Publicación:
Evaluación termo económica de colectores solares de placa plana para producción de agua caliente sanitaria en hotel de la ciudad de Montería - Córdoba

dc.contributor.advisorMartínez Guarín, Arnold Rafael
dc.contributor.authorGonzález Pérez, Roberth Andrés
dc.contributor.authorCalad Uribe, Andrés Felipe
dc.date.accessioned2021-09-28T23:43:03Z
dc.date.available2021-09-28T23:43:03Z
dc.date.issued2021-09-27
dc.description.abstractThe use of renewable energy is a path that many countries have begun to follow in the process of decarbonizing their equipment, production and economic structures, it is clear that this is a long journey that requires constant progress and improvement of the different mechanisms of renewable energy transformations that exist at present. Therefore, the objective of this research is to carry out a thermoeconomic study of a solar collector to produce domestic hot water. For the development of this work was used a flat plate collector, was studied the radiation of the area by means of the software RETScreen Expert, the demand of water required for the studio hotel, the design of the system was carried out through the program CYPECAD MEP the design of the system was carried out and the temperatures inside the system were known when using TRNSYS software. This series of analyses allowed to know the amount of collectors needed, the rate of return of the investment, the exergy of the system and its efficiency.eng
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Mecánico(a)spa
dc.description.modalityMonografíasspa
dc.description.resumenEl uso de energías renovables es un camino que muchos países han empezado a transitar en el proceso de descarbonización de sus equipos, estructuras productivas y económicas. Está claro que este es un largo recorrido que requiere de constantes avances y mejoras de los diferentes mecanismos de transformaciones de energías renovables que existen en la actualidad. Por lo tanto, el objetivo de esta investigación es realizar un estudio termoeconómico de un colector solar para producir agua caliente sanitaria, se utilizó un colector solar de placa plana, estudiando la radiación de la zona por medio del software RETScreen Expert, la demanda de agua requerida para el hotel, también por medio de del programa CYPECAD MEP se realizado el diseño del sistema y finalmente se conocieron las temperaturas dentro de este al emplear el software TRNSYS para determinar la exergía del sistema. Esta serie de análisis permitió conocer la cantidad de colectores necesarios, la tasa de retorno de la inversión, la exergía del sistema y su eficiencia.spa
dc.description.tableofcontentsINTRODUCCIÓN ........................................................................................................................................ 1spa
dc.description.tableofcontentsOBJETIVOS ................................................................................................................................................. 3spa
dc.description.tableofcontentsOBJETIVO GENERAL ............................................................................................................................ 3spa
dc.description.tableofcontentsOBJETIVOS ESPECÍFICOS .................................................................................................................... 3spa
dc.description.tableofcontents1. CAPÍTULO I. ANTECEDENTES ....................................................................................................... 4spa
dc.description.tableofcontents1.1. MARCO TEÓRICO ...................................................................................................................... 4spa
dc.description.tableofcontents1.1.1. Turismo a nivel mundial ....................................................................................................... 4spa
dc.description.tableofcontents1.1.2. Consumo energético hotelero ................................................................................................ 5spa
dc.description.tableofcontents1.1.3. Proyecciones en las energías renovables............................................................................... 5spa
dc.description.tableofcontents1.1.4. Sistemas de calentamiento de agua ....................................................................................... 6spa
dc.description.tableofcontents1.1.5. Colectores solares ................................................................................................................. 6spa
dc.description.tableofcontents1.1.6. Tipos de colectores................................................................................................................ 8spa
dc.description.tableofcontents1.1.7. Colectores solares de placa plana .......................................................................................... 8spa
dc.description.tableofcontents1.1.8. Colectores solares de tubo de vacío ...................................................................................... 9spa
dc.description.tableofcontents1.1.9. Colectores solares de concentración cilindro-parabólico ...................................................... 9spa
dc.description.tableofcontents1.1.10. Colectores solares de concentración plato parabólico......................................................... 10spa
dc.description.tableofcontents1.1.11. Exergía ................................................................................................................................ 11spa
dc.description.tableofcontents1.1.12. Características generales ..................................................................................................... 11spa
dc.description.tableofcontents1.1.13. Norma técnicas. ................................................................................................................... 11spa
dc.description.tableofcontents1.1.14. Características energéticas en Colombia. ............................................................................ 12spa
dc.description.tableofcontents1.2. ESTADO DEL ARTE ................................................................................................................. 13spa
dc.description.tableofcontents2. CAPÍTULO II. DESARROLLO DEL TEMA .................................................................................... 18spa
dc.description.tableofcontents2.1. Marco metodológico ................................................................................................................... 18spa
dc.description.tableofcontents2.1.1. Selección del hotel .............................................................................................................. 18spa
dc.description.tableofcontents2.1.2. Descripción del hotel .......................................................................................................... 19spa
dc.description.tableofcontents2.1.3. Descripción geográfica ....................................................................................................... 22spa
dc.description.tableofcontents2.1.4. Descripción climatológica ................................................................................................... 23spa
dc.description.tableofcontents2.1.5. Cálculo del consumo de agua .............................................................................................. 23spa
dc.description.tableofcontents2.1.6. Balance energético del sistema: .......................................................................................... 25spa
dc.description.tableofcontents2.1.7. Selección del colector solar. ................................................................................................ 26spa
dc.description.tableofcontents2.1.8. Cálculo de la superficie de captación solar. ........................................................................ 27spa
dc.description.tableofcontents2.1.9. Inclinación de los colectores solares ................................................................................... 27spa
dc.description.tableofcontents2.1.10. Matriz de distribución de los colectores .............................................................................. 28spa
dc.description.tableofcontents2.1.11. Superficie de captación ....................................................................................................... 30spa
dc.description.tableofcontents2.1.12. Dimensionamiento del intercambiador ............................................................................... 30spa
dc.description.tableofcontents2.1.13. Fluido caloportador ............................................................................................................. 31spa
dc.description.tableofcontents2.2. Análisis exergético ...................................................................................................................... 31spa
dc.description.tableofcontents2.3. Construcción del modelo termoeconómico ................................................................................. 36spa
dc.description.tableofcontents3. RESULTADOS Y DISCUSIONES .................................................................................................... 38spa
dc.description.tableofcontents4. CONCLUSIONES .............................................................................................................................. 42spa
dc.description.tableofcontents5. BIBLIOGRAFÍA ................................................................................................................................ 44spa
dc.description.tableofcontents6. ANEXOS ............................................................................................................................................ 51spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4580
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsSolar collectoreng
dc.subject.keywordsCYPECAD MEP®eng
dc.subject.keywordsEfficiencyeng
dc.subject.keywordsTRNSYSeng
dc.subject.proposalColector solarspa
dc.subject.proposalCYPECAD MEP®spa
dc.subject.proposalEficienciaspa
dc.subject.proposalTRNSYSspa
dc.titleEvaluación termo económica de colectores solares de placa plana para producción de agua caliente sanitaria en hotel de la ciudad de Montería - Córdobaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbd-Ur-Rehman, H. M., & Al-Sulaiman, F. A. (2016). Optimum selection of solar water heating (SWH) systems based on their comparative techno-economic feasibility study for the domestic sector of Saudi Arabia. In Renewable and Sustainable Energy Reviews (Vol. 62, pp. 336–349). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.04.047spa
dcterms.referencesAhmadi, A., Ehyaei, M. A., Doustgani, A., El Haj Assad, M., Hmida, A., Jamali, D. H., Kumar, R., Li, Z. X., & Razmjoo, A. (2021a). Recent residential applications of low-temperature solar collector. In Journal of Cleaner Production (Vol. 279, p. 123549). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.123549spa
dcterms.referencesAiguasol. (2021). Trnsys 18 - Simulación energética – Aiguasol. https://aiguasol.coop/es/software-energia/trnsys-18-simulacion-energetica/spa
dcterms.referencesAl Congreso, M. (2019). LA TRANSICIÓN ENERGÉTICA DE COLOMBIA.spa
dcterms.referencesal Irsyad, M. I., Halog, A., & Nepal, R. (2019). Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors. Renewable Energy, 130, 536–546. https://doi.org/10.1016/j.renene.2018.06.082spa
dcterms.referencesAmanecer y atardecer Montería, Colombia. (n.d.). Retrieved June 5, 2021, from https://www.sunrise-and-sunset.com/es/sun/colombia/monteriaspa
dcterms.referencesCaliskan, H. (2017). Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. In Renewable and Sustainable Energy Reviews (Vol. 69, pp. 488–492). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.11.203spa
dcterms.referencesCetina-Quiñones, A. J., Xamán, J., Bassam, A., Escalante Soberanis, M. A., & Perez-Quintana, I. (2021). Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: Residential and industrial case. Applied Thermal Engineering, 182, 116082. https://doi.org/10.1016/j.applthermaleng.2020.116082spa
dcterms.referencesCuevas Streeter, A. I. (2009). Análisis exergo-económico de un sistema de colectores solares para una piscina municipal. http://repositorio.uchile.cl/handle/2250/103512spa
dcterms.referencesDANE - Visor turismo. (n.d.). Retrieved June 16, 2021, from https://sitios.dane.gov.co/turismo/#!/spa
dcterms.referencesErsöz, M. A. (2016). Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe. Renewable Energy, 96, 244–256. https://doi.org/10.1016/j.renene.2016.04.058spa
dcterms.referencesAdolfo Navarro Bonsón. (2015). DISEÑO DE UNA INSTALACIÓN DE ENERGÍA SOLAR POR EL MÉTODO f-CHART. APLICACIÓN A LA PRODUCCIÓN DE AGUA CALIENTE SANITARIA EN UN INSTITUTO DE EDUCACIÓN SECUNDARIA. https://idus.us.es/bitstream/handle/11441/38308/Navarro%20Bons%c3%b3n%2c%20Adolfo%20%282%29.pdf?sequence=4&isAllowed=yspa
dcterms.referencesAGUA CALIENTE SANITARIA INTERACUMULADORES VITRIFICADOS MURAL CON RESISTENCIA ELÉCTRICA INTERACUMULADORES VITRIFICADOS MURAL CON RESISTENCIA ELÉCTRICA. (n.d.).spa
dcterms.referencesEvangelisti, L., De Lieto Vollaro, R., & Asdrubali, F. (2019). Latest advances on solar thermal collectors: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 114, p. 109318). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109318spa
dcterms.referencesFuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. In Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1530–1547). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.229spa
dcterms.referencesGielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006spa
dcterms.referencesJiménez, Á. (2017, December 20). f-CHART energía solar térmica - YouTube. https://www.youtube.com/watch?v=eIqaArLLRg0&list=PLg28hUwQ3qM88zlYQwKwpoSNCEbmTxdwM&index=13spa
dcterms.referencesAltamiranda, J. C., & Acevedo, J. (2020). Diseño de una herramienta para asignación de habitaciones con base en la demanda energética usando la metodología HVAC en un hotel de la ciudad de Montería. Montería: Universidad de Córdoba.spa
dcterms.referencesGil Maínez, G. J., & Guerra Macho, J. J. (n.d.). Diseño de una instalación solar en un hotel para la producción de ACS. Retrieved May 15, 2021, from https://core.ac.uk/download/pdf/186618007.pdfspa
dcterms.referencesGill, L., Mac Mahon, J., & Ryan, K. (2016). The performance of an evacuated tube solar hot water system in a domestic house throughout a year in a northern maritime climate (Dublin). Solar Energy, 137, 261–272. https://doi.org/10.1016/j.solener.2016.07.052spa
dcterms.referencesGössling, S., & Lund-Durlacher, D. (2021). Tourist accommodation, climate change and mitigation: An assessment for Austria. Journal of Outdoor Recreation and Tourism, 100367. https://doi.org/10.1016/j.jort.2021.100367spa
dcterms.referencesHajabdollahi, Z., & Hajabdollahi, H. (2017). Thermo-economic modeling and multi-objective optimization of solar water heater using flat plate collectors. Solar Energy, 155, 191–202. https://doi.org/10.1016/j.solener.2017.06.023spa
dcterms.referencesHansen, K., Breyer, C., & Lund, H. (2019). Status and perspectives on 100% renewable energy systems. Energy, 175, 471–480. https://doi.org/10.1016/j.energy.2019.03.092spa
dcterms.referencesHohne, P. A., Kusakana, K., & Numbi, B. P. (2019). A review of water heating technologies: An application to the South African context. Energy Reports, 5, 1–19. https://doi.org/10.1016/j.egyr.2018.10.013spa
dcterms.referencesHossain, M. S., Saidur, R., Fayaz, H., Rahim, N. A., Islam, M. R., Ahamed, J. U., & Rahman, M. M. (2011). Review on solar water heater collector and thermal energy performance of circulating pipe. In 47 Renewable and Sustainable Energy Reviews (Vol. 15, Issue 8, pp. 3801–3812). Pergamon. https://doi.org/10.1016/j.rser.2011.06.008spa
dcterms.referencesHoteles en Montería, Colombia | Páginas Amarillas. (2020). https://www.paginasamarillas.com.co/monteria/servicios/hoteles?page=4spa
dcterms.referencesIbrahim, O., Fardoun, F., Younes, R., & Louahlia-Gualous, H. (2014). Review of water-heating systems: General selection approach based on energy and environmental aspects. In Building and Environment (Vol. 72, pp. 259–286). Pergamon. https://doi.org/10.1016/j.buildenv.2013.09.006spa
dcterms.referencesIDEAM. (2019). Atlas Interactivo - Radiación IDEAM. http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlspa
dcterms.referencesJafari, M., Farrokhi, N., & Esmaeilzadeh, E. (2020). Effects of working temperature and fluid physical properties on heat transfer enhancement in conduction pumping: An experimental study. International Journal of Thermal Sciences, 156, 106471. https://doi.org/10.1016/j.ijthermalsci.2020.106471spa
dcterms.referencesJamar, A., Majid, Z. A. A., Azmi, W. H., Norhafana, M., & Razak, A. A. (2016a). A review of water heating system for solar energy applications. In International Communications in Heat and Mass Transfer (Vol. 76, pp. 178–187). Elsevier Ltd. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028spa
dcterms.referencesLópez Restrepo, J. C. (2018). ANÁLISIS TERMOECONÓMICO DEL CICLO DE COGENERACIÓN DE UNA PLANTA AZUCARERA ASISTIDO POR ENERGÍA SOLAR. http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9849/T621.471%20L925.pdf?sequence=1&isAllowed=yspa
dcterms.referencesLópez, J. C., Escobar, A., Cárdenas, D. A., & Restrepo, Á. (2021). Parabolic trough or linear fresnel solar collectors? An exergy comparison of a solar-assisted sugarcane cogeneration power plant. Renewable Energy, 165, 139–150. https://doi.org/10.1016/j.renene.2020.10.138spa
dcterms.referencesLozano-Medina, A., Manzano, L., Marcos, J. D., & Blanco-Marigorta, A. M. (2019). Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria. Energy, 183, 803–811. https://doi.org/10.1016/j.energy.2019.06.165spa
dcterms.referencesMezni, T., Zainine, M. A., Dakhlaoui, M. A., & Zghal, A. (2017). Presentation and experimental validation of a solar DHW installation sizing control tool. International Journal of Hydrogen Energy, 42(48), 28958–28972. https://doi.org/10.1016/j.ijhydene.2017.04.129spa
dcterms.referencesMichopoulos, A., Ziogou, I., Kerimis, M., & Zachariadis, T. (2017). A study on hot-water production of hotels in Cyprus: Energy and environmental considerations. Energy and Buildings, 150, 1–12. https://doi.org/10.1016/j.enbuild.2017.05.071spa
dcterms.referencesMinCIT. (2019). Migracion Colombia. https://www.mincit.gov.co/getattachment/estudios-economicos/estadisticas-e-informes/informes-de-turismo/2019/diciembre/oee-turismo-enero-diciembre-12-03-2020-29abr2020.pdf.aspxspa
dcterms.referencesMinCIT. (n.d.). MinCIT - Citur | Estadisticas Departamentales. Retrieved June 16, 2021, from http://www.citur.gov.co/estadisticas/departamental#gsc.tab=0spa
dcterms.referencesOuyang, P., Xu, Y. P., Qi, L. Y., Xing, S. M., & Fooladi, H. (2021). Comprehensive evaluation of flat plate and parabolic dish solar collectors’ performance using different operating fluids and MWCNT nanofluid in different climatic conditions. Energy Reports, 7, 2436–2451. https://doi.org/10.1016/j.egyr.2021.04.046spa
dcterms.referencesPanorama del turismo internacional, edición 2019. (2019). En Panorama del turismo internacional, edición 2019. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284421237spa
dcterms.referencesPatel, K., Pragna, P., & Patel, J. (2012). REVIEW OF SOLAR WATER HEATING SYSTEMS. International Journal of Advanced Engineering Technology, 146–149.spa
dcterms.referencesPieri, S. P., Tzouvadakis, I., & Santamouris, M. (2015). Identifying energy consumption patterns in the Attica hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint. Energy and Buildings, 94, 252–262. https://doi.org/10.1016/j.enbuild.2015.02.017spa
dcterms.referencesPina, E. A., Lozano, M. A., Serra, L. M., Hernández, A., & Lázaro, A. (2021). Design and thermoeconomic analysis of a solar parabolic trough – ORC – Biomass cooling plant for a commercial center. Solar Energy, 215, 92–107. https://doi.org/10.1016/j.solener.2020.11.080spa
dcterms.referencesSalehi, M., Filimonau, V., Asadzadeh, M., & Ghaderi, E. (2021). Strategies to improve energy and carbon efficiency of luxury hotels in Iran. Sustainable Production and Consumption, 26, 1–15. https://doi.org/10.1016/j.spc.2020.09.007spa
dcterms.referencesSarwar, J., Khan, M. R., Rehan, M., Asim, M., & Kazim, A. H. (2020). Performance analysis of a flat plate collector to achieve a fixed outlet temperature under semi-arid climatic conditions. Solar Energy, 207, 503–516. https://doi.org/10.1016/j.solener.2020.06.088spa
dcterms.referencesShao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., & Zhao, Y. (2020). A review of multi-criteria decision making applications for renewable energy site selection. In Renewable Energy (Vol. 157, pp. 377–403). Elsevier Ltd. https://doi.org/10.1016/j.renene.2020.04.137spa
dcterms.referencesSokhansefat, T., Kasaeian, A., Rahmani, K., Heidari, A. H., Aghakhani, F., & Mahian, O. (2018). Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renewable Energy, 115, 501–508. https://doi.org/10.1016/j.renene.2017.08.057spa
dcterms.referencesDiaz, L. A., & Amaya Durán, H. (2014). DISEÑO, CONSTRUCCION Y EVALUACION DE UN SISTEMA DE CALENTAMIENTO DE AGUA, CON ARREGLO EN SERIE DE COLECTORES DE PLACA PLANA, UTILIZANDO ENERGIA SOLAR. http://biblioteca.upbbga.edu.co/docs/digital_27260.pdfspa
dcterms.referencesSolaun, K., & Cerdá, E. (2019). Climate change impacts on renewable energy generation. A review of quantitative projections. In Renewable and Sustainable Energy Reviews (Vol. 116, p. 109415). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109415spa
dcterms.referencesThangavelu, S. K., Khoo, R. J., & Piraiarasi, C. (2021). Exergy and exergoeconomic analysis of domestic scale solar water heater by the effect of solar collector area. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.584spa
dcterms.referencesTripathy, M., Sadhu, P. K., & Panda, S. K. (2016). A critical review on building integrated photovoltaic products and their applications. In Renewable and Sustainable Energy Reviews (Vol. 61, pp. 451–465). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.04.008spa
dcterms.referencesUNWTO Tourism Highlights: 2018 Edition. (2018). In UNWTO Tourism Highlights: 2018 Edition. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284419876spa
dcterms.referencesUPME. (2015). Integración de las energías renovables no convencionales en Colombia. http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdfspa
dcterms.referencesWang, Z., Yang, W., Qiu, F., Zhang, X., & Zhao, X. (2015). Solar water heating: From theory, application, marketing and research. In Renewable and Sustainable Energy Reviews (Vol. 41, pp. 68–84). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.08.026spa
dcterms.referencesYılmaz, İ. H. (2018). Residential use of solar water heating in Turkey: A novel thermo-economic optimization for energy savings, cost benefit and ecology. Journal of Cleaner Production, 204, 511–524. https://doi.org/10.1016/j.jclepro.2018.09.060spa
dcterms.referencesZhou, L., Li, Y., Hu, E., Qin, J., & Yang, Y. (2015). Comparison in net solar efficiency between the use of concentrating and non-concentrating solar collectors in solar aided power generation systems. Applied Thermal Engineering, 75, 685–691. https://doi.org/10.1016/j.applthermaleng.2014.09.063spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
gonzalezperezroberth-caladuribeandres.pdf
Tamaño:
2.06 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
AutorizaciónPublicación..pdf
Tamaño:
365.25 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: