Publicación: Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
dc.audience | ||
dc.contributor.advisor | Martínez Guarín, Arnold Rafael | |
dc.contributor.advisor | Mendoza Fandiño, Jorge Mario | |
dc.contributor.author | Cogollo Torres, Cristina Isabel | |
dc.contributor.jury | Arango Meneses, Juan Fernando | |
dc.contributor.jury | Palacio Vega, Mario Andrés | |
dc.date.accessioned | 2024-04-04T13:20:19Z | |
dc.date.available | 2024-04-04T13:20:19Z | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | La investigación se centró en evaluar la viabilidad de un sistema de almacenamiento térmico con material de cambio de fase (PCM) para cocinas solares parabólicas en el departamento de Córdoba, Colombia, con el objetivo de mejorar la eficiencia en la cocción de alimentos. Tras evaluar cuatro PCM mediante una matriz de ponderación, se concluyó que el ácido oxálico es la mejor opción para ser implementado como sistema de almacenamiento térmico. Posteriormente, se llevaron a cabo experimentos utilizando cocinas solares parabólicas equipadas con dispositivos de almacenamiento térmico en configuraciones de diferentes espesores (DAT 1 cm y DAT 2 cm). Los resultados indicaron que los dispositivos con PCM lograron mantener temperaturas del fluido de trabajo más estables, destacándose el DAT de 2 cm por su mayor estabilidad térmica. Además, se comparó el desempeño de las cocinas solares con y sin dispositivos de almacenamiento térmico, evidenciando que, si bien los recipientes de cocción convencionales superan ligeramente a los dispositivos de almacenamiento térmico en la absorción de calor, estos últimos ofrecen una capacidad de almacenamiento de calor y estabilidad térmica superiores. Se sugiere explorar métodos alternativos para medir el calor absorbido por los dispositivos de almacenamiento térmico, considerando la transferencia de calor al material de cambio de fase, para obtener mediciones más precisas y completas del rendimiento de las cocinas solares parabólicas. | spa |
dc.description.abstract | The research focused on evaluating the feasibility of a thermal storage system with phase change material (PCM) for parabolic solar cookers in the department of Córdoba, Colombia, aiming to improve efficiency in food cooking. After evaluating four PCMs using a weighting matrix, it was concluded that oxalic acid is the best option to be implemented as a thermal storage system. Subsequently, experiments were conducted using parabolic solar cookers equipped with thermal storage devices in configurations of different thicknesses (DAT 1 cm and DAT 2 cm). The results indicated that devices with PCM were able to maintain more stable temperatures of the working fluid, with the DAT of 2 cm standing out for its greater thermal stability. Furthermore, the performance of solar cookers with and without thermal storage devices was compared, showing that while conventional cooking vessels slightly outperform thermal storage devices in heat absorption, the latter offer superior heat storage capacity and thermal stability. It is suggested to explore alternative methods for measuring heat absorbed by thermal storage devices, considering heat transfer to the phase change material, to obtain more precise and comprehensive measurements of the performance of parabolic solar cookers. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería Mecánica | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | RESUMEN 8 | |
dc.description.tableofcontents | ABSTRACT 9 | |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación 10 | |
dc.description.tableofcontents | 1.1. Objetivos. 10 | |
dc.description.tableofcontents | 1.1.1. Objetivo general. 10 | |
dc.description.tableofcontents | 1.1.2. Objetivos específicos. 10 | |
dc.description.tableofcontents | 1.2. Estructura de la tesis. 11 | |
dc.description.tableofcontents | 1.3. Revisión de literatura. 12 | |
dc.description.tableofcontents | 1.3.1. Energías renovables 12 | |
dc.description.tableofcontents | 1.3.1.1. Energía solar 12 | |
dc.description.tableofcontents | 1.3.2. Cocinas solares 13 | |
dc.description.tableofcontents | 1.3.2.1. Cocinas solares tipo caja. 13 | |
dc.description.tableofcontents | 1.3.2.2. Cocinas solares con concentradores 14 | |
dc.description.tableofcontents | 1.3.2.3. Cocinas solares indirectas 15 | |
dc.description.tableofcontents | 1.3.3. Sistemas De Almacenamiento De Energía Térmica (TES) 16 | |
dc.description.tableofcontents | 1.3.3.1. Calor sensible 17 | |
dc.description.tableofcontents | 1.3.3.2. Calor latente 18 | |
dc.description.tableofcontents | 1.3.3.3. Energía química 19 | |
dc.description.tableofcontents | 1.3.4. Materiales de cambio de fase (PCM) 20 | |
dc.description.tableofcontents | 2. Capítulo II. Selección del Material de Cambio de Fase como almacenador térmico. 32 | |
dc.description.tableofcontents | 2.1. Introducción. 32 | |
dc.description.tableofcontents | 2.2. Materiales y métodos 33 | |
dc.description.tableofcontents | 2.3. Resultados 35 | |
dc.description.tableofcontents | 2.4. Conclusiones. 41 | |
dc.description.tableofcontents | 3. Capítulo III: Experimentos en la cocina solar con y sin almacenamiento térmico. 43 | |
dc.description.tableofcontents | 3.1. Introducción 43 | |
dc.description.tableofcontents | 3.2. Materiales y métodos. 44 | |
dc.description.tableofcontents | 3.2.1. Protocolo de experimentación 44 | |
dc.description.tableofcontents | 3.2.1.1. Recipiente de cocción convencional (RCC) 44 | |
dc.description.tableofcontents | 3.2.1.2. Dispositivos de almacenamiento térmico (DAT) 45 | |
dc.description.tableofcontents | 3.2.1.3. Seguimiento Solar 46 | |
dc.description.tableofcontents | 3.2.1.4. Desarrollo del Experimento 47 | |
dc.description.tableofcontents | 3.3. Resultados. 48 | |
dc.description.tableofcontents | 3.4. Conclusiones 60 | |
dc.description.tableofcontents | 4. Capítulo IV. Desempeño de las cocinas solares 62 | |
dc.description.tableofcontents | 4.1. Introducción. 62 | |
dc.description.tableofcontents | 4.2. Materiales y métodos. 63 | |
dc.description.tableofcontents | 4.3. Resultados. 65 | |
dc.description.tableofcontents | 4.4. Conclusiones 66 | |
dc.description.tableofcontents | 5. Conclusiones Generales y futuros trabajos 68 | |
dc.description.tableofcontents | 5.1. Conclusiones Generales 68 | |
dc.description.tableofcontents | 5.2. Futuros trabajos: 69 | |
dc.description.tableofcontents | 5.2.1. Optimización de los dispositivos de almacenamiento térmico (DAT) 69 | |
dc.description.tableofcontents | 5.2.2. Mejora de la Evaluación del Rendimiento de Cocinas Solares Parabólicas 69 | |
dc.description.tableofcontents | Bibliografía. 70 | |
dc.description.tableofcontents | 6. Anexos. 79 | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8264 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Cordoba | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Ingeniería Mecánica | |
dc.relation.references | Abu-Hamdeh, N.H., Alnefaie, K.A., 2018. Assessment of thermal performance of PCM in latent heat storage system for different applications. https://doi.org/10.1016/j.solener.2018.11.035 | |
dc.relation.references | Aftab, W., Usman, A., Shi, J., Yuan, K., Qin, M., Zou, R., 2021. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ Sci 14, 4268–4291. https://doi.org/10.1039/D1EE00527H | |
dc.relation.references | Ahmed, S.M.M., Al-Amin, M.R., Ahammed, S., Ahmed, F., Saleque, A.M., Abdur Rahman, M., 2020. Design, construction and testing of parabolic solar cooker for rural households and refugee camp. Solar Energy 205, 230–240. https://doi.org/10.1016/J.SOLENER.2020.05.007 | |
dc.relation.references | Almutairi, K., Aungkulanon, P., Algarni, S., Alqahtani, T., Keshuov, S.A., 2022. Solar irradiance and efficient use of energy: Residential construction toward net-zero energy building. Sustainable Energy Technologies and Assessments 53, 102550. https://doi.org/10.1016/J.SETA.2022.102550 | |
dc.relation.references | Alva, G., Lin, Y., Fang, G., 2018. An overview of thermal energy storage systems. Energy 144, 341–378. https://doi.org/10.1016/J.ENERGY.2017.12.037 | |
dc.relation.references | Álvarez Criado, Y., 2016. Almacenamiento de energía mediante ciclos termoquímicos de CaO. Universidad de Oviedo, Oviedo. | |
dc.relation.references | Aramesh, M., Ghalebani, M., Kasaeian, A., Zamani, H., Lorenzini, G., Mahian, O., Wongwises, S., 2019. A review of recent advances in solar cooking technology. Renew Energy 140, 419–435. https://doi.org/10.1016/J.RENENE.2019.03.021 | |
dc.relation.references | Barrenechea, C., Navarro, H., Serrano, S., Cabeza, L.F., Fernández, A.I., 2014. New Database on Phase Change Materials for Thermal Energy Storage in Buildings to Help PCM Selection. Energy Procedia 57, 2408–2415. https://doi.org/10.1016/J.EGYPRO.2014.10.249 | |
dc.relation.references | Bhave, A.G., Kale, C.K., 2020. Development of a thermal storage type solar cooker for high temperature cooking using solar salt. https://doi.org/10.1016/j.solmat.2020.110394 | |
dc.relation.references | Bhave, Atul G, Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. https://doi.org/10.1016/j.solener.2018.07.018 | |
dc.relation.references | Bhave, Atul G., Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. Solar Energy 171, 784–789. https://doi.org/10.1016/J.SOLENER.2018.07.018 | |
dc.relation.references | Bravo Hidalgo, D., 2018. Una Revisión sobre Materiales para Almacenamiento de Energía Solar Térmica. Ingeniería 23. https://doi.org/10.14483/23448393.12510 | |
dc.relation.references | Cabeza, L.F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á.G., Inés Fernádez, A., Grágeda, M., 2015. Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2014.10.096 | |
dc.relation.references | Cao, Z., Zhang, G., Wu, Y., Yang, J., Sui, Y., Zhao, X., 2023. Energy storage potential analysis of phase change material (PCM) energy storage units based on tunnel lining ground heat exchangers. Appl Therm Eng 235, 121403. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121403 | |
dc.relation.references | Cárdenas-Ramírez, C., Fernandez, A.G., Gómez, M.A., Jaramillo, F., Cabeza, L.F., 2020. Sistema de almacenamiento de energía térmica mediante calor latente con eritritol como material de cambio de fase. CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar 503–510. https://doi.org/10.34637/CIES2020.1.2060 | |
dc.relation.references | Carolina, M., Pereira, R., Coria, A.S., 2022. Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. Revista EIA, ISSN-e 1794-1237, Vol. 19, No. 38, 2022 19, 24. https://doi.org/10.24050/reia | |
dc.relation.references | Carrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., Carrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., 2022. Una revisión de los últimos avances de los colectores solares térmicos aplicados en la industria. Ingenius. Revista de Ciencia y Tecnología 2022, 59–73. https://doi.org/10.17163/INGS.N27.2022.06 | |
dc.relation.references | Castell, A., Solé, C., 2015. Design of latent heat storage systems using phase change materials (PCMs). Advances in Thermal Energy Storage Systems: Methods and Applications 285–305. https://doi.org/10.1533/9781782420965.2.285 | |
dc.relation.references | Chaudhary, A., Kumar, A., Yadav, A., 2013. Experimental investigation of a solar cooker based on parabolic dish collector with phase change thermal storage unit in Indian climatic conditions, in: Journal of Renewable and Sustainable Energy. https://doi.org/10.1063/1.4794962 | |
dc.relation.references | Choure, B.K., Alam, T., Kumar, R., 2023. A review on heat transfer enhancement techniques for PCM based thermal energy storage system. J Energy Storage 72, 108161. https://doi.org/10.1016/J.EST.2023.108161 | |
dc.relation.references | Donkers, P.A.J., Sögütoglu, L.C., Huinink, H.P., Fischer, H.R., Adan, O.C.G., 2017. A review of salt hydrates for seasonal heat storage in domestic applications. https://doi.org/10.1016/j.apenergy.2017.04.080 | |
dc.relation.references | Erdogan, S., Pata, U.K., Solarin, S.A., 2023. Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries. Renewable and Sustainable Energy Reviews 186, 113683. https://doi.org/10.1016/J.RSER.2023.113683 | |
dc.relation.references | Espinoza, C., Clemente, W., Martínez, C., 2019. Sistema portátil de almacenamiento y transferencia de calor para lograr confort térmico. | |
dc.relation.references | Gautam, A., Saini, R.P., 2020. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy 207, 937–956. https://doi.org/10.1016/J.SOLENER.2020.07.027 | |
dc.relation.references | Geddam, S., Dinesh, G.K., Sivasankar, T., 2015. Determination of thermal performance of a box type solar cooker. https://doi.org/10.1016/j.solener.2015.01.014 | |
dc.relation.references | Goel, V., Dwivedi, A., Kumar, Rajat, Kumar, Reji, Pandey, A.K., Chopra, K., Tyagi, V. V., 2023. PCM-assisted energy storage systems for solar-thermal applications: Review of the associated problems and their mitigation strategies. J Energy Storage 69, 107912. https://doi.org/10.1016/J.EST.2023.107912 | |
dc.relation.references | González, N., Salazar, M., Mendoza, J., Cano, M., Guerrero, M., Salazar, C., 2019. Sílice Mesoporosa como encapsulador de materiales de cambio de fase (PCM). Revista de Ingeniería Tecnológica 3, 14–19. | |
dc.relation.references | Gorjian, A., Rahmati, E., Gorjian, S., Anand, A., Jathar, L.D., 2022. A comprehensive study of research and development in concentrating solar cookers (CSCs): Design considerations, recent advancements, and economics. Solar Energy 245, 80–107. https://doi.org/10.1016/J.SOLENER.2022.08.066 | |
dc.relation.references | He, M., Yang, L., Lin, W., Chen, J., Mao, X., Ma, Z., 2019. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25, 100874. https://doi.org/10.1016/J.EST.2019.100874 | |
dc.relation.references | Hekimoğlu, G., Sarı, A., 2022. A review on phase change materials (PCMs) for thermal energy storage implementations. Mater Today Proc 58, 1360–1367. https://doi.org/10.1016/J.MATPR.2022.02.231 | |
dc.relation.references | Herez, A., Ramadan, M., Khaled, M., 2017. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renewable and Sustainable Energy Reviews 81, 421–432. https://doi.org/10.1016/j.rser.2017.08.021 | |
dc.relation.references | Hussein, H.M.S., El-Ghetany, H.H., Nada, S.A., 2008. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 49, 2237–2246. https://doi.org/10.1016/j.enconman.2008.01.026 | |
dc.relation.references | Jayathunga, D.S., Karunathilake, H.P., Narayana, M., Witharana, S., 2024. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renewable and Sustainable Energy Reviews 189, 113904. https://doi.org/10.1016/J.RSER.2023.113904 | |
dc.relation.references | Keith, A., Brown, N.J., Zhou, J.L., 2019. The feasibility of a collapsible parabolic solar cooker incorporating phase change materials. Renewable Energy Focus 30, 58–70. https://doi.org/10.1016/J.REF.2019.03.005 | |
dc.relation.references | Khan, M.I., Asfand, F., Al-Ghamdi, S.G., 2022. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. J Energy Storage 55, 105860. https://doi.org/10.1016/J.EST.2022.105860 | |
dc.relation.references | Khatri, R., Goyal, R., Sharma, R.K., 2023. Comparative experimental investigations on a low-cost solar cooker with energy storage materials for sustainable development. Results in Engineering 20, 101546. https://doi.org/10.1016/J.RINENG.2023.101546 | |
dc.relation.references | Khatri, R., Goyal, R., Sharma, R.K., 2021. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renewable and Sustainable Energy Reviews 145, 111166. https://doi.org/10.1016/J.RSER.2021.111166 | |
dc.relation.references | Köll, R., van Helden, W., Engel, G., Wagner, W., Dang, B., Jänchen, J., Kerskes, H., Badenhop, T., Herzog, T., 2017. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Solar Energy 155, 388–397. https://doi.org/10.1016/J.SOLENER.2017.06.043 | |
dc.relation.references | König-Haagen, A., Diarce, G., 2023. Prediction of the discharging time of a latent heat thermal energy storage system with a UA approach. J Energy Storage 73, 108849. https://doi.org/10.1016/J.EST.2023.108849 | |
dc.relation.references | Kumar Goyal, R., EswaramoorthyMuthusamy, 2023. Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications. Sustainable Energy Technologies and Assessments 56, 103078. https://doi.org/10.1016/J.SETA.2023.103078 | |
dc.relation.references | Kunwer, R., Bhurat, S.S., 2022. Thermal characterization of phase change materials (PCM) for heating applications. Mater Today Proc 50, 1690–1696. https://doi.org/10.1016/J.MATPR.2021.09.164 | |
dc.relation.references | Lee, C.W., Zhong, J., 2014. Top down strategy for renewable energy investment: Conceptual framework and implementation. Renew Energy 68, 761–773. https://doi.org/10.1016/J.RENENE.2014.03.015 | |
dc.relation.references | Lentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021a. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, 1–16. https://doi.org/10.1016/j.heliyon.2021.e08226 | |
dc.relation.references | Lentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021b. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, e08226. https://doi.org/10.1016/J.HELIYON.2021.E08226 | |
dc.relation.references | Liu, Y., Zheng, R., Li, J., 2022. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renewable and Sustainable Energy Reviews 168, 112783. https://doi.org/10.1016/J.RSER.2022.112783 | |
dc.relation.references | Ma, Z., Jiang, Q., Lv, W., Song, Z., 2021. Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. https://doi.org/10.1016/j.colsurfa.2021.127369 | |
dc.relation.references | Maghrabie, H.M., Mohamed, A.S.A., Fahmy, A.M., Samee, A.A.A., 2023. Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. https://doi.org/10.1016/j.csite.2023.102741 | |
dc.relation.references | Mahesh, A., Shoba Jasmin, K.S., 2013. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renewable and Sustainable Energy Reviews 26, 414–424. https://doi.org/10.1016/J.RSER.2013.05.069 | |
dc.relation.references | Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Calvo, E., Priyadarshi, B., Shukla, R., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., 2020. El cambio climático y la tierra Resumen para responsables de políticas Editado por. | |
dc.relation.references | Mawire, A., Abedigamba, O.P., Worall, M., 2024. Experimental comparison of a DC PV cooker and a parabolic dish solar cooker under variable solar radiation conditions. Case Studies in Thermal Engineering 54, 103976. https://doi.org/10.1016/J.CSITE.2024.103976 | |
dc.relation.references | Mawire, A., Lentswe, K., Owusu, P., 2022. Performance of two solar cooking storage pots using parabolic dish solar concentrators during solar and storage cooking periods with different heating loads. Results in Engineering 13, 100336. https://doi.org/10.1016/J.RINENG.2022.100336 | |
dc.relation.references | Mealla Sánchez, L.E., Daniel, P., Arangoa, B., 2012. Alternativas de construcción utilizando materiales de bajo costo para la evaluación térmica de cocinas solares tipo caja. | |
dc.relation.references | Mourad, A., Aissa, A., Said, Z., Younis, O., Iqbal, M., Alazzam, A., 2022. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J Energy Storage 49, 104186. https://doi.org/10.1016/J.EST.2022.104186 | |
dc.relation.references | Muthusivagami, R.M., Velraj, R., Sethumadhavan, R., 2010. Solar cookers with and without thermal storage-A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2008.08.018 | |
dc.relation.references | Nkhonjera, L., Bello-Ochende, T., John, G., King’ondu, C.K., 2017. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renewable and Sustainable Energy Reviews 75, 157–167. https://doi.org/10.1016/J.RSER.2016.10.059 | |
dc.relation.references | Oliver, A., Neila, F.J., García-Santos, A., 2012. Nota técnica: Clasificación y selección de materiales de cambio de fase según sus características para su aplicación en sistemas de almacenamiento de energíatérmica. Materiales de Construccion. https://doi.org/10.3989/mc.2012.58010 | |
dc.relation.references | Omara, A.A.M., Abuelnuor, A.A.A., Mohammed, H.A., Habibi, D., Younis, O., 2020. Improving solar cooker performance using phase change materials: A comprehensive review. https://doi.org/10.1016/j.solener.2020.07.015 | |
dc.relation.references | Osornio-Cárdenas, J.I., Domínguez-Barreto Abril Miranda-Hernández, O., Reyes-Sandoval, F.A., Vargas-Rosas, E.M., 2022. Energía Solar Térmica Thermal solar energy. Publicación semestral 9, 41–43. | |
dc.relation.references | Patel, C.P., Pavankumar, T., Narla, A., Bhaskar, A., Mondal, S., Anwer, N., Malmquist, A., 2024. Experimental study of a latent heat thermal energy storage system using erythritol for medium temperature applications. Case Studies in Thermal Engineering 53, 103907. https://doi.org/10.1016/J.CSITE.2023.103907 | |
dc.relation.references | Qiao, G., Cao, H., Jiang, F., She, X., Cong, L., Liu, Q., Lei, X., Alexiadis, A., Ding, Y., 2019. Experimental Study of Thermo-Physical Characteristics of Molten Nitrate Salts Based Nanofluids for Thermal Energy Storage. ES Energy and Environment 4, 48–58. https://doi.org/10.30919/ESEE8C225 | |
dc.relation.references | Ramos, J., Hernández, Z., 2023. Vista de Impacto Económico y Ambiental de las Energías Renovables y No Renovables en México. Boletín Científico de las Ciencias Económico Administrativas del ICEA 11, 17–27. | |
dc.relation.references | Sánchez, V., Pineda, P., 2020. Sistema De Almacenamiento De Energía Térmica Mediante Calor Latente Con Eritritol Como Material De Cambio De Fase. XVII Congreso Ibérico y XIII Congreso Iberoamericano de Energía Solar 1–8. https://doi.org/10.34637/cies2020.1.2060 | |
dc.relation.references | Senthil, R., 2021. Enhancement of productivity of parabolic dish solar cooker using integrated phase change material. Mater Today Proc 34, 386–388. https://doi.org/10.1016/J.MATPR.2020.02.197 | |
dc.relation.references | Sharma, A., Tyagi, V. V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13, 318–345. https://doi.org/10.1016/J.RSER.2007.10.005 | |
dc.relation.references | Sharma, B., Sarkar, S., Bau, S., 2023. Understanding population exposure to size-segregated aerosol and associated trace elements during residential cooking in northeastern India: Implications for disease burden and health risk. Science of The Total Environment 875, 162539. https://doi.org/10.1016/J.SCITOTENV.2023.162539 | |
dc.relation.references | Sreepathi, K., Sharadhi, T.S., G, C.S., 2020. Performance Analysis Of Solar Energy Storage Unit For Cooking, JNNCE Journal of Engineering and Management. JJEM. | |
dc.relation.references | Su, W., Darkwa, J., Kokogiannakis, G., 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews 48, 373–391. https://doi.org/10.1016/J.RSER.2015.04.044 | |
dc.relation.references | Sun, X., Lee, K.O., Medina, M.A., Chu, Y., Li, C., 2018. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis. Phase Transitions 91, 667–680. https://doi.org/10.1080/01411594.2018.1469019 | |
dc.relation.references | Thirugnanam, C., Karthikeyan, S., Kalaimurugan, K., 2020. Study of phase change materials and its application in solar cooker. https://doi.org/10.1016/j.matpr.2020.02.780 | |
dc.relation.references | Vadhera, J., Sura, A., Nandan, G., Dwivedi, G., 2018. Study of Phase Change materials and its domestic application. Mater Today Proc 5, 3411–3417. https://doi.org/10.1016/J.MATPR.2017.11.586 | |
dc.relation.references | Verma, S., Banerjee, S., Das, R., 2022. A fully analytical model of a box solar cooker with sensible thermal storage. Solar Energy 233, 531–542. https://doi.org/10.1016/j.solener.2021.12.035 | |
dc.relation.references | Verma, V., Shringi, K., Sharma, S., Sengar, N., Chandra Giri, N., 2023. Experimental thermal performance studies on solar hot box cooker with different absorber coating materials. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.518 | |
dc.relation.references | Wang, J., Han, W., Ge, C., Guan, H., Yang, H., Zhang, X., 2019. Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage. Renew Energy 136, 657–663. https://doi.org/10.1016/J.RENENE.2019.01.063 | |
dc.relation.references | Yadav, V., Kumar, Y., Agrawal, H., Yadav, A., 2017. Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Australian Journal of Mechanical Engineering 15, 93–102. https://doi.org/10.1080/14484846.2015.1093260 | |
dc.relation.references | Yalelet Getnet, M., Gudeta Gunjo, D., Kumar Sinha, D., 2023. Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors. Results in Engineering 18. https://doi.org/10.1016/j.rineng.2023.101022 | |
dc.relation.references | Yuksel, N., Arabacigil, B., Avci, A., 2012. The thermal analysis of paraffin wax in a box-type solar cooker. Journal of Renewable and Sustainable Energy 4. https://doi.org/10.1063/1.4768547 | |
dc.relation.references | Zhou, Y.P., Xu, J.C., Ma, X.Y., Yang, P.X., He, Y.L., 2023. Multi-scale multi-physic coupled investigation on the matching and trade-off of conversion and storage of optical, thermal, electrical, and chemical energy in a hybrid system based on a novel full solar spectrum utilization strategy. Energy Convers Manag 283, 116940. https://doi.org/10.1016/J.ENCONMAN.2023.116940 | |
dc.rights | Copyright Universidad de Córdoba, 2024 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Solar cookers | |
dc.subject.keywords | Thermal storage devices | |
dc.subject.keywords | Phase change materials | |
dc.subject.keywords | Thermal stability | |
dc.subject.proposal | Cocinas solares | |
dc.subject.proposal | Dispositivos de Almacenamiento Térmico | |
dc.subject.proposal | Materiales de Cambio de Fase | |
dc.subject.proposal | Estabilidad Térmica | |
dc.title | Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia | |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: