Publicación:
Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia

dc.audience
dc.contributor.advisor Martínez Guarín, Arnold Rafael
dc.contributor.advisorMendoza Fandiño, Jorge Mario
dc.contributor.authorCogollo Torres, Cristina Isabel
dc.contributor.juryArango Meneses, Juan Fernando
dc.contributor.juryPalacio Vega, Mario Andrés
dc.date.accessioned2024-04-04T13:20:19Z
dc.date.available2024-04-04T13:20:19Z
dc.date.issued2024-02-27
dc.description.abstractLa investigación se centró en evaluar la viabilidad de un sistema de almacenamiento térmico con material de cambio de fase (PCM) para cocinas solares parabólicas en el departamento de Córdoba, Colombia, con el objetivo de mejorar la eficiencia en la cocción de alimentos. Tras evaluar cuatro PCM mediante una matriz de ponderación, se concluyó que el ácido oxálico es la mejor opción para ser implementado como sistema de almacenamiento térmico. Posteriormente, se llevaron a cabo experimentos utilizando cocinas solares parabólicas equipadas con dispositivos de almacenamiento térmico en configuraciones de diferentes espesores (DAT 1 cm y DAT 2 cm). Los resultados indicaron que los dispositivos con PCM lograron mantener temperaturas del fluido de trabajo más estables, destacándose el DAT de 2 cm por su mayor estabilidad térmica. Además, se comparó el desempeño de las cocinas solares con y sin dispositivos de almacenamiento térmico, evidenciando que, si bien los recipientes de cocción convencionales superan ligeramente a los dispositivos de almacenamiento térmico en la absorción de calor, estos últimos ofrecen una capacidad de almacenamiento de calor y estabilidad térmica superiores. Se sugiere explorar métodos alternativos para medir el calor absorbido por los dispositivos de almacenamiento térmico, considerando la transferencia de calor al material de cambio de fase, para obtener mediciones más precisas y completas del rendimiento de las cocinas solares parabólicas.spa
dc.description.abstractThe research focused on evaluating the feasibility of a thermal storage system with phase change material (PCM) for parabolic solar cookers in the department of Córdoba, Colombia, aiming to improve efficiency in food cooking. After evaluating four PCMs using a weighting matrix, it was concluded that oxalic acid is the best option to be implemented as a thermal storage system. Subsequently, experiments were conducted using parabolic solar cookers equipped with thermal storage devices in configurations of different thicknesses (DAT 1 cm and DAT 2 cm). The results indicated that devices with PCM were able to maintain more stable temperatures of the working fluid, with the DAT of 2 cm standing out for its greater thermal stability. Furthermore, the performance of solar cookers with and without thermal storage devices was compared, showing that while conventional cooking vessels slightly outperform thermal storage devices in heat absorption, the latter offer superior heat storage capacity and thermal stability. It is suggested to explore alternative methods for measuring heat absorbed by thermal storage devices, considering heat transfer to the phase change material, to obtain more precise and comprehensive measurements of the performance of parabolic solar cookers.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMEN 8
dc.description.tableofcontentsABSTRACT 9
dc.description.tableofcontents1. Capítulo I. Descripción del trabajo de investigación 10
dc.description.tableofcontents1.1. Objetivos. 10
dc.description.tableofcontents1.1.1. Objetivo general. 10
dc.description.tableofcontents1.1.2. Objetivos específicos. 10
dc.description.tableofcontents1.2. Estructura de la tesis. 11
dc.description.tableofcontents1.3. Revisión de literatura. 12
dc.description.tableofcontents1.3.1. Energías renovables 12
dc.description.tableofcontents1.3.1.1. Energía solar 12
dc.description.tableofcontents1.3.2. Cocinas solares 13
dc.description.tableofcontents1.3.2.1. Cocinas solares tipo caja. 13
dc.description.tableofcontents1.3.2.2. Cocinas solares con concentradores 14
dc.description.tableofcontents1.3.2.3. Cocinas solares indirectas 15
dc.description.tableofcontents1.3.3. Sistemas De Almacenamiento De Energía Térmica (TES) 16
dc.description.tableofcontents1.3.3.1. Calor sensible 17
dc.description.tableofcontents1.3.3.2. Calor latente 18
dc.description.tableofcontents1.3.3.3. Energía química 19
dc.description.tableofcontents1.3.4. Materiales de cambio de fase (PCM) 20
dc.description.tableofcontents2. Capítulo II. Selección del Material de Cambio de Fase como almacenador térmico. 32
dc.description.tableofcontents2.1. Introducción. 32
dc.description.tableofcontents2.2. Materiales y métodos 33
dc.description.tableofcontents2.3. Resultados 35
dc.description.tableofcontents2.4. Conclusiones. 41
dc.description.tableofcontents3. Capítulo III: Experimentos en la cocina solar con y sin almacenamiento térmico. 43
dc.description.tableofcontents3.1. Introducción 43
dc.description.tableofcontents3.2. Materiales y métodos. 44
dc.description.tableofcontents3.2.1. Protocolo de experimentación 44
dc.description.tableofcontents3.2.1.1. Recipiente de cocción convencional (RCC) 44
dc.description.tableofcontents3.2.1.2. Dispositivos de almacenamiento térmico (DAT) 45
dc.description.tableofcontents3.2.1.3. Seguimiento Solar 46
dc.description.tableofcontents3.2.1.4. Desarrollo del Experimento 47
dc.description.tableofcontents3.3. Resultados. 48
dc.description.tableofcontents3.4. Conclusiones 60
dc.description.tableofcontents4. Capítulo IV. Desempeño de las cocinas solares 62
dc.description.tableofcontents4.1. Introducción. 62
dc.description.tableofcontents4.2. Materiales y métodos. 63
dc.description.tableofcontents4.3. Resultados. 65
dc.description.tableofcontents4.4. Conclusiones 66
dc.description.tableofcontents5. Conclusiones Generales y futuros trabajos 68
dc.description.tableofcontents5.1. Conclusiones Generales 68
dc.description.tableofcontents5.2. Futuros trabajos: 69
dc.description.tableofcontents5.2.1. Optimización de los dispositivos de almacenamiento térmico (DAT) 69
dc.description.tableofcontents5.2.2. Mejora de la Evaluación del Rendimiento de Cocinas Solares Parabólicas 69
dc.description.tableofcontentsBibliografía. 70
dc.description.tableofcontents6. Anexos. 79
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8264
dc.language.isospa
dc.publisherUniversidad de Cordoba
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Ingeniería Mecánica
dc.relation.referencesAbu-Hamdeh, N.H., Alnefaie, K.A., 2018. Assessment of thermal performance of PCM in latent heat storage system for different applications. https://doi.org/10.1016/j.solener.2018.11.035
dc.relation.referencesAftab, W., Usman, A., Shi, J., Yuan, K., Qin, M., Zou, R., 2021. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ Sci 14, 4268–4291. https://doi.org/10.1039/D1EE00527H
dc.relation.referencesAhmed, S.M.M., Al-Amin, M.R., Ahammed, S., Ahmed, F., Saleque, A.M., Abdur Rahman, M., 2020. Design, construction and testing of parabolic solar cooker for rural households and refugee camp. Solar Energy 205, 230–240. https://doi.org/10.1016/J.SOLENER.2020.05.007
dc.relation.referencesAlmutairi, K., Aungkulanon, P., Algarni, S., Alqahtani, T., Keshuov, S.A., 2022. Solar irradiance and efficient use of energy: Residential construction toward net-zero energy building. Sustainable Energy Technologies and Assessments 53, 102550. https://doi.org/10.1016/J.SETA.2022.102550
dc.relation.referencesAlva, G., Lin, Y., Fang, G., 2018. An overview of thermal energy storage systems. Energy 144, 341–378. https://doi.org/10.1016/J.ENERGY.2017.12.037
dc.relation.referencesÁlvarez Criado, Y., 2016. Almacenamiento de energía mediante ciclos termoquímicos de CaO. Universidad de Oviedo, Oviedo.
dc.relation.referencesAramesh, M., Ghalebani, M., Kasaeian, A., Zamani, H., Lorenzini, G., Mahian, O., Wongwises, S., 2019. A review of recent advances in solar cooking technology. Renew Energy 140, 419–435. https://doi.org/10.1016/J.RENENE.2019.03.021
dc.relation.referencesBarrenechea, C., Navarro, H., Serrano, S., Cabeza, L.F., Fernández, A.I., 2014. New Database on Phase Change Materials for Thermal Energy Storage in Buildings to Help PCM Selection. Energy Procedia 57, 2408–2415. https://doi.org/10.1016/J.EGYPRO.2014.10.249
dc.relation.referencesBhave, A.G., Kale, C.K., 2020. Development of a thermal storage type solar cooker for high temperature cooking using solar salt. https://doi.org/10.1016/j.solmat.2020.110394
dc.relation.referencesBhave, Atul G, Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. https://doi.org/10.1016/j.solener.2018.07.018
dc.relation.referencesBhave, Atul G., Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. Solar Energy 171, 784–789. https://doi.org/10.1016/J.SOLENER.2018.07.018
dc.relation.referencesBravo Hidalgo, D., 2018. Una Revisión sobre Materiales para Almacenamiento de Energía Solar Térmica. Ingeniería 23. https://doi.org/10.14483/23448393.12510
dc.relation.referencesCabeza, L.F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á.G., Inés Fernádez, A., Grágeda, M., 2015. Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2014.10.096
dc.relation.referencesCao, Z., Zhang, G., Wu, Y., Yang, J., Sui, Y., Zhao, X., 2023. Energy storage potential analysis of phase change material (PCM) energy storage units based on tunnel lining ground heat exchangers. Appl Therm Eng 235, 121403. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121403
dc.relation.referencesCárdenas-Ramírez, C., Fernandez, A.G., Gómez, M.A., Jaramillo, F., Cabeza, L.F., 2020. Sistema de almacenamiento de energía térmica mediante calor latente con eritritol como material de cambio de fase. CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar 503–510. https://doi.org/10.34637/CIES2020.1.2060
dc.relation.referencesCarolina, M., Pereira, R., Coria, A.S., 2022. Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. Revista EIA, ISSN-e 1794-1237, Vol. 19, No. 38, 2022 19, 24. https://doi.org/10.24050/reia
dc.relation.referencesCarrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., Carrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., 2022. Una revisión de los últimos avances de los colectores solares térmicos aplicados en la industria. Ingenius. Revista de Ciencia y Tecnología 2022, 59–73. https://doi.org/10.17163/INGS.N27.2022.06
dc.relation.referencesCastell, A., Solé, C., 2015. Design of latent heat storage systems using phase change materials (PCMs). Advances in Thermal Energy Storage Systems: Methods and Applications 285–305. https://doi.org/10.1533/9781782420965.2.285
dc.relation.referencesChaudhary, A., Kumar, A., Yadav, A., 2013. Experimental investigation of a solar cooker based on parabolic dish collector with phase change thermal storage unit in Indian climatic conditions, in: Journal of Renewable and Sustainable Energy. https://doi.org/10.1063/1.4794962
dc.relation.referencesChoure, B.K., Alam, T., Kumar, R., 2023. A review on heat transfer enhancement techniques for PCM based thermal energy storage system. J Energy Storage 72, 108161. https://doi.org/10.1016/J.EST.2023.108161
dc.relation.referencesDonkers, P.A.J., Sögütoglu, L.C., Huinink, H.P., Fischer, H.R., Adan, O.C.G., 2017. A review of salt hydrates for seasonal heat storage in domestic applications. https://doi.org/10.1016/j.apenergy.2017.04.080
dc.relation.referencesErdogan, S., Pata, U.K., Solarin, S.A., 2023. Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries. Renewable and Sustainable Energy Reviews 186, 113683. https://doi.org/10.1016/J.RSER.2023.113683
dc.relation.referencesEspinoza, C., Clemente, W., Martínez, C., 2019. Sistema portátil de almacenamiento y transferencia de calor para lograr confort térmico.
dc.relation.referencesGautam, A., Saini, R.P., 2020. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy 207, 937–956. https://doi.org/10.1016/J.SOLENER.2020.07.027
dc.relation.referencesGeddam, S., Dinesh, G.K., Sivasankar, T., 2015. Determination of thermal performance of a box type solar cooker. https://doi.org/10.1016/j.solener.2015.01.014
dc.relation.referencesGoel, V., Dwivedi, A., Kumar, Rajat, Kumar, Reji, Pandey, A.K., Chopra, K., Tyagi, V. V., 2023. PCM-assisted energy storage systems for solar-thermal applications: Review of the associated problems and their mitigation strategies. J Energy Storage 69, 107912. https://doi.org/10.1016/J.EST.2023.107912
dc.relation.referencesGonzález, N., Salazar, M., Mendoza, J., Cano, M., Guerrero, M., Salazar, C., 2019. Sílice Mesoporosa como encapsulador de materiales de cambio de fase (PCM). Revista de Ingeniería Tecnológica 3, 14–19.
dc.relation.referencesGorjian, A., Rahmati, E., Gorjian, S., Anand, A., Jathar, L.D., 2022. A comprehensive study of research and development in concentrating solar cookers (CSCs): Design considerations, recent advancements, and economics. Solar Energy 245, 80–107. https://doi.org/10.1016/J.SOLENER.2022.08.066
dc.relation.referencesHe, M., Yang, L., Lin, W., Chen, J., Mao, X., Ma, Z., 2019. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25, 100874. https://doi.org/10.1016/J.EST.2019.100874
dc.relation.referencesHekimoğlu, G., Sarı, A., 2022. A review on phase change materials (PCMs) for thermal energy storage implementations. Mater Today Proc 58, 1360–1367. https://doi.org/10.1016/J.MATPR.2022.02.231
dc.relation.referencesHerez, A., Ramadan, M., Khaled, M., 2017. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renewable and Sustainable Energy Reviews 81, 421–432. https://doi.org/10.1016/j.rser.2017.08.021
dc.relation.referencesHussein, H.M.S., El-Ghetany, H.H., Nada, S.A., 2008. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 49, 2237–2246. https://doi.org/10.1016/j.enconman.2008.01.026
dc.relation.referencesJayathunga, D.S., Karunathilake, H.P., Narayana, M., Witharana, S., 2024. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renewable and Sustainable Energy Reviews 189, 113904. https://doi.org/10.1016/J.RSER.2023.113904
dc.relation.referencesKeith, A., Brown, N.J., Zhou, J.L., 2019. The feasibility of a collapsible parabolic solar cooker incorporating phase change materials. Renewable Energy Focus 30, 58–70. https://doi.org/10.1016/J.REF.2019.03.005
dc.relation.referencesKhan, M.I., Asfand, F., Al-Ghamdi, S.G., 2022. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. J Energy Storage 55, 105860. https://doi.org/10.1016/J.EST.2022.105860
dc.relation.referencesKhatri, R., Goyal, R., Sharma, R.K., 2023. Comparative experimental investigations on a low-cost solar cooker with energy storage materials for sustainable development. Results in Engineering 20, 101546. https://doi.org/10.1016/J.RINENG.2023.101546
dc.relation.referencesKhatri, R., Goyal, R., Sharma, R.K., 2021. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renewable and Sustainable Energy Reviews 145, 111166. https://doi.org/10.1016/J.RSER.2021.111166
dc.relation.referencesKöll, R., van Helden, W., Engel, G., Wagner, W., Dang, B., Jänchen, J., Kerskes, H., Badenhop, T., Herzog, T., 2017. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Solar Energy 155, 388–397. https://doi.org/10.1016/J.SOLENER.2017.06.043
dc.relation.referencesKönig-Haagen, A., Diarce, G., 2023. Prediction of the discharging time of a latent heat thermal energy storage system with a UA approach. J Energy Storage 73, 108849. https://doi.org/10.1016/J.EST.2023.108849
dc.relation.referencesKumar Goyal, R., EswaramoorthyMuthusamy, 2023. Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications. Sustainable Energy Technologies and Assessments 56, 103078. https://doi.org/10.1016/J.SETA.2023.103078
dc.relation.referencesKunwer, R., Bhurat, S.S., 2022. Thermal characterization of phase change materials (PCM) for heating applications. Mater Today Proc 50, 1690–1696. https://doi.org/10.1016/J.MATPR.2021.09.164
dc.relation.referencesLee, C.W., Zhong, J., 2014. Top down strategy for renewable energy investment: Conceptual framework and implementation. Renew Energy 68, 761–773. https://doi.org/10.1016/J.RENENE.2014.03.015
dc.relation.referencesLentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021a. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, 1–16. https://doi.org/10.1016/j.heliyon.2021.e08226
dc.relation.referencesLentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021b. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, e08226. https://doi.org/10.1016/J.HELIYON.2021.E08226
dc.relation.referencesLiu, Y., Zheng, R., Li, J., 2022. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renewable and Sustainable Energy Reviews 168, 112783. https://doi.org/10.1016/J.RSER.2022.112783
dc.relation.referencesMa, Z., Jiang, Q., Lv, W., Song, Z., 2021. Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. https://doi.org/10.1016/j.colsurfa.2021.127369
dc.relation.referencesMaghrabie, H.M., Mohamed, A.S.A., Fahmy, A.M., Samee, A.A.A., 2023. Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. https://doi.org/10.1016/j.csite.2023.102741
dc.relation.referencesMahesh, A., Shoba Jasmin, K.S., 2013. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renewable and Sustainable Energy Reviews 26, 414–424. https://doi.org/10.1016/J.RSER.2013.05.069
dc.relation.referencesMasson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Calvo, E., Priyadarshi, B., Shukla, R., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., 2020. El cambio climático y la tierra Resumen para responsables de políticas Editado por.
dc.relation.referencesMawire, A., Abedigamba, O.P., Worall, M., 2024. Experimental comparison of a DC PV cooker and a parabolic dish solar cooker under variable solar radiation conditions. Case Studies in Thermal Engineering 54, 103976. https://doi.org/10.1016/J.CSITE.2024.103976
dc.relation.referencesMawire, A., Lentswe, K., Owusu, P., 2022. Performance of two solar cooking storage pots using parabolic dish solar concentrators during solar and storage cooking periods with different heating loads. Results in Engineering 13, 100336. https://doi.org/10.1016/J.RINENG.2022.100336
dc.relation.referencesMealla Sánchez, L.E., Daniel, P., Arangoa, B., 2012. Alternativas de construcción utilizando materiales de bajo costo para la evaluación térmica de cocinas solares tipo caja.
dc.relation.referencesMourad, A., Aissa, A., Said, Z., Younis, O., Iqbal, M., Alazzam, A., 2022. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J Energy Storage 49, 104186. https://doi.org/10.1016/J.EST.2022.104186
dc.relation.referencesMuthusivagami, R.M., Velraj, R., Sethumadhavan, R., 2010. Solar cookers with and without thermal storage-A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2008.08.018
dc.relation.referencesNkhonjera, L., Bello-Ochende, T., John, G., King’ondu, C.K., 2017. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renewable and Sustainable Energy Reviews 75, 157–167. https://doi.org/10.1016/J.RSER.2016.10.059
dc.relation.referencesOliver, A., Neila, F.J., García-Santos, A., 2012. Nota técnica: Clasificación y selección de materiales de cambio de fase según sus características para su aplicación en sistemas de almacenamiento de energíatérmica. Materiales de Construccion. https://doi.org/10.3989/mc.2012.58010
dc.relation.referencesOmara, A.A.M., Abuelnuor, A.A.A., Mohammed, H.A., Habibi, D., Younis, O., 2020. Improving solar cooker performance using phase change materials: A comprehensive review. https://doi.org/10.1016/j.solener.2020.07.015
dc.relation.referencesOsornio-Cárdenas, J.I., Domínguez-Barreto Abril Miranda-Hernández, O., Reyes-Sandoval, F.A., Vargas-Rosas, E.M., 2022. Energía Solar Térmica Thermal solar energy. Publicación semestral 9, 41–43.
dc.relation.referencesPatel, C.P., Pavankumar, T., Narla, A., Bhaskar, A., Mondal, S., Anwer, N., Malmquist, A., 2024. Experimental study of a latent heat thermal energy storage system using erythritol for medium temperature applications. Case Studies in Thermal Engineering 53, 103907. https://doi.org/10.1016/J.CSITE.2023.103907
dc.relation.referencesQiao, G., Cao, H., Jiang, F., She, X., Cong, L., Liu, Q., Lei, X., Alexiadis, A., Ding, Y., 2019. Experimental Study of Thermo-Physical Characteristics of Molten Nitrate Salts Based Nanofluids for Thermal Energy Storage. ES Energy and Environment 4, 48–58. https://doi.org/10.30919/ESEE8C225
dc.relation.referencesRamos, J., Hernández, Z., 2023. Vista de Impacto Económico y Ambiental de las Energías Renovables y No Renovables en México. Boletín Científico de las Ciencias Económico Administrativas del ICEA 11, 17–27.
dc.relation.referencesSánchez, V., Pineda, P., 2020. Sistema De Almacenamiento De Energía Térmica Mediante Calor Latente Con Eritritol Como Material De Cambio De Fase. XVII Congreso Ibérico y XIII Congreso Iberoamericano de Energía Solar 1–8. https://doi.org/10.34637/cies2020.1.2060
dc.relation.referencesSenthil, R., 2021. Enhancement of productivity of parabolic dish solar cooker using integrated phase change material. Mater Today Proc 34, 386–388. https://doi.org/10.1016/J.MATPR.2020.02.197
dc.relation.referencesSharma, A., Tyagi, V. V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13, 318–345. https://doi.org/10.1016/J.RSER.2007.10.005
dc.relation.referencesSharma, B., Sarkar, S., Bau, S., 2023. Understanding population exposure to size-segregated aerosol and associated trace elements during residential cooking in northeastern India: Implications for disease burden and health risk. Science of The Total Environment 875, 162539. https://doi.org/10.1016/J.SCITOTENV.2023.162539
dc.relation.referencesSreepathi, K., Sharadhi, T.S., G, C.S., 2020. Performance Analysis Of Solar Energy Storage Unit For Cooking, JNNCE Journal of Engineering and Management. JJEM.
dc.relation.referencesSu, W., Darkwa, J., Kokogiannakis, G., 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews 48, 373–391. https://doi.org/10.1016/J.RSER.2015.04.044
dc.relation.referencesSun, X., Lee, K.O., Medina, M.A., Chu, Y., Li, C., 2018. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis. Phase Transitions 91, 667–680. https://doi.org/10.1080/01411594.2018.1469019
dc.relation.referencesThirugnanam, C., Karthikeyan, S., Kalaimurugan, K., 2020. Study of phase change materials and its application in solar cooker. https://doi.org/10.1016/j.matpr.2020.02.780
dc.relation.referencesVadhera, J., Sura, A., Nandan, G., Dwivedi, G., 2018. Study of Phase Change materials and its domestic application. Mater Today Proc 5, 3411–3417. https://doi.org/10.1016/J.MATPR.2017.11.586
dc.relation.referencesVerma, S., Banerjee, S., Das, R., 2022. A fully analytical model of a box solar cooker with sensible thermal storage. Solar Energy 233, 531–542. https://doi.org/10.1016/j.solener.2021.12.035
dc.relation.referencesVerma, V., Shringi, K., Sharma, S., Sengar, N., Chandra Giri, N., 2023. Experimental thermal performance studies on solar hot box cooker with different absorber coating materials. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.518
dc.relation.referencesWang, J., Han, W., Ge, C., Guan, H., Yang, H., Zhang, X., 2019. Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage. Renew Energy 136, 657–663. https://doi.org/10.1016/J.RENENE.2019.01.063
dc.relation.referencesYadav, V., Kumar, Y., Agrawal, H., Yadav, A., 2017. Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Australian Journal of Mechanical Engineering 15, 93–102. https://doi.org/10.1080/14484846.2015.1093260
dc.relation.referencesYalelet Getnet, M., Gudeta Gunjo, D., Kumar Sinha, D., 2023. Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors. Results in Engineering 18. https://doi.org/10.1016/j.rineng.2023.101022
dc.relation.referencesYuksel, N., Arabacigil, B., Avci, A., 2012. The thermal analysis of paraffin wax in a box-type solar cooker. Journal of Renewable and Sustainable Energy 4. https://doi.org/10.1063/1.4768547
dc.relation.referencesZhou, Y.P., Xu, J.C., Ma, X.Y., Yang, P.X., He, Y.L., 2023. Multi-scale multi-physic coupled investigation on the matching and trade-off of conversion and storage of optical, thermal, electrical, and chemical energy in a hybrid system based on a novel full solar spectrum utilization strategy. Energy Convers Manag 283, 116940. https://doi.org/10.1016/J.ENCONMAN.2023.116940
dc.rightsCopyright Universidad de Córdoba, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsSolar cookers
dc.subject.keywordsThermal storage devices
dc.subject.keywordsPhase change materials
dc.subject.keywordsThermal stability
dc.subject.proposalCocinas solares
dc.subject.proposalDispositivos de Almacenamiento Térmico
dc.subject.proposalMateriales de Cambio de Fase
dc.subject.proposalEstabilidad Térmica
dc.titleEvaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
cogollotorrescristinaisabel.pdf
Tamaño:
4.2 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formulario repositorio Cristina Cogollo.pdf
Tamaño:
1014.36 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones