Publicación:
Simulación multiescala de un Aluminio fisurado implementando un método que integre MD y FEM

dc.contributor.advisorVelilla Díaz, Wilmer Segundospa
dc.contributor.advisorLancheros Suárez, Valery Joséspa
dc.contributor.authorPacheco Agámez, Miguel José
dc.date.accessioned2023-03-01T20:42:28Z
dc.date.available2023-03-01T20:42:28Z
dc.date.issued2023-03-01
dc.description.abstractForty percent of the applications of Aluminum are made in its pure composition. In addition, fine grain size at the nanoscale shows ultimate tensile strength (UTS) on a scale of GPA. However, coarse grain size shows a UTS on MPa. This investigation studied the implementation of a multiscale method that couples molecular dynamics simulation results with the finite element method to estimate continuum properties. Atom-to-Continuum (ATC) method used positions and interatomic forces estimated from molecular dynamics simulations. The embedded atomic method for Aluminum proposed by Medelev was implemented in the simulation of a uniaxial tensile test in mode I for different grain sizes. ATC used a localization function that calculates the contribution of forces and positions on the estimation of stress on a material point. Local stress values estimated on material points (nodes) were interpolated with the lineal shape functions of the mesh. The ultimate tensile strength was compared with Hardy’s formulation. Results from different grain sizes showed a similar behavior but high relative differences values with Hardy's formulation. In addition, the investigation showed that grain size influences the strength of cracked single-crystal Aluminum.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa
dc.description.resumenEl Aluminio es un material que en el 40% de sus aplicaciones se usa en estado puro. Además, en su escala de longitud nano exhibe una resistencia en el orden de GPa, mientras, en tamaños de grano grueso están en el orden de MPa. En esta investigación se estudió la implementación de un método multiescala que permitió la integración de resultados de simulaciones de la dinámica molecular y el método de elementos finitos para calcular propiedades del continuo. El método multiescala “Atom-to-Continuum” (ATC) fue implementado usando las posiciones y fuerzas interatómicas estimadas a partir de simulaciones de dinámica molecular (MD). El potencial interatómico del átomo embebido EAM del Aluminio puro propuesto por Medelev, fue usado para la simulación del ensayo de tensión en modo I para diferentes tamaños de grano. Los resultados de MD se usaron para implementar ATC a través de una función de localización para estimar esfuerzos en un punto material. Estos valores de esfuerzos locales estimados en los puntos materiales asignados a los nodos de elementos finitos son interpolados a través del mallado. El campo de esfuerzos locales y la resistencia última fueron estimados y se compararon con la formulación de Hardy. Los resultados para diferentes tamaños de grano mostraron un comportamiento similar en las curvas, pero no hubo ajuste entre los dos métodos. Adicionalmente, la resistencia última exhibió dependencia del tamaño de grano en monocristales fisurados.spa
dc.description.tableofcontentsRESUMEN..........1spa
dc.description.tableofcontentsABSTRACT..........2spa
dc.description.tableofcontents1. Capítulo I. Descripción del trabajo de investigación........... 3spa
dc.description.tableofcontents1.1. Introducción........... 3spa
dc.description.tableofcontents1.2. Objetivos........... 4spa
dc.description.tableofcontents1.2.1. Objetivo general........... 4spa
dc.description.tableofcontents1.2.2. Objetivos específicos........... 4spa
dc.description.tableofcontents1.3. Estructura de la tesis........... 5spa
dc.description.tableofcontents1.4. Revisión de literatura........... 6spa
dc.description.tableofcontents1.5. Trabajos derivados.......... 10spa
dc.description.tableofcontents2. Capítulo II. Selección del método multiescala.......... 11spa
dc.description.tableofcontents2.1. Introducción........... 11spa
dc.description.tableofcontents2.2. Selección del método multiescala.......... 16spa
dc.description.tableofcontents2.3. Conclusiones............ 17spa
dc.description.tableofcontents3. Capítulo III: Implementación de “Atom-to-continuum”........... 18spa
dc.description.tableofcontents3.1. Introducción.......... 18spa
dc.description.tableofcontents3.2. Teoría y modelo.......... 18spa
dc.description.tableofcontentsSimulaciones de dinámica molecular.......... 18spa
dc.description.tableofcontentsFormulación de cantidades del continuo con ATC.......... 22spa
dc.description.tableofcontentsEsfuerzos locales.......... 22spa
dc.description.tableofcontents3.3. Resultados........... 28spa
dc.description.tableofcontents3.4. Conclusiones.......... 34spa
dc.description.tableofcontents4. Capítulo IV. Comparación de ATC con Hardy........... 35spa
dc.description.tableofcontents4.1. Introducción........... 35spa
dc.description.tableofcontents4.2. Esfuerzos locales estimados con ATC.......... 35spa
dc.description.tableofcontents4.3. Verificación de los resultados de esfuerzos globales de ATC con Hardy.......... 37spa
dc.description.tableofcontents4.4. Discusión.......... 38spa
dc.description.tableofcontents4.5. Conclusiones.......... 42spa
dc.description.tableofcontents5. Conclusiones Generales y futuros trabajos ...........43spa
dc.description.tableofcontents5.1. Objetivo específico I: ..........43spa
dc.description.tableofcontents5.2. Objetivo específico II:.......... 43spa
dc.description.tableofcontents5.3. Objetivo específico III:.......... 43spa
dc.description.tableofcontents5.4. Futuros trabajos........... 44spa
dc.description.tableofcontents6. Bibliografía........... 45spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7291
dc.language.isospaspa
dc.publisherUniversidad de Córdobaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programMaestría en Ingeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsMultiscale simulationeng
dc.subject.keywordsMolecular dynamiceng
dc.subject.keywordsFinite elementseng
dc.subject.keywordsGrain sizeeng
dc.subject.keywordsUltimate tensile strengtheng
dc.subject.keywordsAtom-to-continuumeng
dc.subject.proposalSimulación multiescalaspa
dc.subject.proposalDinámica molecularspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalTamaño de granospa
dc.subject.proposalResistencia última a la tensiónspa
dc.subject.proposalAtom-to-continuumspa
dc.titleSimulación multiescala de un Aluminio fisurado implementando un método que integre MD y FEMspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAhrens, J., Geveci, B., & Law, C. (2005). ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook. Elsevier.spa
dcterms.referencesAluru, N. R. (1999). Reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics, 23(4), 324–338. https://doi.org/10.1007/s004660050413spa
dcterms.referencesBudarapu, P. R., & Rabczuk, T. (2017). Multiscale Methods for Fracture: A Review. Journal of the Indian Institute of Science, 97(3), 339–376. https://doi.org/10.1007/s41745-017-0041-5spa
dcterms.referencesBuehler, M. J. (2008). Atomistic Modeling of Mechanical Failure. Springer.spa
dcterms.referencesChakraborty, S., & Ghosh, S. (2021). A concurrent atomistic-crystal plasticity multiscale model for crack propagation in crystalline metallic materials. Computer Methods in Applied Mechanics and Engineering, 379, 113748. https://doi.org/10.1016/j.cma.2021.113748spa
dcterms.referencesChandra, S., Kumar, N. N., Samal, M. K., Chavan, V. M., & Patel, R. J. (2016). Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies. Computational Materials Science, 117, 518–526. https://doi.org/10.1016/j.commatsci.2016.02.032spa
dcterms.referencesDeCelis, B., Argon, A. S., & Yip, S. (1983). Molecular dynamics simulation of crack tip processes in alpha-iron and copper. Journal of Applied Physics, 54(9), 4864–4878. https://doi.org/10.1063/1.332796spa
dcterms.referencesDiaz, A. (2020). A CONCURRENT ATOMISTIC-CONTINUUM METHOD FOR MASSIVELY PARALLEL SIMULATION OF NON-EQUILIBRIUM SOLIDS. UNIVERSITY OF FLORIDA.spa
dcterms.referencesDing, J., Zheng, H. ran, Tian, Y., Huang, X., Song, K., Lu, S. qing, Zeng, X. guo, & Ma, W. S. (2020). Multi-scale numerical simulation of fracture behavior of nickel-aluminum alloy by coupled molecular dynamics and cohesive finite element method (CFEM). Theoretical and Applied Fracture Mechanics, 109(May), 102735. https://doi.org/10.1016/j.tafmec.2020.102735spa
dcterms.referencesElliott, J. A. (2011). Novel approaches to multiscale modelling in materials science. International Materials Reviews, 56(4), 207–225. https://doi.org/10.1179/1743280410Y.0000000002spa
dcterms.referencesGhosh, S., & Zhang, J. (2017). Elastic crack propagation model for crystalline solids using a self-consistent coupled atomistic–continuum framework. International Journal of Fracture, 208(1–2), 171–189. https://doi.org/10.1007/s10704-017-0232-0spa
dcterms.referencesGuan, T., Sun, Y., Yang, Z., Jing, Y., & Guo, W. (2020). Multi-scale simulations of fracture behavior in CeO2. Ceramics International, 46(18), 28613–28620. https://doi.org/10.1016/j.ceramint.2020.08.020spa
dcterms.referencesHardy, R. J. (1982). Formulas for determining local properties in molecular-dynamics simulations: Shock waves. The Journal of Chemical Physics, 76(1), 622–628. https://doi.org/10.1063/1.442714spa
dcterms.referencesHughes, T. J. R. (1978). The Finite Element Method Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Ed.).spa
dcterms.referencesJones, R. E. ., Templeton, J., & Zimmerman, Jonathan. (2016). Principles of Coarse-Graining and Coupling Using the Atom-to-Continuum Method. In Springer Series in Materials Science (Vol. 245, pp. 441–468). https://doi.org/DOI 10.1007/978-3-319-33480-6_7spa
dcterms.referencesJones, R. E., Templeton, J. A., & Rebold, T. W. (2011). Simulated real-time detection of a small molecule on a carbon nanotube cantilever. Journal of Computational and Theoretical Nanoscience, 8(8), 1364–1384. https://doi.org/10.1166/jctn.2011.1822spa
dcterms.referencesJones, R. E., & Zimmerman, J. A. (2010). The construction and application of an atomistic J-integral via Hardy estimates of continuum fields. Journal of the Mechanics and Physics of Solids, 58(9), 1318–1337. https://doi.org/10.1016/j.jmps.2010.06.001spa
dcterms.referencesJones, R. E., Zimmerman, J. A., Oswald, J., & Belytschko, T. (2011). An atomistic J-integral at finite temperature based on hardy estimates of continuum fields. Journal of Physics Condensed Matter, 23(1). https://doi.org/10.1088/0953-8984/23/1/015002spa
dcterms.referencesKohlhoff, S., Gumbsch, P., & Fischmeister, H. F. (1991). Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 64(4), 851–878. https://doi.org/10.1080/01418619108213953spa
dcterms.referencesKumar, K. S., Van Swygenhoven, H., & Suresh, S. (2003). Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia, 51(19), 5743–5774. https://doi.org/10.1016/j.actamat.2003.08.032spa
dcterms.referencesLeszczynski, J., & Shukla, M. K. (2010). Practical aspects of computational chemistry: Methods, concepts and applications. In Practical Aspects of Computational Chemistry: Methods, Concepts and Applications. https://doi.org/10.1007/978-90-481-2687-3spa
dcterms.referencesManolis, G. D., Dineva, P. S., Rangelov, T., & Sfyris, D. (2021). Mechanical models and numerical simulations in nanomechanics: A review across the scales. Engineering Analysis with Boundary Elements, 128(April), 149–170. https://doi.org/10.1016/j.enganabound.2021.04.004spa
dcterms.referencesMendelev, M. I., Kramer, M. J., Becker, C. A., & Asta, M. (2008). Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philosophical Magazine, 88(12), 1723–1750. https://doi.org/10.1080/14786430802206482spa
dcterms.referencesMoseley, Philip., Oswald, Jay., & Belytschko, T. . (2012). Adaptive atomistic-to-continuum modeling of propagating defects. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, February. https://doi.org/10.1002/nmespa
dcterms.referencesPlimpton, S. J. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19. https://doi.org/https://doi.org/10.1006/jcph.1995.1039spa
dcterms.referencesShiari, B., & Miller, R. E. (2016). Multiscale modeling of crack initiation and propagation at the nanoscale. Journal of the Mechanics and Physics of Solids, 88, 35–49. https://doi.org/10.1016/j.jmps.2015.12.003spa
dcterms.referencesShilkrot, L. E., Miller, R. E., & Curtin, W. A. (2004). Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics. Journal of the Mechanics and Physics of Solids, 52(4), 755–787. https://doi.org/10.1016/j.jmps.2003.09.023spa
dcterms.referencesStepanova, L., & Bronnikov, S. (2020). A computational study of the mixed–mode crack behavior by molecular dynamics method and the multi – Parameter crack field description of classical fracture mechanics. Theoretical and Applied Fracture Mechanics, 109(June), 102691. https://doi.org/10.1016/j.tafmec.2020.102691spa
dcterms.referencesTempleton, J. A., Jones, R. E., & Wagner, G. J. (2010). Application of a field-based method to spatially varying thermal transport problems in molecular dynamics. Modelling and Simulation in Materials Science and Engineering, 18(8). https://doi.org/10.1088/0965-0393/18/8/085007spa
dcterms.referencesTsai, D. H. (1979). The virial theorem and stress calculation in molecular dynamics. The Journal of Chemical Physics, 70(3), 1375–1382. https://doi.org/10.1063/1.437577spa
dcterms.referencesVan der Giessen, E., & Needleman, A. (1995). Discrete dislocation plasticity: A simple planar model. Modelling and Simulation in Materials Science and Engineering, 3(5), 689–735. https://doi.org/10.1088/0965-0393/3/5/008spa
dcterms.referencesVelilla Diaz, W. (2019). Efecto de las fronteras de grano en la tenacidad a la fractura de materiales nano-cristalinos fisurados [Tesis para el grado de Doctor en Ingeniería Mecánica, Universidad del Norte, Barranquilla,Colombia]. https://manglar.uninorte.edu.co/bitstream/handle/10584/8601/136553.pdf?sequence=1&isAllowed=yspa
dcterms.referencesVelilla Díaz, W., & Palencia Díaz, A. (2015). Design Methodology for the Selection of the Best Alternative of Industrial Machine Maintenance for Time Reduction. Inge CUC, 11(2), 18–26. https://doi.org/10.17981/ingecuc.11.2.2015.02spa
dcterms.referencesVelilla-Díaz, W., Pacheco-Sanjuan, A., & Zambrano, H. R. (2019a). The role of the grain boundary in the fracture toughness of aluminum bicrystal. Computational Materials Science, 167(March), 34–41. https://doi.org/10.1016/j.commatsci.2019.05.031spa
dcterms.referencesVelilla-Díaz, W., Pacheco-Sanjuan, A., & Zambrano, H. R. (2019b). The role of the grain boundary in the fracture toughness of aluminum bicrystal. Computational Materials Science, 167(March), 34–41. https://doi.org/10.1016/j.commatsci.2019.05.031spa
dcterms.referencesVelilla-Díaz, W., Ricardo, L., Palencia, A., & Zambrano, H. R. (2021). Fracture toughness estimation of single-crystal aluminum at nanoscale. Nanomaterials, 11(3), 1–11. https://doi.org/10.3390/nano11030680spa
dcterms.referencesVelilla-Díaz, W., & Zambrano, H. R. (2021). Crack Length Effect on the Fracture Behavior of Single-Crystals and Bi-Crystals of Aluminum. Figure 1, 1–9.spa
dcterms.referencesWagner, G. J., Jones, R. E., Templeton, J. A., & Parks, M. L. (2008). An atomistic-to-continuum coupling method for heat transfer in solids. Computer Methods in Applied Mechanics and Engineering, 197(41–42), 3351–3365. https://doi.org/10.1016/j.cma.2008.02.004spa
dcterms.referencesWeinan, E., & Huang, Z. (2002). A dynamic atomistic-continuum method for the simulation of crystalline materials. Journal of Computational Physics, 182(1), 234–261. https://doi.org/10.1006/jcph.2002.7164spa
dcterms.referencesWiney, J. M., Kubota, A., & Gupta, Y. M. (2010). Erratum: Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: Thermoelastic response of aluminum (Modelling Simul. Mater. Sci. Eng. (2009) 17 (055004). In Modelling and Simulation in Materials Science and Engineering (Vol. 18, Issue 2). https://doi.org/10.1088/0965-0393/18/2/029801spa
dcterms.referencesXiong, L., Deng, Q., Tucker, G., McDowell, D. L., & Chen, Y. (2012a). A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Materialia, 60(3), 899–913. https://doi.org/10.1016/j.actamat.2011.11.002spa
dcterms.referencesXiong, L., Deng, Q., Tucker, G., McDowell, D. L., & Chen, Y. (2012b). A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Materialia, 60(3), 899–913. https://doi.org/10.1016/j.actamat.2011.11.002spa
dcterms.referencesXu, W., & Dávila, L. P. (2017a). Size dependence of elastic mechanical properties of nanocrystalline aluminum. Materials Science and Engineering A, 692(March), 90–94. https://doi.org/10.1016/j.msea.2017.03.065spa
dcterms.referencesXu, W., & Dávila, L. P. (2017b). Size dependence of elastic mechanical properties of nanocrystalline aluminum. Materials Science and Engineering A, 692(February), 90–94. https://doi.org/10.1016/j.msea.2017.03.065spa
dcterms.referencesXu, W., & Dávila, L. P. (2018). Tensile nanomechanics and the Hall-Petch effect in nanocrystalline aluminium. Materials Science and Engineering A, 710(October 2017), 413–418. https://doi.org/10.1016/j.msea.2017.10.021spa
dcterms.referencesYamakov, V. I., Warner, D. H., Zamora, R. J., Saether, E., Curtin, W. A., & Glaessgen, E. H. (2014). Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling. Journal of the Mechanics and Physics of Solids, 65(1), 35–53. https://doi.org/10.1016/j.jmps.2013.12.009spa
dcterms.referencesYamakov, V., Saether, E., & Glaessgen, E. H. (2008). Multiscale modeling of intergranular fracture in aluminum: Constitutive relation for interface debonding. Journal of Materials Science, 43(23–24), 7488–7494. https://doi.org/10.1007/s10853-008-2823-7spa
dcterms.referencesYue, S., Jing, Y., Sun, Y., Huang, R., Wang, Z., Zhao, J., & Aluru, N. R. (2022). Multi-scale simulation of anisotropic fracture behavior in BaZrO3. Applied Physics A: Materials Science and Processing, 128(10), 1–12. https://doi.org/10.1007/s00339-022-06023-9spa
dcterms.referencesZimmerman, J. A., & Jones, R. E. (2013). The application of an atomistic J-integral to a ductile crack. Journal of Physics Condensed Matter, 25(15). https://doi.org/10.1088/0953-8984/25/15/155402spa
dcterms.referencesZimmerman, J. A., Jones, R. E., & Templeton, J. A. (2010). A material frame approach for evaluating continuum variables in atomistic simulations. Journal of Computational Physics, 229(6), 2364–2389. https://doi.org/10.1016/j.jcp.2009.11.039spa
dcterms.referencesZimmerman, J. A., Webb, E. B., Hoyt, J. J., Jones, R. E., Klein, P. A., & Bammann, D. J. (2004). Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 12(4). https://doi.org/10.1088/0965-0393/12/4/S03spa
dcterms.referencesZimmerman, Jonathan., Jones, R. E., & Templeton, J. A. (2016). Principles of coarse-graining and coupling using the atom-to-continuum method. In Springer Series in Materials Science (Vol. 245). https://doi.org/10.1007/978-3-319-33480-6spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PachecoAgámezMiguelJose.pdf
Tamaño:
2.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de grado Magister
No hay miniatura disponible
Nombre:
Autorización Publicación Pacheco.pdf
Tamaño:
360.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización publicación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones