Publicación:
Estudio termomagnético de un ferrimagneto tipo ising de espines mixtos S=3/2 Y σ=5/2

dc.contributor.advisorEspriella Vélez, Nicolás Antonio De Laspa
dc.contributor.authorPonnefz Durango, Pablo Cesarspa
dc.date.accessioned2020-11-12T23:09:15Zspa
dc.date.available2020-11-12T23:09:15Zspa
dc.date.issued2020-11-12spa
dc.description.abstractAplicamos técnicas de simulación Monte Carlo para estudiar el comportamiento magnético de un sistema de Ising mixto en una red cuadrada, donde los espines S=±3/2,±1/2 se alternan con los espines σ=±5/2,±3/2,±1/2 en dos subredes interpenetrantes A y B, respectivamente. El Hamiltoniano del sistema contiene una interacción ferrimagnética a vecinos más cercanos y un campo magnético longitudinal. Calculamos la dependencia de la magnetización total, las magnetizaciones de las subredes, la energía y la susceptibilidad magnética, con el campo magnético y su dependencia con la temperatura para un campo fijo. Descubrimos que bajo la influencia del campo magnético el sistema antes mencionado presenta un fenómeno interesante asociado con una inversión de las magnetizaciones de subredes a bajas temperaturas. Descubrimos que nuestro sistema no tiene temperaturas de compensación. Además, vemos que el campo magnético suaviza la transición entre la fase ordenada y la paramagnética. Finalmente presentamos un diagrama de fase con las temperaturas críticas en términos del campo magnético.spa
dc.description.degreelevelPregradospa
dc.description.degreenameFísico(a)spa
dc.description.tableofcontentsResumen 1spa
dc.description.tableofcontentsCapítulo 1 Introducción 2spa
dc.description.tableofcontentsCapítulo 2 Materiales magnéticos y modelo de Ising 5spa
dc.description.tableofcontentsCapítulo 3 Resultados y análisis 19spa
dc.description.tableofcontentsCapítulo 4 Conclusiones 29spa
dc.description.tableofcontentsApéndice A Solución analítica a los modelos de Ising 1D y 2D 30spa
dc.description.tableofcontentsApéndice B Descripción del método Monte Carlo 37spa
dc.description.tableofcontentsReferencias bibliográficas 44spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3582spa
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programFísicaspa
dc.relation.references[1] Fundación COTEC para la innovación tecnológica, Materiales Magnéticos, 1ra ed. (2003).spa
dc.relation.references[2] K. H. Buschow and F.R. de Boer, Physics of Magnetism and Magnetic Materials-Springer: 19 (2003)spa
dc.relation.references[3] N. A. Spaldin, Magnetic Materials, Fundamentals and Applications - 2nd edition: 96, 97 (2003)spa
dc.relation.references[4] M. Getzlaff, Fundamentals of Magnetism: 47, 62, 63 (2007)spa
dc.relation.references[5] C. P. Poole, Encyclopedic Dictionary of Condensed Matter Physics-Elsevier (2004)spa
dc.relation.references[6] D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets - Oxford U. Press, (2006)spa
dc.relation.references[7] W. Jiang, C. Liu and Y. Jiang, Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique: Physica A 389 (2010) 2227.spa
dc.relation.references[8] C. Ekiz, Mixed spin-1/2 and spin-3/2 Ising system in a longitudinal magnetic field, J. Magn. Magn. Mater. 293 (2005) 913–923.spa
dc.relation.references[9] A. Zaim, M. Kerouad and Y. Belmamoun, Monte Carlo study of a mixed spin-1/2 and spin-1 Blume-Capel ferrimagnetic model with four-spin interaction, Phys. B 404 (2009) 2280–2284.spa
dc.relation.references[10] N. De La Espriella, C.A. Mercado, G.M. Buendía, Critical and compensation points of a mixed spin-2-spin-5/2 Ising ferrimagnetic system with crystal field and nearest and next nearest neighbors interactions, J. Magn. Magn. Mater. 417 (2016) 30–36.spa
dc.relation.references[11] Y. Hou, Q. Zhang and Y. Jia, Monte Carlo studies of the first order phase transitions on a mixed spin-2 and spin-5/2 system, Phys. B 442 (2014) 52–56.spa
dc.relation.references[12] W. Wang, D. Lv, F. Zhang, Jiang-lin Bi and Jun-nan Chen, Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field, J. Magn. Magn. Mater. 385 (2015) 16–26.spa
dc.relation.references[13] A. Jabar, R. Masrour, A. Benyoussef and M. Hamedoun, Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice, J. Magn. Magn. Mater. 397 (2016) 287–294.spa
dc.relation.references[14] De La Espriella and G.M. Buendía, Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model, J. Phys. Condens. Matter 23 (2011) 176003.spa
dc.relation.references[15] M. Erta¸s, Dynamic hysteresis behaviors for the two-dimensional mixed spin (2,5/2) ferrimagnetic Ising model in an oscillating magnetic field, Superlattices Microstruct. 85 (2015) 734–742.spa
dc.relation.references[16] Q. Zhang, G. Wei and Y. Gu, The study of the phase diagram and internal energy of the mixed spin-3/2 and spin-5/2 ferrimagnetic Ising system with interlayer coupling by effective-field theory; a simple approach of calculating internal energy, Phys. Stat. Sol. B 242 (2005) 924–932.spa
dc.relation.references[17] Z.H. Yang, Z.W. Li, L. Liu and L.B. Kong, Microstructure and magnetic properties of Co - Cu nanowire arrays fabricated by galvanic displacement deposition, J. Magn. Magn. Mater. 323 (2011) 2674–2677.spa
dc.relation.references[18] K.H. Seong, J.Y. Kim, J.J. Kim, et al., Room-temperature ferromagnetism in Cu doped GaN nanowires, Nano Lett. 7 (2007) 3366–3371.spa
dc.relation.references[19] L. Zhang, Y. Zhang, Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters, J. Magn. Magn. Mater. 321 (2009) L15–L20.spa
dc.relation.references[20] A. Shavel, B. Rodríghez-González, M. Spasova, M. Farle and L.M. Liz-Marzán, Synthesis and characterization of Iron/Iron oxide core/shell nanocubes, Adv. Funct. Mater. 17 (2007) 3870–3876.spa
dc.relation.references[21] F. Kronast, N. Friedenberger, K. Ollefs, S. Gliga, et al., Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes, Nano Lett. 11 (2011) 5–1710.spa
dc.relation.referencesA.P. LaGrow, B. Ingham, S. Cheong, G.V.M. Williams, et al., Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes, J. Am. Chem. Soc. 134 (2012) 855–858.spa
dc.relation.referencesA.P. LaGrow, B. Ingham, S. Cheong, G.V.M. Williams, et al., Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes, J. Am. Chem. Soc. 134 (2012) 855–858.spa
dc.relation.references[23] M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane and R. Ahuja, Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube, Superlattices Microstruct. 80 (2015) 151–168.spa
dc.relation.references[24] T. Kaneyoshi, Ferrimagnetic behaviors in a transverse Ising nanoisland, Int. J. Modern Phys. B 30 (2016) 1650073.spa
dc.relation.references[25] R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359–372.spa
dc.relation.references[26] S.D. Bader, Opportunities in nanomagnetism, Rev. Mod. Phys. 78 (2006) 1.spa
dc.relation.references[27] N. Sounderya and Y. Zhang, Use of core/shell nanoparticles for biomedical applications, Recent Pat. Biomed. Eng. 1 (2008) 34–42.spa
dc.relation.references[28] H.T. Diep, Miron Kaufman and Sandra Kaufman, Dynamics of two group conflicts: a statistical physics model, Phys. A 469 (2017) 183–199.spa
dc.relation.references[29] N. De La Espriella and C.A. Mercado, J.C. Madera, Spin compensation temperatures in the Monte Carlo study of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system, J. Magn. Magn. Mater. 401 (2016) 22–29.spa
dc.relation.references[30] N. De La Espriella, A.J. Arenas and M.S. Páez Meza, Magnetic properties of an Ising ferromagnetic model on a square lattice with next-nearest-neighbor and crystal field interactions, J. Magn. Magn. Mater. 417 (2016) 434–441.spa
dc.relation.references[31] E. Albayrak and A. Yigit, The phase diagrams of de mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice, Physica status solidi b: 244, 748- 758 (2007)spa
dc.relation.references[32] B. Deviren and M. Keskin, Dynamic phase transitions and compensation temperatures in a mixed spin-3/2 and spin-5/2 Ising system, Journal of Statistical Physics: 140, 934-947 (2010).spa
dc.relation.references[33] J. Reyes, N. De La Espriella and G. Buendía, Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: a Monte Carlo study, Phys. Stat. Sol. B 252 (2015) 2268–2274.spa
dc.relation.references[34] B. Deviren, M. Keskin and O. Canko, Magnetic properties of an antiferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model in the longitudinal magnetic field within the effective-field approximation, Physica A: 388, 1835-1848 (2009b).spa
dc.relation.references[35] E. Albayrak, The critical and compensation temperatures for the mixed spin-3/2 and spin-2 Ising model, Phys. B Condens. Matter 391 (2007) 47–53.spa
dc.relation.references[36] M. Keskin and M. Erta¸s, Mixed-spin ising model in an oscillating magnetic field and compensation temperature, J. Stat. Phys. 139 (2010) 333–344.spa
dc.relation.references[37] G.M. Buendía and E. Machado, Metastability and compensation temperatures for a mixed Ising ferrimagnetic system, Phys. Rev. B 68 (2003) 224411–224417.spa
dc.relation.references[38] G.M. Buendía and M.A. Novotny, Numerical study of a mixed Ising ferrimagnet, J. Phys. Conds. Matter 9 (1997) 5951–5959.spa
dc.relation.references[39] M. Žukoviˇc and A.Bobák, Phase diagram of a mixed spin-1 and spin-3/2 Ising ferrimagnet, Phys. A 389 (2010) 5402–5407.spa
dc.relation.references[40] G. Wei, Y. Gu and J. Liu, Mean-field and Monte Carlo studies of a mixed spin-1 and spin-2 Ising system with different anisotropies, Phys. Rev. B 74 (2006) 024422.spa
dc.relation.references[41] F. Albertini, et al., Magnetic-field-induced first-order transitions in the intermetallic compound Pr2Fe17 Phys. B Condens. Matter 294 (2001) 172-176.spa
dc.relation.references[42] K. Koyama, et al., Magnetic phase transitions of Ce2Fe17 under high pressures andhigh magnetic fields, Phys. B Condens. Matter 294 (2001) 168-171.spa
dc.relation.references[43] M. Doerr and S. Kramp, M. Loewenhaupt, et al., Anomalous magnetic behaviour of NdCu2 in high magnetic fields, Phys. B Condens. Matter 294 (2001) 164–167.spa
dc.relation.references[44] G.Z. Wei, Y.Q. Liang, Q. Zhang adn Z.H. Xin, Magnetic properties of mixedspin Ising systems in a longitudinal magnetic field, J. Magn. Magn. Mater. 271 (2004) 246–253.[44] G.Z. Wei, Y.Q. Liang, Q. Zhang adn Z.H. Xin, Magnetic properties of mixedspin Ising systems in a longitudinal magnetic field, J. Magn. Magn. Mater. 271 (2004) 246–253.spa
dc.relation.references[45] C. Q. Xu and S. L. Yan, Compensation behaviors of mixed Ising model with transverse crystal field in an external magnetic field.spa
dc.relation.references[46] H.K. Mohamad, Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: 323 (2011) 61–66.spa
dc.relation.references[47] J. Liu, G. Wei and H. Miao, Ground state phase diagrams and the tricritical behaviors of Ising metamagnet in both external longitudinal and transverse field, J. Magn. Magn. Mater. 315 (2007) 101–106.spa
dc.relation.references[48] Y. Liang, G. Wei, F. Ma and G. Song, Magnetic properties of a mixed spin-1/2 and spin-3/2 transverse Ising model in a longitudinal magnetic field, Phys. A 387 (2008) 4513–4518.spa
dc.relation.references[49] H.K. Mohamad, E.P. Domashevskaya and A.F. Klinskikh, Compensation temperatures induced by longitudinal fields in a mixed spin Ising ferrimagnet, Solid State Commun. 150 (2010) 1253–1257.spa
dc.relation.references[50] M.A. Neto and J.R. de Sousa, Phase diagrams of the transverse Ising antiferromagnet in the presence of the longitudinal magnetic field, Phys. A 392 (2013) 1–6.spa
dc.relation.references[51] M. Aouzi, M. El Hafidi and E.M. Sakhaf, Thermodynamic and magnetic properties of a mixed Ising system on a triangular array in presence of longitudinal field, Phys. A 345 (2005) 575–590.spa
dc.relation.references[52] M. Erta¸s, Y. Kocakapla and M. Keskin, Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume-Capel model under a time oscillating longitudinal field, J. Magn. Magn. Mater. 348 (2013) 113–119.spa
dc.relation.referencesT. Korkmaz and Ü. Temizer, Dynamic compensation temperature in the mixed spin-1 and spin-2 Ising model in an oscillating field on alternate layers of a hexagonal lattice, J. Magn. Magn. Mater. 324 (2012) 3876–3886.spa
dc.relation.references[54] M. Ertas¸s and M. Keskin, Dynamic phase transition properties for the mixed spin-(1/2,1) Ising model in an oscillating magnetic field, Phys. B Condens. Matter 470–471 (2015) 76–81.spa
dc.relation.references[55] R. Weiss, A. Gold and J. Terner, Cytochromes c0: Biological Models for the S = 3/2, 5/2 Spin-State Admixture? Chem. Rev.: 106 (6), 2550-2579 (2006).spa
dc.relation.references[56] M.E. Kosal and K.S. Suslick, Microporous porphyrin and metalloporphyrin materials, J. Solid State Chem. 152 (2000) 87–98.spa
dc.relation.references[57] L.P. Kadanoff, Stat Physics, Statics Dynamics and Renormalization. (2000).spa
dc.relation.references[58] M. Bojórquez, Estudio de transiciones de fase en redes con interacciones de largo alcance (2006).spa
dc.relation.references[59] H. Szymczak, Magnetic Materials and Applications: 204 Elsevier Ltd. (2005).spa
dc.relation.references[60] B. Cullity and C. Graham - Introduction to Magnetic Materials-Wiley-IEEE Press: 1,2,87,88 (2008).spa
dc.relation.references[61] R. E. Hummel, Electric Properties of Materials – 4th edition: 349,350 (2011)spa
dc.relation.references[62] P. Selwood, Adsorption and Collective Paramagnetism: (1962)spa
dc.relation.references[63] R. A. McCurrie, The Structure and Properties of Ferromagnetic Materials - Academic Press: 1,2,3 (1994).spa
dc.relation.references[64] N. De La Espriella, Caracterización termomagnética de sistemas magnéticos tipo Ising, Universidad de Córdoba: 1-5,20,21 (2019).spa
dc.relation.references[65] J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd Ed (1994).spa
dc.relation.references[66] L. Pili, Acoplamiento spin-red en el modelo de Ising en dos dimensiones, Universidad Nacional de La Plata: 1,2 (2017).spa
dc.relation.references[67] K. Huang, Statistical Mechanics, 2nd Edition, Massachusetts Institute of Technology: 443,444 (1987).spa
dc.relation.references[68] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics Third Edition: 68, 69 (2009).spa
dc.relation.references[69] B. M. McCoy and Tai Tsun Wu, The Two-Dimensional Ising Model, Harvard University Press (2014).spa
dc.relation.references[70] A. Gelover, Simulaciones del Modelo de Ising con el método de Monte Carlo, Las Prensas de Ciencias (2006).spa
dc.relation.references[71] N. De La Espriella and G. Buendía, Ground state phase diagrams for the mixed Ising 3/2 and 5/2 spin model, Physica A: 389, 2775-2732 (2010).spa
dc.relation.references[72] N. De La Espriella, G. Casiano y C. Ortega, Propiedades Magnéticas del Sistema Ferrimagnético de Ising Mixto de Espines S = 3/2 y σ=5/2: Información Tecnológica Vol. 23(2), 129-140 (2012).spa
dc.relation.references[73] B. Deviren, M. Bat and M. Keskin, The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system, Phys. Scr. 79 (2009) 065006.spa
dc.relation.references[74] B. Deviren, E. Kantar and M. Keshin, Magnetic Properties of a Mixed Spin-3/2 and Spin-2 Ising ferrimagnetic system within the effective-field theory, J. Korean Phys. Soc. 56 (2010) 1738–1747.spa
dc.relation.references[75] R. H. Swendsen, An Introduction to Statistical Mechanics and Thermodynamics 2th Ed - Oxford University Press (2019).spa
dc.relation.references[76] H. Gould and J. Tobochnik, Statistical and Thermal Physics With Computer Applications-Princeton University Press (2010).spa
dc.relation.references[77] M.E. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, New York, 2006.spa
dc.relation.references[78] D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithms to Applications. Academic Press. A Division of Harcourt, Inc., (1998).spa
dc.relation.references[79] J. M. Yeomans, Statistical Mechanics of Phase Transitions. Clarendon Press. Oxford, (1992).spa
dc.relation.references[80] D. W. Heermann, Computer Simulation Methods in Theoretical Physics. Springer-Verlag, (1986).spa
dc.relation.references[81] B. A. Berg, Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientic Publishing, (2004).spa
dc.relation.references[82] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, (1998).spa
dc.relation.references[83] G. Buendía and P. A. Rikvold, Dynamic phase transition in the twodimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics. Phys. Rev B., 78,051108, (2008).spa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsFerrimagneticing
dc.subject.keywordsMonte Carlospa
dc.subject.keywordsSpinsing
dc.subject.keywordsHamiltonianing
dc.subject.keywordsMagnetizationsing
dc.subject.keywordsMagnetic fielding
dc.titleEstudio termomagnético de un ferrimagneto tipo ising de espines mixtos S=3/2 Y σ=5/2spa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
TRABJO FINAL_PABLO PONNEFZ.pdf
Tamaño:
1.29 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
503.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: