Publicación:
Potencial de biocarbón después de su activación biológica por microflora nativa del suelo

dc.contributor.authorspa
dc.contributor.authorspa
dc.contributor.authorspa
dc.contributor.authorspa
dc.date.accessioned2021-05-02 00:00:00
dc.date.accessioned2022-07-01T21:01:47Z
dc.date.available2021-05-02 00:00:00
dc.date.available2022-07-01T21:01:47Z
dc.date.issued2021-05-02
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/zipspa
dc.format.mimetypeapplication/zipspa
dc.format.mimetypeapplication/xmlspa
dc.format.mimetypeapplication/xmlspa
dc.format.mimetypeaudio/mpegspa
dc.format.mimetypeaudio/mpegspa
dc.identifier.doi10.21897/rmvz.2219
dc.identifier.eissn1909-0544
dc.identifier.issn0122-0268
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/6118
dc.identifier.urlhttps://doi.org/10.21897/rmvz.2219
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3163
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3164
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3520
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3522
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3521
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3523
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3166
dc.relation.bitstreamhttps://revistamvz.unicordoba.edu.co/article/download/e2219/3165
dc.relation.citationeditionNúm. 3 , Año 2021 : Revista MVZ Córdoba Volumen 26(3) Septiembre-Diciembre 2021spa
dc.relation.citationendpagee2219
dc.relation.citationissue3spa
dc.relation.citationstartpagee2219
dc.relation.citationvolume26spa
dc.relation.ispartofjournalRevista MVZ Córdobaspa
dc.relation.referencesLehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota–a review. Soil biology and biochemistry. 2013; 43(9):1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022spa
dc.relation.referencesZhang C, Nie S, Liang J, Zeng G, Wu H, Hua S. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment. 2016; 557:785-790. https://doi.org/10.1016/j.scitotenv.2016.01.170spa
dc.relation.referencesQuilliam RS, Glanville HC, Wade SC, Jones DL. Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms?. Soil Biol Biochem. 2013; 65:287-293. https://doi.org/10.1016/j.soilbio.2013.06.004spa
dc.relation.referencesSorrenti G, Masiello CA, Dugan B, Toselli M. Biochar physico-chemical properties as affected by environmental exposure. Science of the total Environment. 2016; 563:237-246. https://doi.org/10.1016/j.scitotenv.2016.03.245spa
dc.relation.referencesWang B, Jiang YS, Li FY, Yang DY. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresour Technol. 2017; 233:159-165. https://doi.org/10.1016/j.biortech.2017.02.103spa
dc.relation.referencesSajjadi B, Zubatiuk T, Leszczynska D, Leszczynski J, Chen WY. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev Chem Eng. 2019; 35(7):777-815. https://doi.org/10.1515/revce-2018-0003 spa
dc.relation.referencesWolińska A, Stępniewska Z, Bielecka A, Ciepielski J. Bioelectricity production from soil using microbial fuel cells. Appl Biochem Biotechnol. 2014; 173(8):2287-2296. https://doi.org/10.1007/s12010-014-1034-8spa
dc.relation.referencesIUSS Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Reports No. 106. World Soil Resources; 2015. http://www.fao.org/3/i3794en/I3794en.pdfspa
dc.relation.referencesSato JH, Figueiredo CCD, Marchão RL, Madari BE, Benedito LEC, Busato JG, Souza DMD. Methods of soil organic carbon determination in Brazilian savannah soils. Scientia Agricola. 2014; 71(4):302-308. http://dx.doi.org/10.1590/0103-9016-2013-0306spa
dc.relation.referencesPospíšilová H, Jiskrova E, Vojta P, Mrizova K, Kokáš F, Čudejková MM, Dzurova L. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. N Biotechnol. 2016; 33(5):692-705. https://doi.org/10.1016/j.nbt.2015.12.005spa
dc.relation.referencesKučerík J, Tokarski D, Demyan MS, Merbach I, Siewert CC. Linking soil organic matter thermal stability with contents of clay, bound water, organic carbon and nitrogen. Geoderma. 2018; 316:38-46. https://doi.org/10.1016/j.geoderma.2017.12.001spa
dc.relation.referencesJosé M, Paneque M, Miller AZ, Knicker H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci Total Environ. 2014; 499:175-184. https://doi.org/10.1016/j.scitotenv.2014.08.025spa
dc.relation.referencesCasida LE, Klein DA, Santoro T. Soil dehydrogenase activity. Soil Science. 1964; 98:371-376spa
dc.relation.references14 Peoples MB, Faizah AW, Rerkasem B, Herridge DF. Methods for evaluating nitrogen fixation by nodulated legumes in the field (No. 435-2016-33692). 1989spa
dc.relation.referencesKeeney DR, Nelson DW. Nitrogen—inorganic forms. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. American Society of Agronomy. 1983. https://doi.org/10.2134/agronmonogr9.2.2ed.c33spa
dc.relation.referencesPittelkow CM, Linquist BA, Lundy ME, Liang X, van Groenigen KJ, Leevan Kessel C. When does no-till yield more? A global meta-analysis. Field Crops Research. 2015; 183:156-168. https://doi.org/10.1016/j.fcr.2015.07.020spa
dc.relation.referencesPauli N, Abbott LK, Negrete-Yankelevich S, Andrés P. Farmers’ knowledge and use of soil fauna in agriculture: a worldwide review. Ecology and Society. 2016; 21(3):19. https://www.jstor.org/stable/26269977spa
dc.relation.referencesChebotarev NT, Yudin AA, Konkin PI, Oblizov AV. Efficiency of using organic and mineral fertilizers in fodder crop rotation on northern soddy podzols. Russian Agricultural Sciences. 2017; 43(2):162-166. https://doi.org/10.3103/S1068367417020045spa
dc.relation.referencesKučová L, Záhora J, Pokluda R. Effect of mycorrhizal inoculation of leek Allium porrum L. on mineral nitrogen leaching. Horticultural Science. 2016; 43(4):195-202. https://doi.org/10.17221/182/2015-HORTSCIspa
dc.relation.referencesKuzyakov Y, Bogomolova I, Glaser B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem. 2014; 70:229-236. https://doi.org/10.1016/j.soilbio.2013.12.021spa
dc.relation.referencesMajor J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 2010; 333(1-2):117-128. https://doi.org/10.1007/s11104-010-0327-0spa
dc.relation.referencesXu N, Tan G, Wang H, Gai X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol. 2016; 74:1-8. https://doi.org/10.1016/j.ejsobi.2016.02.004spa
dc.relation.referencesDi HJ, Cameron KC. Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review. J Soils Sediments. 2016; 16(5):1401-1420. https://doi.org/10.1007/s11368-016-1403-8spa
dc.relation.referencesGeisseler D, Scow KM. Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biol Biochem. 2014; 75:54-63. https://doi.org/10.1016/j.soilbio.2014.03.023spa
dc.relation.referencesMorriën E. Understanding soil food web dynamics, how close do we get?. Soil Biol Biochem. 2016; 102:10-13. https://doi.org/10.1016/j.soilbio.2016.06.022spa
dc.rightsHelena Dvorackova, Jaroslav Záhora, Lubica Pospíšilová, Vítězslav Vlček - 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistamvz.unicordoba.edu.co/article/view/e2219spa
dc.subjectBiochareng
dc.subjectcarboneng
dc.subjectdehydrogenase activityeng
dc.subjectnitrogeneng
dc.subjectsoil microorganismseng
dc.subjectBiocharspa
dc.subjectcarbonospa
dc.subjectactividad deshidrogenasaspa
dc.subjectnitrógenospa
dc.subjectmicroorganismos del suelospa
dc.titlePotencial de biocarbón después de su activación biológica por microflora nativa del suelospa
dc.title.translatedPotential of biochar after the biological activation by native soil microfloraeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos
Colecciones