Publicación: Evaluación termo económica de colectores solares de placa plana para producción de agua caliente sanitaria en hotel de la ciudad de Montería - Córdoba
dc.contributor.advisor | Martínez Guarín, Arnold Rafael | |
dc.contributor.author | González Pérez, Roberth Andrés | |
dc.contributor.author | Calad Uribe, Andrés Felipe | |
dc.date.accessioned | 2021-09-28T23:43:03Z | |
dc.date.available | 2021-09-28T23:43:03Z | |
dc.date.issued | 2021-09-27 | |
dc.description.abstract | The use of renewable energy is a path that many countries have begun to follow in the process of decarbonizing their equipment, production and economic structures, it is clear that this is a long journey that requires constant progress and improvement of the different mechanisms of renewable energy transformations that exist at present. Therefore, the objective of this research is to carry out a thermoeconomic study of a solar collector to produce domestic hot water. For the development of this work was used a flat plate collector, was studied the radiation of the area by means of the software RETScreen Expert, the demand of water required for the studio hotel, the design of the system was carried out through the program CYPECAD MEP the design of the system was carried out and the temperatures inside the system were known when using TRNSYS software. This series of analyses allowed to know the amount of collectors needed, the rate of return of the investment, the exergy of the system and its efficiency. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | El uso de energías renovables es un camino que muchos países han empezado a transitar en el proceso de descarbonización de sus equipos, estructuras productivas y económicas. Está claro que este es un largo recorrido que requiere de constantes avances y mejoras de los diferentes mecanismos de transformaciones de energías renovables que existen en la actualidad. Por lo tanto, el objetivo de esta investigación es realizar un estudio termoeconómico de un colector solar para producir agua caliente sanitaria, se utilizó un colector solar de placa plana, estudiando la radiación de la zona por medio del software RETScreen Expert, la demanda de agua requerida para el hotel, también por medio de del programa CYPECAD MEP se realizado el diseño del sistema y finalmente se conocieron las temperaturas dentro de este al emplear el software TRNSYS para determinar la exergía del sistema. Esta serie de análisis permitió conocer la cantidad de colectores necesarios, la tasa de retorno de la inversión, la exergía del sistema y su eficiencia. | spa |
dc.description.tableofcontents | INTRODUCCIÓN ........................................................................................................................................ 1 | spa |
dc.description.tableofcontents | OBJETIVOS ................................................................................................................................................. 3 | spa |
dc.description.tableofcontents | OBJETIVO GENERAL ............................................................................................................................ 3 | spa |
dc.description.tableofcontents | OBJETIVOS ESPECÍFICOS .................................................................................................................... 3 | spa |
dc.description.tableofcontents | 1. CAPÍTULO I. ANTECEDENTES ....................................................................................................... 4 | spa |
dc.description.tableofcontents | 1.1. MARCO TEÓRICO ...................................................................................................................... 4 | spa |
dc.description.tableofcontents | 1.1.1. Turismo a nivel mundial ....................................................................................................... 4 | spa |
dc.description.tableofcontents | 1.1.2. Consumo energético hotelero ................................................................................................ 5 | spa |
dc.description.tableofcontents | 1.1.3. Proyecciones en las energías renovables............................................................................... 5 | spa |
dc.description.tableofcontents | 1.1.4. Sistemas de calentamiento de agua ....................................................................................... 6 | spa |
dc.description.tableofcontents | 1.1.5. Colectores solares ................................................................................................................. 6 | spa |
dc.description.tableofcontents | 1.1.6. Tipos de colectores................................................................................................................ 8 | spa |
dc.description.tableofcontents | 1.1.7. Colectores solares de placa plana .......................................................................................... 8 | spa |
dc.description.tableofcontents | 1.1.8. Colectores solares de tubo de vacío ...................................................................................... 9 | spa |
dc.description.tableofcontents | 1.1.9. Colectores solares de concentración cilindro-parabólico ...................................................... 9 | spa |
dc.description.tableofcontents | 1.1.10. Colectores solares de concentración plato parabólico......................................................... 10 | spa |
dc.description.tableofcontents | 1.1.11. Exergía ................................................................................................................................ 11 | spa |
dc.description.tableofcontents | 1.1.12. Características generales ..................................................................................................... 11 | spa |
dc.description.tableofcontents | 1.1.13. Norma técnicas. ................................................................................................................... 11 | spa |
dc.description.tableofcontents | 1.1.14. Características energéticas en Colombia. ............................................................................ 12 | spa |
dc.description.tableofcontents | 1.2. ESTADO DEL ARTE ................................................................................................................. 13 | spa |
dc.description.tableofcontents | 2. CAPÍTULO II. DESARROLLO DEL TEMA .................................................................................... 18 | spa |
dc.description.tableofcontents | 2.1. Marco metodológico ................................................................................................................... 18 | spa |
dc.description.tableofcontents | 2.1.1. Selección del hotel .............................................................................................................. 18 | spa |
dc.description.tableofcontents | 2.1.2. Descripción del hotel .......................................................................................................... 19 | spa |
dc.description.tableofcontents | 2.1.3. Descripción geográfica ....................................................................................................... 22 | spa |
dc.description.tableofcontents | 2.1.4. Descripción climatológica ................................................................................................... 23 | spa |
dc.description.tableofcontents | 2.1.5. Cálculo del consumo de agua .............................................................................................. 23 | spa |
dc.description.tableofcontents | 2.1.6. Balance energético del sistema: .......................................................................................... 25 | spa |
dc.description.tableofcontents | 2.1.7. Selección del colector solar. ................................................................................................ 26 | spa |
dc.description.tableofcontents | 2.1.8. Cálculo de la superficie de captación solar. ........................................................................ 27 | spa |
dc.description.tableofcontents | 2.1.9. Inclinación de los colectores solares ................................................................................... 27 | spa |
dc.description.tableofcontents | 2.1.10. Matriz de distribución de los colectores .............................................................................. 28 | spa |
dc.description.tableofcontents | 2.1.11. Superficie de captación ....................................................................................................... 30 | spa |
dc.description.tableofcontents | 2.1.12. Dimensionamiento del intercambiador ............................................................................... 30 | spa |
dc.description.tableofcontents | 2.1.13. Fluido caloportador ............................................................................................................. 31 | spa |
dc.description.tableofcontents | 2.2. Análisis exergético ...................................................................................................................... 31 | spa |
dc.description.tableofcontents | 2.3. Construcción del modelo termoeconómico ................................................................................. 36 | spa |
dc.description.tableofcontents | 3. RESULTADOS Y DISCUSIONES .................................................................................................... 38 | spa |
dc.description.tableofcontents | 4. CONCLUSIONES .............................................................................................................................. 42 | spa |
dc.description.tableofcontents | 5. BIBLIOGRAFÍA ................................................................................................................................ 44 | spa |
dc.description.tableofcontents | 6. ANEXOS ............................................................................................................................................ 51 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4580 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Solar collector | eng |
dc.subject.keywords | CYPECAD MEP® | eng |
dc.subject.keywords | Efficiency | eng |
dc.subject.keywords | TRNSYS | eng |
dc.subject.proposal | Colector solar | spa |
dc.subject.proposal | CYPECAD MEP® | spa |
dc.subject.proposal | Eficiencia | spa |
dc.subject.proposal | TRNSYS | spa |
dc.title | Evaluación termo económica de colectores solares de placa plana para producción de agua caliente sanitaria en hotel de la ciudad de Montería - Córdoba | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abd-Ur-Rehman, H. M., & Al-Sulaiman, F. A. (2016). Optimum selection of solar water heating (SWH) systems based on their comparative techno-economic feasibility study for the domestic sector of Saudi Arabia. In Renewable and Sustainable Energy Reviews (Vol. 62, pp. 336–349). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.04.047 | spa |
dcterms.references | Ahmadi, A., Ehyaei, M. A., Doustgani, A., El Haj Assad, M., Hmida, A., Jamali, D. H., Kumar, R., Li, Z. X., & Razmjoo, A. (2021a). Recent residential applications of low-temperature solar collector. In Journal of Cleaner Production (Vol. 279, p. 123549). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.123549 | spa |
dcterms.references | Aiguasol. (2021). Trnsys 18 - Simulación energética – Aiguasol. https://aiguasol.coop/es/software-energia/trnsys-18-simulacion-energetica/ | spa |
dcterms.references | Al Congreso, M. (2019). LA TRANSICIÓN ENERGÉTICA DE COLOMBIA. | spa |
dcterms.references | al Irsyad, M. I., Halog, A., & Nepal, R. (2019). Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors. Renewable Energy, 130, 536–546. https://doi.org/10.1016/j.renene.2018.06.082 | spa |
dcterms.references | Amanecer y atardecer Montería, Colombia. (n.d.). Retrieved June 5, 2021, from https://www.sunrise-and-sunset.com/es/sun/colombia/monteria | spa |
dcterms.references | Caliskan, H. (2017). Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. In Renewable and Sustainable Energy Reviews (Vol. 69, pp. 488–492). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.11.203 | spa |
dcterms.references | Cetina-Quiñones, A. J., Xamán, J., Bassam, A., Escalante Soberanis, M. A., & Perez-Quintana, I. (2021). Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: Residential and industrial case. Applied Thermal Engineering, 182, 116082. https://doi.org/10.1016/j.applthermaleng.2020.116082 | spa |
dcterms.references | Cuevas Streeter, A. I. (2009). Análisis exergo-económico de un sistema de colectores solares para una piscina municipal. http://repositorio.uchile.cl/handle/2250/103512 | spa |
dcterms.references | DANE - Visor turismo. (n.d.). Retrieved June 16, 2021, from https://sitios.dane.gov.co/turismo/#!/ | spa |
dcterms.references | Ersöz, M. A. (2016). Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe. Renewable Energy, 96, 244–256. https://doi.org/10.1016/j.renene.2016.04.058 | spa |
dcterms.references | Adolfo Navarro Bonsón. (2015). DISEÑO DE UNA INSTALACIÓN DE ENERGÍA SOLAR POR EL MÉTODO f-CHART. APLICACIÓN A LA PRODUCCIÓN DE AGUA CALIENTE SANITARIA EN UN INSTITUTO DE EDUCACIÓN SECUNDARIA. https://idus.us.es/bitstream/handle/11441/38308/Navarro%20Bons%c3%b3n%2c%20Adolfo%20%282%29.pdf?sequence=4&isAllowed=y | spa |
dcterms.references | AGUA CALIENTE SANITARIA INTERACUMULADORES VITRIFICADOS MURAL CON RESISTENCIA ELÉCTRICA INTERACUMULADORES VITRIFICADOS MURAL CON RESISTENCIA ELÉCTRICA. (n.d.). | spa |
dcterms.references | Evangelisti, L., De Lieto Vollaro, R., & Asdrubali, F. (2019). Latest advances on solar thermal collectors: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 114, p. 109318). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109318 | spa |
dcterms.references | Fuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. In Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1530–1547). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.229 | spa |
dcterms.references | Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006 | spa |
dcterms.references | Jiménez, Á. (2017, December 20). f-CHART energía solar térmica - YouTube. https://www.youtube.com/watch?v=eIqaArLLRg0&list=PLg28hUwQ3qM88zlYQwKwpoSNCEbmTxdwM&index=13 | spa |
dcterms.references | Altamiranda, J. C., & Acevedo, J. (2020). Diseño de una herramienta para asignación de habitaciones con base en la demanda energética usando la metodología HVAC en un hotel de la ciudad de Montería. Montería: Universidad de Córdoba. | spa |
dcterms.references | Gil Maínez, G. J., & Guerra Macho, J. J. (n.d.). Diseño de una instalación solar en un hotel para la producción de ACS. Retrieved May 15, 2021, from https://core.ac.uk/download/pdf/186618007.pdf | spa |
dcterms.references | Gill, L., Mac Mahon, J., & Ryan, K. (2016). The performance of an evacuated tube solar hot water system in a domestic house throughout a year in a northern maritime climate (Dublin). Solar Energy, 137, 261–272. https://doi.org/10.1016/j.solener.2016.07.052 | spa |
dcterms.references | Gössling, S., & Lund-Durlacher, D. (2021). Tourist accommodation, climate change and mitigation: An assessment for Austria. Journal of Outdoor Recreation and Tourism, 100367. https://doi.org/10.1016/j.jort.2021.100367 | spa |
dcterms.references | Hajabdollahi, Z., & Hajabdollahi, H. (2017). Thermo-economic modeling and multi-objective optimization of solar water heater using flat plate collectors. Solar Energy, 155, 191–202. https://doi.org/10.1016/j.solener.2017.06.023 | spa |
dcterms.references | Hansen, K., Breyer, C., & Lund, H. (2019). Status and perspectives on 100% renewable energy systems. Energy, 175, 471–480. https://doi.org/10.1016/j.energy.2019.03.092 | spa |
dcterms.references | Hohne, P. A., Kusakana, K., & Numbi, B. P. (2019). A review of water heating technologies: An application to the South African context. Energy Reports, 5, 1–19. https://doi.org/10.1016/j.egyr.2018.10.013 | spa |
dcterms.references | Hossain, M. S., Saidur, R., Fayaz, H., Rahim, N. A., Islam, M. R., Ahamed, J. U., & Rahman, M. M. (2011). Review on solar water heater collector and thermal energy performance of circulating pipe. In 47 Renewable and Sustainable Energy Reviews (Vol. 15, Issue 8, pp. 3801–3812). Pergamon. https://doi.org/10.1016/j.rser.2011.06.008 | spa |
dcterms.references | Hoteles en Montería, Colombia | Páginas Amarillas. (2020). https://www.paginasamarillas.com.co/monteria/servicios/hoteles?page=4 | spa |
dcterms.references | Ibrahim, O., Fardoun, F., Younes, R., & Louahlia-Gualous, H. (2014). Review of water-heating systems: General selection approach based on energy and environmental aspects. In Building and Environment (Vol. 72, pp. 259–286). Pergamon. https://doi.org/10.1016/j.buildenv.2013.09.006 | spa |
dcterms.references | IDEAM. (2019). Atlas Interactivo - Radiación IDEAM. http://atlas.ideam.gov.co/visorAtlasRadiacion.html | spa |
dcterms.references | Jafari, M., Farrokhi, N., & Esmaeilzadeh, E. (2020). Effects of working temperature and fluid physical properties on heat transfer enhancement in conduction pumping: An experimental study. International Journal of Thermal Sciences, 156, 106471. https://doi.org/10.1016/j.ijthermalsci.2020.106471 | spa |
dcterms.references | Jamar, A., Majid, Z. A. A., Azmi, W. H., Norhafana, M., & Razak, A. A. (2016a). A review of water heating system for solar energy applications. In International Communications in Heat and Mass Transfer (Vol. 76, pp. 178–187). Elsevier Ltd. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028 | spa |
dcterms.references | López Restrepo, J. C. (2018). ANÁLISIS TERMOECONÓMICO DEL CICLO DE COGENERACIÓN DE UNA PLANTA AZUCARERA ASISTIDO POR ENERGÍA SOLAR. http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9849/T621.471%20L925.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | López, J. C., Escobar, A., Cárdenas, D. A., & Restrepo, Á. (2021). Parabolic trough or linear fresnel solar collectors? An exergy comparison of a solar-assisted sugarcane cogeneration power plant. Renewable Energy, 165, 139–150. https://doi.org/10.1016/j.renene.2020.10.138 | spa |
dcterms.references | Lozano-Medina, A., Manzano, L., Marcos, J. D., & Blanco-Marigorta, A. M. (2019). Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria. Energy, 183, 803–811. https://doi.org/10.1016/j.energy.2019.06.165 | spa |
dcterms.references | Mezni, T., Zainine, M. A., Dakhlaoui, M. A., & Zghal, A. (2017). Presentation and experimental validation of a solar DHW installation sizing control tool. International Journal of Hydrogen Energy, 42(48), 28958–28972. https://doi.org/10.1016/j.ijhydene.2017.04.129 | spa |
dcterms.references | Michopoulos, A., Ziogou, I., Kerimis, M., & Zachariadis, T. (2017). A study on hot-water production of hotels in Cyprus: Energy and environmental considerations. Energy and Buildings, 150, 1–12. https://doi.org/10.1016/j.enbuild.2017.05.071 | spa |
dcterms.references | MinCIT. (2019). Migracion Colombia. https://www.mincit.gov.co/getattachment/estudios-economicos/estadisticas-e-informes/informes-de-turismo/2019/diciembre/oee-turismo-enero-diciembre-12-03-2020-29abr2020.pdf.aspx | spa |
dcterms.references | MinCIT. (n.d.). MinCIT - Citur | Estadisticas Departamentales. Retrieved June 16, 2021, from http://www.citur.gov.co/estadisticas/departamental#gsc.tab=0 | spa |
dcterms.references | Ouyang, P., Xu, Y. P., Qi, L. Y., Xing, S. M., & Fooladi, H. (2021). Comprehensive evaluation of flat plate and parabolic dish solar collectors’ performance using different operating fluids and MWCNT nanofluid in different climatic conditions. Energy Reports, 7, 2436–2451. https://doi.org/10.1016/j.egyr.2021.04.046 | spa |
dcterms.references | Panorama del turismo internacional, edición 2019. (2019). En Panorama del turismo internacional, edición 2019. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284421237 | spa |
dcterms.references | Patel, K., Pragna, P., & Patel, J. (2012). REVIEW OF SOLAR WATER HEATING SYSTEMS. International Journal of Advanced Engineering Technology, 146–149. | spa |
dcterms.references | Pieri, S. P., Tzouvadakis, I., & Santamouris, M. (2015). Identifying energy consumption patterns in the Attica hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint. Energy and Buildings, 94, 252–262. https://doi.org/10.1016/j.enbuild.2015.02.017 | spa |
dcterms.references | Pina, E. A., Lozano, M. A., Serra, L. M., Hernández, A., & Lázaro, A. (2021). Design and thermoeconomic analysis of a solar parabolic trough – ORC – Biomass cooling plant for a commercial center. Solar Energy, 215, 92–107. https://doi.org/10.1016/j.solener.2020.11.080 | spa |
dcterms.references | Salehi, M., Filimonau, V., Asadzadeh, M., & Ghaderi, E. (2021). Strategies to improve energy and carbon efficiency of luxury hotels in Iran. Sustainable Production and Consumption, 26, 1–15. https://doi.org/10.1016/j.spc.2020.09.007 | spa |
dcterms.references | Sarwar, J., Khan, M. R., Rehan, M., Asim, M., & Kazim, A. H. (2020). Performance analysis of a flat plate collector to achieve a fixed outlet temperature under semi-arid climatic conditions. Solar Energy, 207, 503–516. https://doi.org/10.1016/j.solener.2020.06.088 | spa |
dcterms.references | Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., & Zhao, Y. (2020). A review of multi-criteria decision making applications for renewable energy site selection. In Renewable Energy (Vol. 157, pp. 377–403). Elsevier Ltd. https://doi.org/10.1016/j.renene.2020.04.137 | spa |
dcterms.references | Sokhansefat, T., Kasaeian, A., Rahmani, K., Heidari, A. H., Aghakhani, F., & Mahian, O. (2018). Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renewable Energy, 115, 501–508. https://doi.org/10.1016/j.renene.2017.08.057 | spa |
dcterms.references | Diaz, L. A., & Amaya Durán, H. (2014). DISEÑO, CONSTRUCCION Y EVALUACION DE UN SISTEMA DE CALENTAMIENTO DE AGUA, CON ARREGLO EN SERIE DE COLECTORES DE PLACA PLANA, UTILIZANDO ENERGIA SOLAR. http://biblioteca.upbbga.edu.co/docs/digital_27260.pdf | spa |
dcterms.references | Solaun, K., & Cerdá, E. (2019). Climate change impacts on renewable energy generation. A review of quantitative projections. In Renewable and Sustainable Energy Reviews (Vol. 116, p. 109415). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109415 | spa |
dcterms.references | Thangavelu, S. K., Khoo, R. J., & Piraiarasi, C. (2021). Exergy and exergoeconomic analysis of domestic scale solar water heater by the effect of solar collector area. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.584 | spa |
dcterms.references | Tripathy, M., Sadhu, P. K., & Panda, S. K. (2016). A critical review on building integrated photovoltaic products and their applications. In Renewable and Sustainable Energy Reviews (Vol. 61, pp. 451–465). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.04.008 | spa |
dcterms.references | UNWTO Tourism Highlights: 2018 Edition. (2018). In UNWTO Tourism Highlights: 2018 Edition. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284419876 | spa |
dcterms.references | UPME. (2015). Integración de las energías renovables no convencionales en Colombia. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf | spa |
dcterms.references | Wang, Z., Yang, W., Qiu, F., Zhang, X., & Zhao, X. (2015). Solar water heating: From theory, application, marketing and research. In Renewable and Sustainable Energy Reviews (Vol. 41, pp. 68–84). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.08.026 | spa |
dcterms.references | Yılmaz, İ. H. (2018). Residential use of solar water heating in Turkey: A novel thermo-economic optimization for energy savings, cost benefit and ecology. Journal of Cleaner Production, 204, 511–524. https://doi.org/10.1016/j.jclepro.2018.09.060 | spa |
dcterms.references | Zhou, L., Li, Y., Hu, E., Qin, J., & Yang, Y. (2015). Comparison in net solar efficiency between the use of concentrating and non-concentrating solar collectors in solar aided power generation systems. Applied Thermal Engineering, 75, 685–691. https://doi.org/10.1016/j.applthermaleng.2014.09.063 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: