Publicación: Evaluación de la contaminación y riesgo ecológico potencial por metales pesados en sedimentos de la Ciénaga Grande del Bajo Sinú, transecto Loríca – Purísima, departamento de Córdoba
dc.audience | ||
dc.contributor.advisor | Paternina Uribe, Roberth | |
dc.contributor.advisor | Pinedo Hernandez, José Joaquin | |
dc.contributor.author | Vega Melendez Lorelys Del Carmen | |
dc.date.accessioned | 2024-06-11T16:18:39Z | |
dc.date.available | 2024-06-11T16:18:39Z | |
dc.date.issued | 2024-06-11 | |
dc.description.abstract | Los procesos sistemáticos de contaminación con metales pesados producto de las actividades antrópicas en los ecosistemas acuáticos de Colombia como la Ciénaga Grande de la cuenca baja del río Sinú, representan uno de los principales tensores que originan el deterioro de la salud y la estabilidad ambiental en diversas escalas. Obedeciendo a esta problemática, en la presente investigación se determinó el contenido de metales pesados (As, Cd, Hg y Pb) en los sedimentos de siete puntos del tramo fluvial entre los municipios de Lorica y Purísima, en el área de influencia de la Ciénaga Grande del bajo Sinú en el departamento de Córdoba, con el propósito de evaluar el grado de contaminación y el riesgo ecológico potencial derivados de este fenómeno. En este sentido, las concentraciones de Hg fueron cuantificadas por medio de descomposición térmica, amalgamación y espectrometría de absorción atómica (US EPA-7473), las concentraciones de As mediante espectrometría de absorción atómica con generación de hidruros (HGAAS SM-3114), en tanto que el Cd y el Pb fueron medidos a través de espectrofotometría absorción atómica (AAE) (US EPA-3051A). Así mismo, se ejecutó un análisis de componentes principales (PCA) y un análisis de cluster jerárquico (HCA), para determinar asociaciones entre la distribución espacial de los metales en los sedimentos de las estaciones y entre posibles fuentes comunes de emisión. | spa |
dc.description.abstract | The systematic processes of heavy metal pollution resulting from human activities in aquatic ecosystems in Colombia, such as the Ciénaga Grande in the lower Sinú River basin, are one of the main stressors causing environmental degradation and health deterioration at various scales. Addressing this issue, this study determined the heavy metal contents (As, Cd, Hg, and Pb) in the sediments at seven sites along the river stretch between the municipalities of Lorica and Purísima in the influence area of the Ciénaga Grande in the lower Sinú River basin, department of Córdoba, with the aim of evaluating the degree of contamination and potential ecological risk resulting from this phenomenon. For this purpose, Hg concentrations were quantified using thermal decomposition, amalgamation, and atomic absorption spectrometry (US EPA7473), As concentrations were measured using atomic absorption spectrometry with hydride generation (HGAAS SM-3114), while Cd and Pb were measured using atomic absorption spectrophotometry (AAE) (US EPA-3051A). In addition, a principal component analysis (PCA) and a hierarchical cluster analysis (HCA) were performed to determine associations between the spatial distribution of metals in the sediment samples and possible common emission sources. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Ambientales | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | TABLA DE CONTENIDO | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN..........12 | spa |
dc.description.tableofcontents | 2. MARCO TEÓRICO........14 | spa |
dc.description.tableofcontents | 2.1 Contaminación con As en sedimentos y ecosistemas acuáticos.........14 | spa |
dc.description.tableofcontents | 2.2. Contaminación con Cd en sedimentos y ecosistemas acuáticos......15 | spa |
dc.description.tableofcontents | 2.3 Contaminación con Hg en sedimentos y ecosistemas acuáticos.....16 | spa |
dc.description.tableofcontents | 2.4 Contaminación con Pb en sedimentos y ecosistemas acuáticos......18 | spa |
dc.description.tableofcontents | 2.5 Evaluación del grado de contaminación y el riesgo ecológico potencial con As, Cd, Hg y Pb en los sedimentos....19 | spa |
dc.description.tableofcontents | 2.5.1. Factor de contaminación.......19 | spa |
dc.description.tableofcontents | 2.5.2 Factor de enriquecimiento......20 | spa |
dc.description.tableofcontents | 2.5.3 Índice de geoacumulación.......21 | spa |
dc.description.tableofcontents | 2.6 Guías de calidad de sedimentos (SQG).......22 | spa |
dc.description.tableofcontents | 2.6.1 Evaluación del Riesgo ecológico potencial........22 | spa |
dc.description.tableofcontents | 2.6.2 Cociente ERM medio (m-ERM-Q)......23 | spa |
dc.description.tableofcontents | 2.6.3 Índice de carga contaminante (PLI) ......24 | spa |
dc.description.tableofcontents | 2.7 Biodisponibilidad (BIM - BIT)........24 | spa |
dc.description.tableofcontents | 3. OBJETIVOS .......27 | spa |
dc.description.tableofcontents | 3.1 Objetivo General......27 | spa |
dc.description.tableofcontents | 3.2 Objetivos Específicos......27 | spa |
dc.description.tableofcontents | 4. METODOLOGÍA........28 | spa |
dc.description.tableofcontents | 4.1 Área de estudio.......28 | spa |
dc.description.tableofcontents | 4.2 Recolección de muestras de sedimentos.......29 | spa |
dc.description.tableofcontents | 4.3 Determinación de As, Cd, Hg y Pb en sedimentos y control de calidad......30 | spa |
dc.description.tableofcontents | 4.3.1 Control de calidad de la determinación de As, Cd, Hg y Pb........31 | spa |
dc.description.tableofcontents | 4.4 Evaluación del riesgo ecológico potencial y grado de contaminación con As, Cd, Hg y Pb en los sedimentos......31 | spa |
dc.description.tableofcontents | 4.4.1 Evaluación del grado de contaminación.......31 | spa |
dc.description.tableofcontents | 4.4.2 Evaluación del grado de contaminación........32 | spa |
dc.description.tableofcontents | 4.4.3 Clasificación e interpretación del riesgo...........32 | spa |
dc.description.tableofcontents | 4.4.4 Biodisponibilidad (BIM - BIT)................32 | spa |
dc.description.tableofcontents | 4.5 Tratamiento estadístico.................32 | spa |
dc.description.tableofcontents | 5. RESULTADOS y DISCUSIÓN..............34 | spa |
dc.description.tableofcontents | 5.1 Evaluación del riesgo ecológico potencial, grado de contaminación y biodisponibilidad producto de la contaminación con As, Cd, Hg y Pb en los sedimentos 37 | spa |
dc.description.tableofcontents | 5.2 Análisis estadísticos........47 | spa |
dc.description.tableofcontents | 6. CONCLUSIONES........53 | spa |
dc.description.tableofcontents | 7. RECOMENDACIONES........55 | spa |
dc.description.tableofcontents | 8. REFERENCIAS BIBLIOGRÁFICAS........56 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8307 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ciencias Ambientales | |
dc.relation.references | Amador, C., Luna, J., Puello, E. (2017). Prácticas empleadas por fumigadores de plaguicidas del medio y bajo Sinú departamento de Córdoba. Temas Agrarios, (Vol. 22:(1), 29 - 40. | |
dc.relation.references | Anderson, K., Hillwalker, W. (2008). Bioavailability. Encyclopedia Of Ecology, 348- 357. doi: 10.1016/b978-008045405-4.00375-x | |
dc.relation.references | Alcaldía de Santa Cruz de Lorica. (2011). Informe de auditoría gubernamental con enfoque integral modalidad especial, línea ambiental “desarrollo sostenible del departamento de córdoba”. | |
dc.relation.references | Alcaldía Municipal De Santa Cruz De Lorica - Córdoba. (2012) [online] Available at:<http://www.santacruzdelorica-cordoba.gov.co/municipio/nuestro- municipio>. | |
dc.relation.references | Alcaldía de Purísima. (2011). Informe de auditoría gubernamental con enfoque integral modalidad especial, línea ambiental “Desarrollo Sostenible Del Departamento De Córdoba”. | |
dc.relation.references | Alcaldía Municipal De Purisima – Cordoba, (2016). Plan De Desarrollo Municipal Del Municipio De Purisima – Cordoba para el período constitucional 2016 – 2019. ANLA: Autoridad Nacional de Licencias Ambientales, 2015. Diagnóstico Ambiental De Alternativas Para La Construcción De La Variante Lorica, Departamento De Córdoba. | |
dc.relation.references | Aliomrani, M., Sahraian, M. A., Shirkhanloo, H., Sharifzadeh, M., Khoshayand, M. R., & Ghahremani, M. H. (2016). Blood concentrations of cadmium and lead in multiple sclerosis patients from Iran. Iranian journal of pharmaceutical research: IJPR, 15(4), 825 | |
dc.relation.references | Alonso, D. L., Pérez, R., Okio, C. K. Y. A., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. In Journal of Environmental Management (Vol. 264, p. 110478). Elsevier BV. https://doi.org/10.1016/j.jenvman.2020.110478 | |
dc.relation.references | Antunes dos Santos, A., Ferrer, B., Marques Gonçalves, F., Tsatsakis, A., Renieri, E., Skalny, A., Farina, M., Rocha, J., & Aschner, M. (2018). Oxidative Stress in Methylmercury-Induced Cell Toxicity. In Toxics (Vol. 6, Issue 3, p. 47). MDPI AG. https://doi.org/10.3390/toxics6030047 | |
dc.relation.references | Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. In Veterinary World (Vol. 9, Issue 6, pp. 660–671). Veterinary World. https://doi.org/10.14202/vetworld.2016.660-671 | |
dc.relation.references | Barbieri, M. J. J. G. G. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys, 5(1), 1-4. | |
dc.relation.references | Barral-Fraga, L., Barral, M. T., MacNeill, K. L., Martiñá-Prieto, D., Morin, S., Rodríguez-Castro, M. C., Tuulaikhuu, B.-A., & Guasch, H. (2020). Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 7, p. 2331). MDPI AG. https://doi.org/10.3390/ijerph17072331 | |
dc.relation.references | Bowell, R. J., Alpers, C. N., Jamieson, H. E., Nordstrom, D. K., & Majzlan, J. (2014). The Environmental Geochemistry of Arsenic -- An Overview --. In Reviews in Mineralogy and Geochemistry (Vol. 79, Issue 1, pp. 1–16). Mineralogical Society of America. https://doi.org/10.2138/rmg.2014.79.1 | |
dc.relation.references | Boskabady, M., Marefati, N., Farkhondeh, T., Shakeri, F., Farshbaf, A., & Boskabady, M. H. (2018). The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. In Environment International (Vol. 120, pp. 404–420). Elsevier BV. https://doi.org/10.1016/j.envint.2018.08.013 | |
dc.relation.references | Bravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., García, F. J., Moreno, M. M., Sánchez-Ormeño, M., & Higueras, P. (2017). Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). In Journal of Geochemical Exploration (Vol. 174, pp. 79–83). Elsevier BV. https://doi.org/10.1016/j.gexplo.2015.12.012 | |
dc.relation.references | Burgos Doria, R. (2015). Significado de valor cultural, natural y ambiental del humedal ciénaga grande del bajo sinú para los habitantes de la vereda caño viejo (lorica – córdoba – colombia). (Maestría), Universidad de Manizales, Manizales. | |
dc.relation.references | Bustamante, N., Danoucaras, N., McIntyre, N., Díaz-Martínez, J. C., & Restrepo-Baena, O. J. (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, (79), 163-172. | |
dc.relation.references | Camargo, J. A. (2002). Contribution of Spanish–American silver mines (1570–1820) to the present high mercury concentrations in the global environment: a review. In Chemosphere (Vol. 48, Issue 1, pp. 51–57). Elsevier BV. https://doi.org/10.1016/s0045-6535(02)00047-4 | |
dc.relation.references | Castor, J. M. R., Portugal, L., Ferrer, L., Hinojosa-Reyes, L., Guzmán-Mar, J. L., Hernández-Ramírez, A., & Cerdà, V. (2016). An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry. In Food Chemistry (Vol. 204, pp. 475–482). Elsevier BV. https://doi.org/10.1016/j.foodchem.2016.02.149 | |
dc.relation.references | Castro González, M. I., Méndez Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26. doi:10.1016/j.etap.2008.06.001 | |
dc.relation.references | Castro, M., Almeida, J., Ferrer, J., Díaz, D. (2014). Indicadores de la calidad del agua: evolución y tendencias a nivel global. Ingeniería Solidaria, 10(17). doi:http://dx.doi.org/10.16925/in.v9i17.811 | |
dc.relation.references | Cavoura, O., Brombach, C., Cortis, R., Davidson, C., Gajdosechova, Z., Keenan, H., y Krupp, E. (2017). Mercury alkylation in freshwater sediments from Scottish canals. Chemosphere, 183, 27-35. doi: 10.1016/j.chemosphere.2017.05.077 CMEE: Canadian sediment quality guidelines for the protection of aquatic life; bNOAA: National Oceanic and Atmospheric Administration, USA. | |
dc.relation.references | Che-Abdullah, M. I., Md Sah, A. S. R., & Haris, H. (2020). Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. In Tropical Life Sciences Research (Vol. 31, Issue 3, pp. 109–125). Penerbit Universiti Sains Malaysia. https://doi.org/10.21315/tlsr2020.31.3.8 | |
dc.relation.references | Chen, C. Y., Pickhardt, P. C., Xu, M. Q., & Folt, C. L. (2007). Mercury and Arsenic Bioaccumulation and Eutrophication in Baiyangdian Lake, China. In Water, Air, and Soil Pollution (Vol. 190, Issues 1–4, pp. 115–127). Springer Science and Business Media LLC. https://doi.org/10.1007/s11270-007-9585-8 | |
dc.relation.references | Chen, C.-F., Lim, Y. C., Ju, Y.-R., Albarico, F. P. J. B., Chen, C.-W., & Dong, C.-D. (2023). A novel pollution index to assess the metal bioavailability and ecological risks in sediments. In Marine Pollution Bulletin (Vol. 191, p. 114926). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2023.114926 | |
dc.relation.references | Cheng, H., & Hu, Y. (2010). Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. In Environmental Pollution (Vol. 158, Issue 5, pp. 1134–1146). Elsevier BV. https://doi.org/10.1016/j.envpol.2009.12.028 | |
dc.relation.references | Cullen, J.T., Maldonado, M.T. (2013). Biogeochemistry of Cadmium and Its Release to the Environment. In: Sigel, A., Sigel, H., Sigel, R. (eds) Cadmium: From Toxicity to Essentiality. Metal Ions in Life Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5179-8_2 | |
dc.relation.references | CVS: Corporación autonoma regional de los valles del sinú y san jorge. (2015). Plan departamental de adaptación al cambio climático para el departamento de Córdoba 2016 - 2027. | |
dc.relation.references | CVS:Corporación Autonoma Regional de los Valles del Sinú y San Jorge . (2017). Actualización del plan general de ordenación forestal del departamento de Córdoba. | |
dc.relation.references | CVS: Corporación Autonoma Regional de los Valles de Sinú y SanJorge (CVS). (2017). Solicitud de sustracción del Distrito Regional de Manejo Integrado, del complejo Cenagoso del Bajo Sinú (pp. 70-71). | |
dc.relation.references | Correa, P., Vélez, J., Smith, R., Vélez, A., Barrientos, A., y Gómez, J. (2006). Metodología de balance híddrico y de sedimentos comoherramienta de apoyo para la gestión integral del complejo lagunar del bajo Sinú. Avances en recursos hidráulicos, 14. | |
dc.relation.references | Costa, P.G. et al. (2022) ‘Temporal and spatial variations in metals and arsenic contamination in water, sediment and biota of freshwater, marine and coastal environments after the Fundão Dam Failure’, Science of The Total Environment, 806, p. 151340. doi:10.1016/j.scitotenv.2021.151340. | |
dc.relation.references | Chen, M., Ding, S., Lin, J., Fu, Z., Tang, W., y Fan, X. et al. (2019). Seasonal changes of lead mobility in sediments in algae- and macrophyte-dominated zones of the lake. Science Of The Total Environment, 660, 484-492. doi: 10.1016/j.scitotenv.2019.01.010 | |
dc.relation.references | Chen, L., Zhou, S., Shi, Y., Wang, C., Li, B., Li, Y., y Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science Of The Total Environment, 615, 141-149. doi: 10.1016/j.scitotenv.2017.09.230 | |
dc.relation.references | Cruz-Esquivel, Á., Viloria-Rivas, J., & Marrugo-Negrete, J. (2017). Genetic damage in Rhinella marina populations in habitats affected by agriculture in the middle region of the Sinú River, Colombia. In Environmental Science and Pollution Research (Vol. 24, Issue 35, pp. 27392–27401). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-017-0134-8 | |
dc.relation.references | Dai, L., Wang, L., Li, L., Liang, T., Zhang, Y., Ma, C., y Xing, B. (2018). Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Science Of The Total Environment, 621, 1433-1444. doi: 10.1016/j.scitotenv.2017.10.085. | |
dc.relation.references | Deng, R., Huang, D., Xue, W., Lei, L., Chen, S., y Zhou, C. et al. (2020). Eco-friendly remediation for lead-contaminated riverine sediment by sodium lignin sulfonate stabilized nano-chlorapatite. Chemical Engineering Journal, 397, 125396. doi: 10.1016/j.cej.2020.125396 | |
dc.relation.references | Dinu, C., Vasile, G.-G., Buleandra, M., Popa, D. E., Gheorghe, S., & Ungureanu, E.-M. (2020). Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. In Journal of Soils and Sediments (Vol. 20, Issue 4, pp. 2141–2154). Springer Science and Business Media LLC. https://doi.org/10.1007/s11368-019-02550-w | |
dc.relation.references | Dong, C.-D., Chen, C.-W., & Chen, C.-F. (2013). Distribution, enrichment, accumulation and potential ecological risks of mercury in the sediments of Kaohsiung Harbor, Taiwan. In Chemistry and Ecology (Vol. 29, Issue 8, pp. 693–708). Informa UK Limited. https://doi.org/10.1080/02757540.2013.817564 | |
dc.relation.references | Du, S., Zhou, Y., & Zhang, L. (2021). The potential of arsenic biomagnification in marine ecosystems: A systematic investigation in Daya Bay in China. In Science of The Total Environment (Vol. 773, p. 145068). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2021.145068 | |
dc.relation.references | Duarte-Restrepo, E., Noguera-Oviedo, K., Butryn, D., Wallace, J. S., Aga, D. S., & Jaramillo-Colorado, B. E. (2020). Spatial distribution of pesticides, organochlorine compounds, PBDEs, and metals in surface marine sediments from Cartagena Bay, Colombia. In Environmental Science and Pollution Research (Vol. 28, Issue 12, pp. 14632–14653). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-020-11504-6 | |
dc.relation.references | Duodu, G., Goonetilleke, A., Ayoko, G. (2017). Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Marine Pollution Bulletin, 117(1-2), 523- 531. doi: 10.1016/j.marpolbul.2017.02.017 | |
dc.relation.references | Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. In Reviews in Environmental Science and Bio/Technology (Vol. 12, Issue 4, pp. 335–353). Springer Science and Business Media LLC. https://doi.org/10.1007/s11157-013-9315-1 | |
dc.relation.references | El-Hassanin, A. S., Samak, M. R., Abdel-Rahman, G. N., Abu-Sree, Y. H., & Saleh, E. M. (2020). Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. In Toxicology Reports (Vol. 7, pp. 10–15). Elsevier BV. https://doi.org/10.1016/j.toxrep.2019.11.018 | |
dc.relation.references | El Zrelli, R., Yacoubi, L., Wakkaf, T., Castet, S., Grégoire, M., Mansour, L., Courjault-Radé, P., & Rabaoui, L. (2021). Surface sediment enrichment with trace metals in a heavily human-impacted lagoon (Bizerte Lagoon, Southern Mediterranean Sea): Spatial distribution, ecological risk assessment, and implications for environmental protection. In Marine Pollution Bulletin (Vol. 169, p. 112512). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2021.112512 | |
dc.relation.references | Espitia, N. (2014). Determinación de metales pesados en sedimentos superficiales en cuerpos de agua del canal del dique en las poblaciones de Gambote y Soplaviento (Bolívar). Rev. del Instituto de Investigación (RIIGEO), FIGMMG- UNMSM, 17(34). | |
dc.relation.references | Edelstein, M., Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431-444. doi: 10.1016/j.scienta.2017.12.039 | |
dc.relation.references | Feria, J. J., Marrugo, J. L., González, H. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America. Revista Facultad de Ingeniería Universidad de Antioquia, 55. | |
dc.relation.references | Fernandez-Maestre, R., Johnson-Restrepo, B., & Olivero-Verbel, J. (2018). Heavy Metals in Sediments and Fish in the Caribbean Coast of Colombia: Assessing the Environmental Risk. In International Journal of Environmental Research (Vol. 12, Issue 3, pp. 289–301). Springer Science and Business Media LLC. https://doi.org/10.1007/s41742-018-0091-1 | |
dc.relation.references | Ferreira, S. L. C., da Silva, J. B., Junior, dos Santos, I. F., de Oliveira, O. M. C., Cerda, V., & Queiroz, A. F. S. (2022). Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments – Practical aspects. In Trends in Environmental Analytical Chemistry (Vol. 35, p. e00169). Elsevier BV. https://doi.org/10.1016/j.teac.2022.e00169 | |
dc.relation.references | Forsyth, J. E., Saiful Islam, M., Parvez, S. M., Raqib, R., Sajjadur Rahman, M., Marie Muehe, E., Fendorf, S., & Luby, S. P. (2018). Prevalence of elevated blood lead levels among pregnant women and sources of lead exposure in rural Bangladesh: A case control study. In Environmental Research (Vol. 166, pp. 1–9). Elsevier BV. https://doi.org/10.1016/j.envres.2018.04.019 | |
dc.relation.references | Fuentes Gandara, F., Pinedo Hernández, J., Marrugo Negrete, J., Díaz, S. (2016). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health. doi:10.1007/s10653-016-9896-z | |
dc.relation.references | Fuentes-Gandara, F., Pinedo-Hernández, J., Gutiérrez, E., Marrugo-Negrete, J., & Díez, S. (2021). Heavy metal pollution and toxicity assessment in Mallorquin swamp: A natural protected heritage in the Caribbean Sea, Colombia. In Marine Pollution Bulletin (Vol. 167, p. 112271). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2021.112271 | |
dc.relation.references | Fuentes Hernandez, M., Saguinetti Gamboa, O., & Rojas de Astudillo, L. (2018, September 1). EVALUACIÓN del riesgo ambiental de metales pesados en los sedimentos superficiales del saco del golfo de cariaco. Revista Internacional de Contaminación Ambientañ, 35(num. 1), 101–114. | |
dc.relation.references | Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G.Z., Luo, Y., Zhao, D., An, S., Zhu, H., (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials. 270, 102– 109 | |
dc.relation.references | Gao, L., Li, S., Wang, Z., Liang, Z., Chen, J., Liang, B. (2018). Contamination, potential mobility, and origins of lead in sediment cores from the Shima River, south China. Environmental Pollution, 242, 1128-1136. doi: 10.1016/j.envpol.2018.07.104 | |
dc.relation.references | Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 11, p. 3782). MDPI AG. https://doi.org/10.3390/ijerph17113782 | |
dc.relation.references | Ghosh, D., Ghosh, A., & Bhadury, P. (2022). Arsenic through aquatic trophic levels: effects, transformations and biomagnification—a concise review. In Geoscience Letters (Vol. 9, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s40562-022-00225-y | |
dc.relation.references | Gong, X., Huang, D., Liu, Y., Zeng, G., Chen, S., Wang, R. et al. (2019). Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. Science Of The Total Environment, 666, 1126-1133. doi: 10.1016/j.scitotenv.2019.02.215 | |
dc.relation.references | Gworek, B., Dmuchowski, W., & Baczewska-Dąbrowska, A. H. (2020). Mercury in the terrestrial environment: a review. In Environmental Sciences Europe (Vol. 32, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12302-020-00401-x | |
dc.relation.references | Hanh, H. T., Kim, J.-Y., Bang, S., & Kim, K.-W. (2010). Sources and Fate of As in the Environment. In Geosystem Engineering (Vol. 13, Issue 1, pp. 35–42). Informa UK Limited. https://doi.org/10.1080/12269328.2010.10541307 Hsu-Kim, H., Eckley, C., Achá, D., Feng, X., Gilmour, C., Jonsson, S., Mitchell, C. (2018). Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 47(2), 141-169. doi: 10.1007/s13280-017- 1006-7 | |
dc.relation.references | Islam M.A., Al-mamun A., Hossain F., Quraishi S.B., Naher K., Khan R., Das S., Hossain S.M., Nahid F., Tamim U. (2017). Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest, Bangladesh. Marine Pollution Bulletin 124 356–366 | |
dc.relation.references | Jabbar-Khan, A., Akhter, G., Gabriel, H. F., & Shahid, M. (2020). Anthropogenic Effects of Coal Mining on Ecological Resources of the Central Indus Basin, Pakistan. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 4, p. 1255). MDPI AG. https://doi.org/10.3390/ijerph17041255 | |
dc.relation.references | Jabeen, R., Tahir, M., & Waqas, S. (2010). Teratogenic effects of lead acetate on kidney. Journal of Ayub Medical College Abbottabad, 22(1), 76-79. | |
dc.relation.references | Jimenez, P. A. J., Díaz, X., Silva, M. L. N., Vega, A., & Curi, N. (2023). Assessing and Understanding Arsenic Contamination in Agricultural Soils and Lake Sediments from Papallacta Rural Parish, Northeastern Ecuador, via Ecotoxicology Factors, for Environmental Embasement. In Sustainability (Vol. 15, Issue 5, p. 3951). MDPI AG. https://doi.org/10.3390/su1505395 | |
dc.relation.references | Loska, K., & Wiechuła, D. (2006). Comparison of Sample Digestion Procedures for the Determination of Arsenic in Bottom Sediment Using Hydride Generation AAS. In Microchimica Acta (Vol. 154, Issues 3–4, pp. 235–240). Springer Science and Business Media LLC. https://doi.org/10.1007/s00604-006-581-2 | |
dc.relation.references | Kafilat-Adebola, B.-A., Joseph Kayode, S., & Adebayo Akeem, O. (2017). Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West, Nigeria. In Human and Ecological Risk Assessment: An International Journal (Vol. 24, Issue 2, pp. 377–397). Informa UK Limited. https://doi.org/10.1080/10807039.2017.138469 | |
dc.relation.references | Karadede Akin, H., Ünlü, E. (2007). Heavy Metal Concentrations in Water, Sediment, Fish and Some Benthic Organisms from Tigris River, Turkey. Environ Monit Assess. doi:10.1007/s10661-006-9478-0 | |
dc.relation.references | Karimi-Nezhad, M. T., Mohammadi, K., Gholami, A., Hani, A., & Shariati, M. S. (2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran: Distribution, relationship with soil characteristics and multivariate analysis of contamination sources. In Geoderma (Vols. 219–220, pp. 177–185). Elsevier BV. https://doi.org/10.1016/j.geoderma.2013.12.021 | |
dc.relation.references | Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473-481. doi: 10.1016/j.chemosphere.2017.02.029 | |
dc.relation.references | Khanam, R., Kumar, A., Nayak, A. K., Shahid, Md., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B. S., & Pathak, H. (2020). Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. In Science of The Total Environment (Vol. 699, p. 134330). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2019.134330 | |
dc.relation.references | Kim, R.-Y., Yoon, J.-K., Kim, T.-S., Yang, J. E., Owens, G., & Kim, K.-R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. In Environmental Geochemistry and Health (Vol. 37, Issue 6, pp. 1041–1061). Springer Science and Business Media LLC. https://doi.org/10.1007/s10653-015-9695-y | |
dc.relation.references | Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. In Applied Geochemistry (Vol. 108, p. 104388). Elsevier BV. https://doi.org/10.1016/j.apgeochem.2019.104388 | |
dc.relation.references | Kumar, V., Pandita, S., & Setia, R. (2022). A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. In Gondwana Research (Vol. 103, pp. 487–501). Elsevier BV. https://doi.org/10.1016/j.gr.2021.10.028 | |
dc.relation.references | Lans, E., Díaz, B., Paez, M. (2011). Compuestos organoclorados residuales en dos especies ícticas de la Ciénaga Grande del. MVZ Córdoba, 16(1). | |
dc.relation.references | Lans, E., Marrugo, J., Díaz, B. (2008). Study of contamination by organochlorine pesticides in the cienaga grande waters of the low sinu river valley. Temas Agrarios, 13(1), 50, 51. | |
dc.relation.references | Lans Ceballos, E., Lombana Gómez, M., Pinedo Hernández, J. (2018). Residuos de pesticidas organoclorados en leche pasteurizada distribuida en Montería, Colombia. Salud Pública, (20) (2), 208-214. | |
dc.relation.references | Liu, G., Tao, L., Liu, X., Hou, J., Wang, A., & Li, R. (2013). Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. In Journal of Geochemical Exploration (Vol. 132, pp. 156–163). Elsevier BV. https://doi.org/10.1016/j.gexplo.2013.06.017 | |
dc.relation.references | Londoño Franco , L. F., Londoño Muñoz, P. T., Muñoz García, F. G. (2016). RISK OF Heavy metals in human and animal health. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 147. doi:10.18684/BSAA(14)145-153 | |
dc.relation.references | Long, E.R., Morgan, L.G., (1991). The potential for biological effects of sediment- sorbed contaminants tested in the national status and trends program. In: NOAA Technical Memorandum NOS OMA 52. US National Oceanic and Atmospheric Administration, Seattle, Washington. | |
dc.relation.references | Long, E.R., MacDonald, D.D., Severn, C.G., Hong, B.C., (2000). Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ. Toxicol. 19, 2598–2601 | |
dc.relation.references | Madero G, A., & Marrugo-Negrete, J. (2011). Detection of heavy metals in cattle, in the valleys of the Sinu and San Jorge rivers, department of Cordoba, Colombia. Revista MVZ Córdoba, 16(1), 2391-2401. | |
dc.relation.references | Macdonald, D.D., Ingersoll, C.G., Berger, T.A., (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39 (1), 20-31 | |
dc.relation.references | Maity, J. P., Chen, G.-S., Huang, Y.-H., Sun, A.-C., & Chen, C.-Y. (2019). Ecofriendly Heavy Metal Stabilization: Microbial Induced Mineral Precipitation (MIMP) and Biomineralization for Heavy Metals within the Contaminated Soil by Indigenous Bacteria. In Geomicrobiology Journal (Vol. 36, Issue 7, pp. 612–623). Informa UK Limited. https://doi.org/10.1080/01490451.2019.1597216 | |
dc.relation.references | Mancera Rodriguez, N. J., Alvarez León, R. (2006). Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuicolas de colombia. Acta Biológica Colombiana, 11(1). | |
dc.relation.references | Marrugo Negrete, J., Pinedo Hernández, J., Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380-388. http://dx.doi.org/10.1016/j.envres.2017.01.021 | |
dc.relation.references | Marrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E., Bravo, A., Díez, S. (2019). Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation and Development, 30(17), 2139-2149. doi: 10.1002/ldr.3398 | |
dc.relation.references | Marrugo-Negrete, J., Pinedo-Hernández, J., Marrugo-Madrid, S., & Díez, S. (2020). Assessment of trace element pollution and ecological risks in a river basin impacted by mining in Colombia. In Environmental Science and Pollution Research (Vol. 28, Issue 1, pp. 201–210). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-020-10356-4 | |
dc.relation.references | Martínez-Mera, E.E., Ana Carolina, T.-E., Tito José, C.-B., José Luis, M.-N., & Luis Carlos, G.-M. (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. In Heliyon (Vol. 5, Issue 8, p. e02217). Elsevier BV. https://doi.org/10.1016/j.heliyon.2019.e02217 | |
dc.relation.references | Mohiuddin, K.M., Ogawa, Y., Zakir, H.M., Otomo, K., Shikazono, N., (2011). Trace elements contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 8, 723–736. | |
dc.relation.references | Nabi, S. (2014). Toxic Effects of Mercury. Springer India. https://doi.org/10.1007/978-81-322-1922- | |
dc.relation.references | Nabi, M. (2021). Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. In Environmental Nanotechnology, Monitoring & Management (Vol. 16, p. 100509). Elsevier BV. https://doi.org/10.1016/j.enmm.2021.100509 | |
dc.relation.references | NOAA, (2012). National Oceanic and Atmospheric Administration, USA (Chapter 173–204 WAC, 1991/95, WA Dept. of Ecology). | |
dc.relation.references | Nordberg, G. F. (2009). Historical perspectives on cadmium toxicology. In Toxicology and Applied Pharmacology (Vol. 238, Issue 3, pp. 192–200). Elsevier BV. https://doi.org/10.1016/j.taap.2009.03.015 | |
dc.relation.references | Noreña Ramirez, D. A., Murillo Perea, E., Guio Duque, J. A., Méndez Arteaga, J. J. (2012). Heavy metals (Cd, Pb and Ni) in fish species commercially important from Magdalena river, Tolima tract, Colombia. Revista Tumbaga,, 2(7). | |
dc.relation.references | Oliveri, E., Salvagio Manta, D., Bonsignore, M., Cappello, S., Tranchida, G., Bagnato, E., Sabatino, N., Santisi, S., & Sprovieri, M. (2016). Mobility of mercury in contaminated marine sediments: Biogeochemical pathways. In Marine Chemistry (Vol. 186, pp. 1–10). Elsevier BV. https://doi.org/10.1016/j.marchem.2016.07.002 | |
dc.relation.references | OMS, O.M.d.l.S. (2017). Cadmio. Retrieved from http://www.who.int/ipcs/assessment/public_health/cadmium/es/ | |
dc.relation.references | Ortiz Romero, L., Delgado Tascón, J., Pardo Rodríguez, D., Murillo Perea, E., y Guio Duque, A. (2015). Heavy metals determination and quality indexes in water and sediments from magdalena river – tolima tract, colombia. Revista Tumbaga, 2(10). | |
dc.relation.references | Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals Of Agrarian Science, 15(2), 278-286. doi: 10.1016/j.aasci.2017.04.001 | |
dc.relation.references | Osuna-Martínez, C. C., Armienta, M. A., Bergés-Tiznado, M. E., & Páez-Osuna, F. (2021). Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. In Science of The Total Environment (Vol. 752, p. 142062). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2020.142062 | |
dc.relation.references | Peña Salamanca, E., Cantera Kintz, J. and Muñoz, E., (2012). Evaluacion De La Contaminación en Ecosistemas Acuaticos: Un Estudio De Caso En La Laguna De Sonso, En La Cuenca Alta Del Río Cauca. Cali: Programa editorial univer, pp.146,147. | |
dc.relation.references | Perera, P., Sundarabarathy, T., Sivananthawerl, T., Kodithuwakku, S., Edirisinghe, U. (2016). Arsenic and Cadmium Contamination in Water, Sediments and Fish is a Consequence of Paddy Cultivation: Evidence of River Pollution in Sri Lanka. Achievements In The Life Sciences, 10(2), 144-160. doi: 10.1016/j.als.2016.11.002 | |
dc.relation.references | Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M.L., Orio, A.A. (1985). Heavy Metal Speciation in the Sediments Northern Adriatic Sea: A New Approach for Environmental Toxicity Determination, Volume 2. CEP Consultants, Edinburgh, pp. 454–456 | |
dc.relation.references | Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. In Chemosphere (Vol. 119, pp. 1289–1295). Elsevier BV. https://doi.org/10.1016/j.chemosphere.2014.09.044 | |
dc.relation.references | Poulin J, Gibb H. Mercurio: Evaluación de la carga de morbilidad ambiental a nivel nacional y local. Editora, Prüss-Üstün A. Organización Mundial de la Salud, Ginebra, (2008). (OMS, Serie Carga de Morbilidad Ambiental, n.º 16) | |
dc.relation.references | Ramachandra, T., Sudarshan, P., Mahesh, M. and Vinay, S., (2018). Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. Journal of Environmental Management, 206, pp.1204- 1210. | |
dc.relation.references | Ran, H., Guo, Z., Yi, L., Xiao, X., Zhang, L., Hu, Z., Li, C., & Zhang, Y. (2021). Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. In Journal of Hazardous Materials (Vol. 413, p. 125382). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2021.125382 | |
dc.relation.references | Rasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M. N., Li, C., & Zhou, Y. (2018). Fluorescent sensor-based models for the detection of environmentally-related toxic heavy metals. In Science of The Total Environment (Vol. 615, pp. 476–485). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2017.09.126 | |
dc.relation.references | Rauret, G.,López-Sánchez, J.F.,Sahuquillo, A., Barahona, E., Lachica, M., Ure, A.M., Davidson, C.M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntau, H., Quevauviller, P., (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monit. 2, 228-233 | |
dc.relation.references | Reyes, Y., Vergara, I., Torres, O., Díaz, M., González, E. (2016). Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria. Ingeniería Investigación Y Desarrollo, 16(2). doi: 10.19053/1900771x.v16.n2.2016.5447 | |
dc.relation.references | Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental Mercury and Its Toxic Effects. In Journal of Preventive Medicine & Public Health (Vol. 47, Issue 2, pp. 74–83). Korean Society for Preventive Medicine. https://doi.org/10.3961/jpmph.2014.47.2.74 | |
dc.relation.references | Rodríguez-Espinosa, P., Shruti, V., Jonathan, M., Martinez-Tavera, E. (2018). Metal concentrations and their potential ecological risks in fluvial sediments of Atoyac River basin, Central Mexico: Volcanic and anthropogenic influences. Ecotoxicology And Environmental Safety, 148, 1020-1033. doi: 10.1016/j.ecoenv.2017.11.068 | |
dc.relation.references | Roqueme, J., Pinedo H, J., Marrugo N., J., Aparicio, A. (2014). Metales pesados en suelos agrícolas del valle medio y bajo del rio Sinú, departamento de Córdoba. Memorias Del II Seminario De Ciencias Ambientales Sue-Caribe & VII Seminario Internacional De Gestión Ambiental, 106-111. | |
dc.relation.references | Rúa Cardona, A., Flórez Molina, M., Palacio Baena, J. (2013). Variación espacial y temporal en los contenidos de mercurio, plomo, cromo y materia orgánica en sedimento del complejo de humedales de Ayapel, Córdoba, noroccidente colombiano. Facultad Ingenieria Universidad De Antioquia, N. º69, pp. 244- 255. | |
dc.relation.references | Sadiq, M., Zaidi, T., Al-Mohana, M. (1991). Sample weight and digestion temperature as critical factors in mercury determination in fish. Bulletin of Environmental Contamination and Toxicology | |
dc.relation.references | Salazar Mejia, I. (2008). Lugar encantado de las aguas: Aspectos económicos de la Ciénaga Grande del Bajo Sinú. Cartagena. | |
dc.relation.references | Sartipi Yarahmadi, S., Ansari, M. (2018). Ecological risk assessment of heavy metals (Zn, Cr, Pb, As and Cu) in sediments of Dohezar River, North of Iran, Tonekabon city. Acta Ecologica Sinica, 38(2), 126-134. doi: 10.1016/j.chnaes.2017.06.018 | |
dc.relation.references | Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, Environmental Exposure, and Health Outcomes. In Environmental Health Perspectives (Vol. 118, Issue 2, pp. 182–190). Environmental Health Perspectives. https://doi.org/10.1289/ehp.0901234 | |
dc.relation.references | Schmitz, H., Maher, W., Taylor, A., Krikowa, F. (2015). Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster | |
dc.relation.references | Sekabira, K., Origa, H. O., Basamba, T. A., Mutumba, G., & Kakudidi, E. (2010). Assessment of heavy metal pollution in the urban stream sediments and its tributaries. In International Journal of Environmental Science & Technology (Vol. 7, Issue 3, pp. 435–446). Springer Science and Business Media LLC. https://doi.org/10.1007/bf03326153 | |
dc.relation.references | Sepulveda Vargas, r. (2015). Environmental conflicts in the lower basin of the Sinu river, Colombia. Revista Direitos Emergentes Na Sociedade Global, 4(1), 23- 43. doi: 10.5902/23163054 | |
dc.relation.references | Shaheen, N., Irfan, N., Khan, I., Islam, S., Islam, M., Ahmed, M. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere,152, 431-438. http://dx.doi.org/10.1016/j.chemosphere.2016.02.060 Saccostrea glomerata. Aquatic Toxicology, 160, 22-30. doi: 10.1016/j.aquatox.2014.12.019 | |
dc.relation.references | Sheng, P. X., Ting, Y.-P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. In Journal of Colloid and Interface Science (Vol. 275, Issue 1, pp. 131–141). Elsevier BV. https://doi.org/10.1016/j.jcis.2004.01.036 | |
dc.relation.references | Smedley, P.L., Kinniburgh, D.G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 | |
dc.relation.references | Spiller, H. A. (2018). Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. In Clinical Toxicology (Vol. 56, Issue 5, pp. 313–326). Informa UK Limited. https://doi.org/10.1080/15563650.2017.1400555 | |
dc.relation.references | Sungur, A., Soylak, M., & Ozcan, H. (2014). Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. In Chemical Speciation & Bioavailability (Vol. 26, Issue 4, pp. 219–230). Informa UK Limited. https://doi.org/10.3184/095422914x14147781158674 | |
dc.relation.references | Suresh, G., Ramasamy, V., Sundarrajan, M., Paramasivam, K., (2015). Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala. India. Mar. Pollut. Bull 91 (1), 389-400. | |
dc.relation.references | Tang, W.-L., Liu, Y.-R., Guan, W.-Y., Zhong, H., Qu, X.-M., & Zhang, T. (2020). Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. In Science of The Total Environment (Vol. 714, p. 136827). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2020.136827 | |
dc.relation.references | Tasneem, F., Abbasi, N. A., Iqbal Chaudhry, M. J., Mashiatullah, A., Ahmad, S. R., Qadir, A., & Malik, R. N. (2020). Dietary proxies (δ15N, δ13C) as signature of metals and arsenic exposure in birds from aquatic and terrestrial food chains. In Environmental Research (Vol. 183, p. 109191). Elsevier BV. https://doi.org/10.1016/j.envres.2020.1091 | |
dc.relation.references | Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012). Heavy Metal Toxicity and the Environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6 | |
dc.relation.references | Tejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. In Environmental Pollution (Vol. 212, pp. 238–250). Elsevier BV. https://doi.org/10.1016/j.envpol.2016.01.057 | |
dc.relation.references | Thawornchaisit, U., & Polprasert, C. (2009). Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. In Journal of Hazardous Materials (Vol. 165, Issues 1–3, pp. 1109–1113). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2008.10.103 | |
dc.relation.references | Tomlinson, D.C., Wilson, J.G., Harris, C.R., Jeffery, D.W., (1980). Problems in the assessment of trace elements levels in estuaries and the formation of a pollution index. Helgoländer Meeresun. 33, 566–575. | |
dc.relation.references | Torregroza-Espinosa, A. C., Martínez-Mera, E., Castañeda-Valbuena, D., González-Márquez, L. C., & Torres-Bejarano, F. (2018). Contamination Level and Spatial Distribution of Heavy Metals in Water and Sediments of El Guájaro Reservoir, Colombia. In Bulletin of Environmental Contamination and Toxicology (Vol. 101, Issue 1, pp. 61–67). Springer Science and Business Media LLC. https://doi.org/10.1007/s00128-018-2365-x | |
dc.relation.references | Tosic, M., Restrepo, J. D., Lonin, S., Izquierdo, A., & Martins, F. (2019). Water and sediment quality in Cartagena Bay, Colombia: Seasonal variability and potential impacts of pollution. In Estuarine, Coastal and Shelf Science (Vol. 216, pp. 187–203). Elsevier BV. https://doi.org/10.1016/j.ecss.2017.08.013 | |
dc.relation.references | Uluturhan, E., Kontas, A., Can, E., (2011). Sediment concentrations of trace elements in the Homa Lagoon (Eastern Aegean Sea): assessment of contamination and ecological risks. Mar. Pollut. Bull. 62, 1989–1997. | |
dc.relation.references | U.S. EPA, (1998). "Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry," Revision 0. Washington, DC. [online] Available at : https://www.epa.gov/esam/epa-method-7473-sw-846-mercury-solids- and-solutions-thermal-decomposition-amalgamation-and | |
dc.relation.references | U.S. EPA, (2007). “Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils,” Revision 1. Washington, DC.(p.30). [online] Available at: https://www.epa.gov/esam/us-epa- method-3051a-microwave-assisted-acid-digestion-sediments-sludges- and-oils | |
dc.relation.references | Vallejo Toro, P. P., Vásquez Bedoya, L. F., Correa, I. D., Bernal Franco, G. R., Alcántara-Carrió, J., & Palacio Baena, J. A. (2016). Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia. In Marine Pollution Bulletin (Vol. 111, Issues 1–2, pp. 311–320). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2016.06.093 | |
dc.relation.references | Vöröš, D., DíazSomoano, M., Geršlová, E., Sýkorová, I., Suárez-Ruiz, I. (2018). Mercury contamination of stream sediments in the North Bohemian Coal District (Czech Republic): Mercury speciation and the role of organic matter. Chemosphere, 211, 664-673. doi: 10.1016/j.chemosphere.2018.07.196 | |
dc.relation.references | Vu, C., Lin, C., Shern, C., Yeh, G., Le, V., Tran, H., 2017. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, pp.32-42. | |
dc.relation.references | Wang, S., Wu, Z., & Luo, J. (2018). Transfer Mechanism, Uptake Kinetic Process, and Bioavailability of P, Cu, Cd, Pb, and Zn in Macrophyte Rhizosphere Using Diffusive Gradients in Thin Films. In Environmental Science & Technology (Vol. 52, Issue 3, pp. 1096–1108). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.7b01578 | |
dc.relation.references | Walker, S.R., Parsons, M.B., Jamieson, H.E., et al. (2009). Arsenic mineralogy of near-surface tailings and soils: influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. Can. Miner. 47(3), 533–556 | |
dc.relation.references | Wang, J., Jiang, Y., Sun, J., She, J., Yin, M., Fang, F. et al. (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicology And Environmental Safety, 196, 110529. doi: 10.1016/j.ecoenv.2020.110529 Wu, H., Liu, J., Bi, X., Lin, G., Feng, C.C., Li, Z., Qi, F., Zheng, T., Xie, L., (2017). Trace elements in sediments and benthic animals from aquaculture ponds near a mangrove wetland in southern China. Mar. Pollut. Bull | |
dc.relation.references | Xiao, R., Zhang, M., Yao, X., Ma, Z., Yu, F., & Bai, J. (2015). Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta. In Journal of Soils and Sediments (Vol. 16, Issue 3, pp. 821–830). Springer Science and Business Media LLC. https://doi.org/10.1007/s11368-015-1274-4 | |
dc.relation.references | Yang, L., Zhang, W., Ren, M., Cao, F., Chen, F., Zhang, Y., y Shang, L. (2020). Mercury distribution in a typical shallow lake in northern China and its re- emission from sediment. Ecotoxicology And Environmental Safety, 192. doi: 10.1016/j.ecoenv.2020.110316 | |
dc.relation.references | Ynalvez, R., Gutierrez, J., & Gonzalez-Cantu, H. (2016). Mini-review: toxicity of mercury as a consequence of enzyme alteration. In BioMetals (Vol. 29, Issue 5, pp. 781–788). Springer Science and Business Media LLC. https://doi.org/10.1007/s10534-016-9967-8 | |
dc.relation.references | Yuan, Z., Luo, T., Liu, X., Hua, H., Zhuang, Y., Zhang, X., Zhang, L., Zhang, Y., Xu, W., & Ren, J. (2019). Tracing anthropogenic cadmium emissions: From sources to pollution. In Science of The Total Environment (Vol. 676, pp. 87–96). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2019.04.250 | |
dc.relation.references | Zhang, X., Yang, L., Li, Y., Li, H., Wang, W., & Ye, B. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. In Environmental Monitoring and Assessment (Vol. 184, Issue 4, pp. 2261–2273). Springer Science and Business Media LLC. https://doi.org/10.1007/s10661-011-2115-6 | |
dc.relation.references | Zhang, R., Zhou, L., Zhang, F., Ding, Y.J., Gao, J.R., Chen, J., Yan, H.Q., Shao, W., (2013). Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China. Mar. Pollut. Bull. 74 (1), 403e412. | |
dc.relation.references | Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F. et al. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270-281. doi: 10.1016/j.envint.2014.08.010 | |
dc.relation.references | Zhang, J., Hua, P., & Krebs, P. (2017a). Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. In Environmental Pollution (Vol. 228, pp. 158–168). Elsevier BV. https://doi.org/10.1016/j.envpol.2017.05.029 | |
dc.relation.references | Zhang, W., Musante, C., White, J. C., Schwab, P., Wang, Q., Ebbs, S. D., & Ma, X. (2017b). Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. In Plant Physiology and Biochemistry (Vol. 110, pp. 185–193). Elsevier BV. https://doi.org/10.1016/j.plaphy.2015.12.013 | |
dc.relation.references | Zhang, X., Wei, S., Sun, Q., Wadood, S. A., & Guo, B. (2018). Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. In Ecotoxicology and Environmental Safety (Vol. 159, pp. 354–362). Elsevier BV. https://doi.org/10.1016/j.ecoenv.2018.04.072 | |
dc.relation.references | Zhang, Q., & Wang, C. (2020). Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: a Review. In Water, Air, & Soil Pollution (Vol. 231, Issue 7). Springer Science and Business Media LLC. https://doi.org/10.1007/s11270-020-04728-2 | |
dc.relation.references | Zhou, H., Zeng, M., Zhou, X., Liao, B.-H., Peng, P.-Q., Hu, M., Zhu, W., Wu, Y.-J., & Zou, Z.-J. (2014). Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. In Plant and Soil (Vol. 386, Issues 1–2, pp. 317–329). Springer Science and Business Media LLC. https://doi.org/10.1007/s11104-014-2268-5 | |
dc.relation.references | Zhou, Y., Tang, Y., Liao, C., Su, M., & Shih, K. (2023). Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. In Journal of Hazardous Materials (Vol. 448, p. 130977). Elsevier BV. https://doi.org/10.1016/j.jhazmat.2023.130977 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Universidad de Córdoba | |
dc.subject.keywords | Ecotoxicology | |
dc.subject.keywords | Heavy metals | |
dc.subject.keywords | Aquatic ecosystems | |
dc.subject.keywords | Mining | |
dc.subject.keywords | Sediments | |
dc.subject.proposal | Ecotoxicología | |
dc.subject.proposal | Metales pesados | |
dc.subject.proposal | Ecosistemas acuáticos | |
dc.subject.proposal | Minería | |
dc.subject.proposal | Sedimentos | |
dc.title | Evaluación de la contaminación y riesgo ecológico potencial por metales pesados en sedimentos de la Ciénaga Grande del Bajo Sinú, transecto Loríca – Purísima, departamento de Córdoba | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: