc.relation.referencesXiao, R., Zhang, M., Yao, X., Ma, Z., Yu, F., & Bai, J. (2015). Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta. In Journal of Soils and Sediments (Vol. 16, Issue 3, pp. 821–830). Springer Science and Business Media LLC. https://doi.org/10.1007/s11368-015-1274-4
dc.relation.referencesYang, L., Zhang, W., Ren, M., Cao, F., Chen, F., Zhang, Y., y Shang, L. (2020). Mercury distribution in a typical shallow lake in northern China and its re- emission from sediment. Ecotoxicology And Environmental Safety, 192. doi: 10.1016/j.ecoenv.2020.110316
dc.relation.referencesYnalvez, R., Gutierrez, J., & Gonzalez-Cantu, H. (2016). Mini-review: toxicity of mercury as a consequence of enzyme alteration. In BioMetals (Vol. 29, Issue 5, pp. 781–788). Springer Science and Business Media LLC. https://doi.org/10.1007/s10534-016-9967-8
dc.relation.referencesYuan, Z., Luo, T., Liu, X., Hua, H., Zhuang, Y., Zhang, X., Zhang, L., Zhang, Y., Xu, W., & Ren, J. (2019). Tracing anthropogenic cadmium emissions: From sources to pollution. In Science of The Total Environment (Vol. 676, pp. 87–96). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2019.04.250
dc.relation.referencesZhang, X., Yang, L., Li, Y., Li, H., Wang, W., & Ye, B. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. In Environmental Monitoring and Assessment (Vol. 184, Issue 4, pp. 2261–2273). Springer Science and Business Media LLC. https://doi.org/10.1007/s10661-011-2115-6
dc.relation.referencesZhang, R., Zhou, L., Zhang, F., Ding, Y.J., Gao, J.R., Chen, J., Yan, H.Q., Shao, W., (2013). Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China. Mar. Pollut. Bull. 74 (1), 403e412.
dc.relation.referencesZhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F. et al. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. doi: 10.1016/j.envint.2014.08.010
dc.relation.referencesZhang, J., Hua, P., & Krebs, P. (2017a). Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. In Environmental Pollution (Vol. 228, pp. 158–168). Elsevier BV. https://doi.org/10.1016/j.envpol.2017.05.029
dc.relation.referencesZhang, W., Musante, C., White, J. C., Schwab, P., Wang, Q., Ebbs, S. D., & Ma, X. (2017b). Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. In Plant Physiology and Biochemistry (Vol. 110, pp. 185–193). Elsevier BV. https://doi.org/10.1016/j.plaphy.2015.12.013
dc.relation.referencesZhang, X., Wei, S., Sun, Q., Wadood, S. A., & Guo, B. (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. In Ecotoxicology and Environmental Safety (Vol. 159, pp. 354–362). Elsevier BV. https://doi.org/10.1016/j.ecoenv.2018.04.072
dc.relation.referencesZhang, Q., & Wang, C. (2020). Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: a Review. In Water, Air, &amp; Soil Pollution (Vol. 231, Issue 7). Springer Science and Business Media LLC. https://doi.org/10.1007/s11270-020-04728-2
dc.relation.referencesZhou, H., Zeng, M., Zhou, X., Liao, B.-H., Peng, P.-Q., Hu, M., Zhu, W., Wu, Y.-J., & Zou, Z.-J. (2014). Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. In Plant and Soil (Vol. 386, Issues 1–2, pp. 317–329). Springer Science and Business Media LLC. https://doi.org/10.1007/s11104-014-2268-5
dc.relation.referencesZhou, Y., Tang, Y., Liao, C., Su, M., & Shih, K. (2023). Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. In Journal of Hazardous Materials (Vol. 448, p. 130977). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2023.130977
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cb
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceUniversidad de Córdoba
dc.subject.keywordsEcotoxicology
dc.subject.keywordsHeavy metals
dc.subject.keywordsAquatic ecosystems
dc.subject.keywordsMining
dc.subject.keywordsSediments
dc.subject.proposalEcotoxicología
dc.subject.proposalMetales pesados
dc.subject.proposalEcosistemas acuáticos
dc.subject.proposalMinería
dc.subject.proposalSedimentos
dc.titleEvaluación de la contaminación y riesgo ecológico potencial por metales pesados en sedimentos de la Ciénaga Grande del Bajo Sinú, transecto Loríca – Purísima, departamento de Córdobaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Informe de TESIS Lorelys Vega.pdf
Tamaño:
1.78 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
autoriza repositorio .pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones