Publicación:
Fermentación in vitro de consorcios bacterianos celulolíticos ruminales de búfalos de agua en sustratos fibrosos

dc.contributor.authorHerrera-Pérez, Jerónimospa
dc.contributor.authorVelez-Regino, Luis Gspa
dc.contributor.authorSánchez-Santillán, Paulinospa
dc.contributor.authorTorres-Salado, Nicolásspa
dc.contributor.authorRojas-García, Adelaido Rspa
dc.contributor.authorMaldonado-Peralta, Maríaspa
dc.date.accessioned2018-09-01 00:00:00
dc.date.accessioned2022-07-01T21:00:59Z
dc.date.available2018-09-01 00:00:00
dc.date.available2022-07-01T21:00:59Z
dc.date.issued2018-09-01
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/epub+zipspa
dc.format.mimetypeapplication/xmlspa
dc.identifier.doi10.21897/rmvz.1374
dc.identifier.eissn1909-0544
dc.identifier.issn0122-0268
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/5963
dc.identifier.urlhttps://doi.org/10.21897/rmvz.1374
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/1374/pdf
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/1374/epub
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/1374/2509
dc.relation.citationeditionNúm. 3 , Año 2018 : Revista MVZ Córdoba Volumen 23(3) Septiembre-Diciembre 2018spa
dc.relation.citationendpage6870
dc.relation.citationissue3spa
dc.relation.citationstartpage6860
dc.relation.citationvolume23spa
dc.relation.ispartofjournalRevista MVZ Córdobaspa
dc.relation.referencesMalherbe S, y Cloete TE. Lignocellulose biodegradation: fundamentals and applications. Rev. Environ Sci. Biotechnol 2002; 1(2):105-114. https://doi.org/10.1023/A:1020858910646spa
dc.relation.referencesChanthakhoun V, Wanapat M, Kongmun P, and Cherdthong A. Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Liv Sci 2012; 143(2-3):172-176. https://doi.org/10.1016/j.livsci.2011.09.009spa
dc.relation.referencesLin B, Henderson G, Zou C, Cox F, Liang X, Janssen PH et al. Characterization of the rumen microbial community composition of buffalo breeds consuming diets typical of dairy production systems in Southern China. Anim Feed Sci Technol 2015; 207:75-84. https://doi.org/10.1016/j.anifeedsci.2015.06.013spa
dc.relation.referencesFranzolin R, Rosales FP, and Soares WVB. Effect of two energy and two protein sources in sugar cane based diets on the population of rumen ciliate protozoa in water buffalo (Bubalus bubalis) and zebu cattle (Bos taurus indicus). Reprod Nutr Dev 2006; 46(Suppl. 1): S15spa
dc.relation.referencesPuppo S, Bartocci S, Terramoccia S, and Grandoni F. Rumen microbial counts and in vivo digestibility in buffaloes and cattle given different diets. Anim Sci 2002; 75(2): 323-329.spa
dc.relation.referencesBader J, Mast-Gerlach E, Popovic MK, Bajpai R, and Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 2010; 109(2):371-387. https://doi.org/10.1111/j.1365-2672.2009.04659.xspa
dc.relation.referencesSabra WD, Tjahjasari D, and Zeng A. Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 2010; 10(5):407-421. https://doi.org/10.1002/elsc.201000111spa
dc.relation.referencesDavey ME, and O´toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64(4):847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000spa
dc.relation.referencesINEGI. Anuario estadístico y geográfico de los Estados Unidos Mexicanos. Instituto Nacional de Estadística Geografía e Informática. (Acceso el 20 de junio de 2018). URL disponible en www.beta.inegi.org.mx/app/areasgeograficas/?ag=12023.spa
dc.relation.referencesNOM-062-ZOO-1999. Norma Oficial Mexicana, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. SENASICA, México. 22 de agosto de 2001. URL disponible en https://www.gob.mx/senasica/documentos/nom-062-zoo-1999.spa
dc.relation.referencesSánchez-Santillán P, Cobos-Peralta MA, Hernández-Sánchez D, Álvarado AI, Espinosa-Victoria D, y Herrera-Haro JG. Uso de carbón activado para conservar bacterias celulolíticas liofilizadas. Agrociencia 2016. 50(5): 575-582.spa
dc.relation.referencesAOAC. Official Methods of Analysis (18th Ed) Association of official analytical chemist. Arlington, VA, USA 2007.spa
dc.relation.referencesVan Soest PJ, Roberton JB, and Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2spa
dc.relation.referencesHernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-García AR, Reyes-Vázquez I, y Mendoza-Nú-ez MA. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Rev Mex Cienc Pec 2018; 9(01): 105-120. https://doi.org/10.22319/rmcp.v9i1.4332spa
dc.relation.referencesStolaroff JK, Keit DW, and Lowry GV. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 2008; 42(8):2728-2735. https://doi.org/10.1021/es702607wspa
dc.relation.referencesMcCullough H. The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta 1967;17(2):297-304. https://doi.org/10.1016/0009-8981(67)90133-7spa
dc.relation.referencesSAS. Institute Inc. Statistical Analysis System, SAS, User's Guide: SAS Inst., Cary, NC. 2011. pp: 3154-3339.spa
dc.relation.referencesZicarelli F, Calabrò S, Cutrignelli MI, Infascelli F, Tudisco R, Bovera F et al. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. J Sci Food Agric 2011; 91(7): 1213-1221. https://doi.org/10.1002/jsfa.4302spa
dc.relation.referencesGándara L, Borrajo CI, Fernández JA, Mercedes PM. Efecto de la fertilización nitrogenada y la edad del rebrote sobre el valor nutritivo de Brachiaria brizantha cv. "Marandú". FCA Uncuyo 2017; 49(1): 69-77.spa
dc.relation.referencesBedoya-Mazo S, Noguera RR, y Posada SL. Effect of ruminal inoculum of buffalo, cattle and goat on dry matter degradation and methane production in vitro. LRRD 2016; 28: 5.spa
dc.relation.referencesCalabrò S, Infascelli F, Tudisco R, Musco N, Grossi M, Monastra G et al. Estimation of In vitro methane production in buffalo and cow. Buffalo Bull 2013; 32(2): 924-927.spa
dc.relation.referencesNRC. Nutrient requeriments of small ruminants sheep, goats, cervios, and new world camelidos, The National Academies Press 2007; USA. 362 p.spa
dc.relation.referencesSánchez-Santillán P, y Cobos-Peralta MA. Producción in vitro de ácidos grasos volátiles de bacterias celulolíticas reactivadas y bacterias ruminales totales en sustratos celulósicos. Agrociencia 2016; 50(5): 565-574.spa
dc.relation.referencesAraujo RC, Pires AV, Mourão GB, Abdalla AL, and Sallem AMA. Use of blanks to determine in vitro net gas and methane production when using rumen fermentation modifiers. Anim Feed Sci Technol 2011; 166-167: 155-162. https://doi.org/10.1016/j.anifeedsci.2011.04.009spa
dc.relation.referencesMedjekal S, Bodas R, Bousseboua H, and López S. Evaluation of three medicinal plants for methane production potential fiber digestion and rumen fermentation in vitro. Energy Procedia 2017; 119: 632-641. https://doi.org/10.1016/j.egypro.2017.07.089spa
dc.relation.referencesCobos PMA. Interacciones entre microorganismos ruminales. In: Microbiología Agrícola: hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo. Ed. Trillas 2007; México. 498-516 pp.spa
dc.relation.referencesThurston B, Dawson KA, and Strobel HJ. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol 1994; 60(4): 1087-1092.spa
dc.relation.referencesChristensen RG, Eun JS, Yang SY, Min BR, and MacAdam JW. In vitro effects of birdsfoot trefoil (Lotus corniculatus L.) pasture on ruminal fermentation, microbial population, and methane production. Prof Anim Sci 2016; 33(4): 451-460. https://doi.org/10.15232/pas.2016-01558spa
dc.relation.referencesChen Y, Penner GB, Li M, Oba M, and Guan LG. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a highgrain diet. Appl Environ Microbiol 2011; 77(16): 5770-5781. https://doi.org/10.1128/AEM.00375-11spa
dc.relation.referencesWanapat M, Phesatcha K, and Kang S. Rumen adaptation of swamp buffaloes (Bubalus bubalis) by high level of urea supplementation when fed on rice straw-based diet. Trop Anim Health Prod 2016; 48/6): 1153-1140.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistamvz.unicordoba.edu.co/article/view/1374spa
dc.subjectRuminal bacteriaeng
dc.subjectBubalus bubaliseng
dc.subjectcellulosic cocultureeng
dc.subjectdegradationeng
dc.subjectBacterias ruminalesspa
dc.subjectBubalus bubalisspa
dc.subjectcelulósicosspa
dc.subjectcocultivospa
dc.subjectdegradaciónspa
dc.titleFermentación in vitro de consorcios bacterianos celulolíticos ruminales de búfalos de agua en sustratos fibrososspa
dc.title.translatedIn vitro fermentation of fibrous substrates by water buffalo ruminal cellulolytic bacteria consortiaeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos
Colecciones