Publicación: Simulación multiescala de un Aluminio fisurado implementando un método que integre MD y FEM
dc.contributor.advisor | Velilla Díaz, Wilmer Segundo | spa |
dc.contributor.advisor | Lancheros Suárez, Valery José | spa |
dc.contributor.author | Pacheco Agámez, Miguel José | |
dc.date.accessioned | 2023-03-01T20:42:28Z | |
dc.date.available | 2023-03-01T20:42:28Z | |
dc.date.issued | 2023-03-01 | |
dc.description.abstract | Forty percent of the applications of Aluminum are made in its pure composition. In addition, fine grain size at the nanoscale shows ultimate tensile strength (UTS) on a scale of GPA. However, coarse grain size shows a UTS on MPa. This investigation studied the implementation of a multiscale method that couples molecular dynamics simulation results with the finite element method to estimate continuum properties. Atom-to-Continuum (ATC) method used positions and interatomic forces estimated from molecular dynamics simulations. The embedded atomic method for Aluminum proposed by Medelev was implemented in the simulation of a uniaxial tensile test in mode I for different grain sizes. ATC used a localization function that calculates the contribution of forces and positions on the estimation of stress on a material point. Local stress values estimated on material points (nodes) were interpolated with the lineal shape functions of the mesh. The ultimate tensile strength was compared with Hardy’s formulation. Results from different grain sizes showed a similar behavior but high relative differences values with Hardy's formulation. In addition, the investigation showed that grain size influences the strength of cracked single-crystal Aluminum. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Mecánica | spa |
dc.description.modality | Trabajos de Investigación y/o Extensión | spa |
dc.description.resumen | El Aluminio es un material que en el 40% de sus aplicaciones se usa en estado puro. Además, en su escala de longitud nano exhibe una resistencia en el orden de GPa, mientras, en tamaños de grano grueso están en el orden de MPa. En esta investigación se estudió la implementación de un método multiescala que permitió la integración de resultados de simulaciones de la dinámica molecular y el método de elementos finitos para calcular propiedades del continuo. El método multiescala “Atom-to-Continuum” (ATC) fue implementado usando las posiciones y fuerzas interatómicas estimadas a partir de simulaciones de dinámica molecular (MD). El potencial interatómico del átomo embebido EAM del Aluminio puro propuesto por Medelev, fue usado para la simulación del ensayo de tensión en modo I para diferentes tamaños de grano. Los resultados de MD se usaron para implementar ATC a través de una función de localización para estimar esfuerzos en un punto material. Estos valores de esfuerzos locales estimados en los puntos materiales asignados a los nodos de elementos finitos son interpolados a través del mallado. El campo de esfuerzos locales y la resistencia última fueron estimados y se compararon con la formulación de Hardy. Los resultados para diferentes tamaños de grano mostraron un comportamiento similar en las curvas, pero no hubo ajuste entre los dos métodos. Adicionalmente, la resistencia última exhibió dependencia del tamaño de grano en monocristales fisurados. | spa |
dc.description.tableofcontents | RESUMEN..........1 | spa |
dc.description.tableofcontents | ABSTRACT..........2 | spa |
dc.description.tableofcontents | 1. Capítulo I. Descripción del trabajo de investigación........... 3 | spa |
dc.description.tableofcontents | 1.1. Introducción........... 3 | spa |
dc.description.tableofcontents | 1.2. Objetivos........... 4 | spa |
dc.description.tableofcontents | 1.2.1. Objetivo general........... 4 | spa |
dc.description.tableofcontents | 1.2.2. Objetivos específicos........... 4 | spa |
dc.description.tableofcontents | 1.3. Estructura de la tesis........... 5 | spa |
dc.description.tableofcontents | 1.4. Revisión de literatura........... 6 | spa |
dc.description.tableofcontents | 1.5. Trabajos derivados.......... 10 | spa |
dc.description.tableofcontents | 2. Capítulo II. Selección del método multiescala.......... 11 | spa |
dc.description.tableofcontents | 2.1. Introducción........... 11 | spa |
dc.description.tableofcontents | 2.2. Selección del método multiescala.......... 16 | spa |
dc.description.tableofcontents | 2.3. Conclusiones............ 17 | spa |
dc.description.tableofcontents | 3. Capítulo III: Implementación de “Atom-to-continuum”........... 18 | spa |
dc.description.tableofcontents | 3.1. Introducción.......... 18 | spa |
dc.description.tableofcontents | 3.2. Teoría y modelo.......... 18 | spa |
dc.description.tableofcontents | Simulaciones de dinámica molecular.......... 18 | spa |
dc.description.tableofcontents | Formulación de cantidades del continuo con ATC.......... 22 | spa |
dc.description.tableofcontents | Esfuerzos locales.......... 22 | spa |
dc.description.tableofcontents | 3.3. Resultados........... 28 | spa |
dc.description.tableofcontents | 3.4. Conclusiones.......... 34 | spa |
dc.description.tableofcontents | 4. Capítulo IV. Comparación de ATC con Hardy........... 35 | spa |
dc.description.tableofcontents | 4.1. Introducción........... 35 | spa |
dc.description.tableofcontents | 4.2. Esfuerzos locales estimados con ATC.......... 35 | spa |
dc.description.tableofcontents | 4.3. Verificación de los resultados de esfuerzos globales de ATC con Hardy.......... 37 | spa |
dc.description.tableofcontents | 4.4. Discusión.......... 38 | spa |
dc.description.tableofcontents | 4.5. Conclusiones.......... 42 | spa |
dc.description.tableofcontents | 5. Conclusiones Generales y futuros trabajos ...........43 | spa |
dc.description.tableofcontents | 5.1. Objetivo específico I: ..........43 | spa |
dc.description.tableofcontents | 5.2. Objetivo específico II:.......... 43 | spa |
dc.description.tableofcontents | 5.3. Objetivo específico III:.......... 43 | spa |
dc.description.tableofcontents | 5.4. Futuros trabajos........... 44 | spa |
dc.description.tableofcontents | 6. Bibliografía........... 45 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/7291 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Córdoba | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Maestría en Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2023 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Multiscale simulation | eng |
dc.subject.keywords | Molecular dynamic | eng |
dc.subject.keywords | Finite elements | eng |
dc.subject.keywords | Grain size | eng |
dc.subject.keywords | Ultimate tensile strength | eng |
dc.subject.keywords | Atom-to-continuum | eng |
dc.subject.proposal | Simulación multiescala | spa |
dc.subject.proposal | Dinámica molecular | spa |
dc.subject.proposal | Elementos finitos | spa |
dc.subject.proposal | Tamaño de grano | spa |
dc.subject.proposal | Resistencia última a la tensión | spa |
dc.subject.proposal | Atom-to-continuum | spa |
dc.title | Simulación multiescala de un Aluminio fisurado implementando un método que integre MD y FEM | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook. Elsevier. | spa |
dcterms.references | Aluru, N. R. (1999). Reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics, 23(4), 324–338. https://doi.org/10.1007/s004660050413 | spa |
dcterms.references | Budarapu, P. R., & Rabczuk, T. (2017). Multiscale Methods for Fracture: A Review. Journal of the Indian Institute of Science, 97(3), 339–376. https://doi.org/10.1007/s41745-017-0041-5 | spa |
dcterms.references | Buehler, M. J. (2008). Atomistic Modeling of Mechanical Failure. Springer. | spa |
dcterms.references | Chakraborty, S., & Ghosh, S. (2021). A concurrent atomistic-crystal plasticity multiscale model for crack propagation in crystalline metallic materials. Computer Methods in Applied Mechanics and Engineering, 379, 113748. https://doi.org/10.1016/j.cma.2021.113748 | spa |
dcterms.references | Chandra, S., Kumar, N. N., Samal, M. K., Chavan, V. M., & Patel, R. J. (2016). Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies. Computational Materials Science, 117, 518–526. https://doi.org/10.1016/j.commatsci.2016.02.032 | spa |
dcterms.references | DeCelis, B., Argon, A. S., & Yip, S. (1983). Molecular dynamics simulation of crack tip processes in alpha-iron and copper. Journal of Applied Physics, 54(9), 4864–4878. https://doi.org/10.1063/1.332796 | spa |
dcterms.references | Diaz, A. (2020). A CONCURRENT ATOMISTIC-CONTINUUM METHOD FOR MASSIVELY PARALLEL SIMULATION OF NON-EQUILIBRIUM SOLIDS. UNIVERSITY OF FLORIDA. | spa |
dcterms.references | Ding, J., Zheng, H. ran, Tian, Y., Huang, X., Song, K., Lu, S. qing, Zeng, X. guo, & Ma, W. S. (2020). Multi-scale numerical simulation of fracture behavior of nickel-aluminum alloy by coupled molecular dynamics and cohesive finite element method (CFEM). Theoretical and Applied Fracture Mechanics, 109(May), 102735. https://doi.org/10.1016/j.tafmec.2020.102735 | spa |
dcterms.references | Elliott, J. A. (2011). Novel approaches to multiscale modelling in materials science. International Materials Reviews, 56(4), 207–225. https://doi.org/10.1179/1743280410Y.0000000002 | spa |
dcterms.references | Ghosh, S., & Zhang, J. (2017). Elastic crack propagation model for crystalline solids using a self-consistent coupled atomistic–continuum framework. International Journal of Fracture, 208(1–2), 171–189. https://doi.org/10.1007/s10704-017-0232-0 | spa |
dcterms.references | Guan, T., Sun, Y., Yang, Z., Jing, Y., & Guo, W. (2020). Multi-scale simulations of fracture behavior in CeO2. Ceramics International, 46(18), 28613–28620. https://doi.org/10.1016/j.ceramint.2020.08.020 | spa |
dcterms.references | Hardy, R. J. (1982). Formulas for determining local properties in molecular-dynamics simulations: Shock waves. The Journal of Chemical Physics, 76(1), 622–628. https://doi.org/10.1063/1.442714 | spa |
dcterms.references | Hughes, T. J. R. (1978). The Finite Element Method Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Ed.). | spa |
dcterms.references | Jones, R. E. ., Templeton, J., & Zimmerman, Jonathan. (2016). Principles of Coarse-Graining and Coupling Using the Atom-to-Continuum Method. In Springer Series in Materials Science (Vol. 245, pp. 441–468). https://doi.org/DOI 10.1007/978-3-319-33480-6_7 | spa |
dcterms.references | Jones, R. E., Templeton, J. A., & Rebold, T. W. (2011). Simulated real-time detection of a small molecule on a carbon nanotube cantilever. Journal of Computational and Theoretical Nanoscience, 8(8), 1364–1384. https://doi.org/10.1166/jctn.2011.1822 | spa |
dcterms.references | Jones, R. E., & Zimmerman, J. A. (2010). The construction and application of an atomistic J-integral via Hardy estimates of continuum fields. Journal of the Mechanics and Physics of Solids, 58(9), 1318–1337. https://doi.org/10.1016/j.jmps.2010.06.001 | spa |
dcterms.references | Jones, R. E., Zimmerman, J. A., Oswald, J., & Belytschko, T. (2011). An atomistic J-integral at finite temperature based on hardy estimates of continuum fields. Journal of Physics Condensed Matter, 23(1). https://doi.org/10.1088/0953-8984/23/1/015002 | spa |
dcterms.references | Kohlhoff, S., Gumbsch, P., & Fischmeister, H. F. (1991). Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 64(4), 851–878. https://doi.org/10.1080/01418619108213953 | spa |
dcterms.references | Kumar, K. S., Van Swygenhoven, H., & Suresh, S. (2003). Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia, 51(19), 5743–5774. https://doi.org/10.1016/j.actamat.2003.08.032 | spa |
dcterms.references | Leszczynski, J., & Shukla, M. K. (2010). Practical aspects of computational chemistry: Methods, concepts and applications. In Practical Aspects of Computational Chemistry: Methods, Concepts and Applications. https://doi.org/10.1007/978-90-481-2687-3 | spa |
dcterms.references | Manolis, G. D., Dineva, P. S., Rangelov, T., & Sfyris, D. (2021). Mechanical models and numerical simulations in nanomechanics: A review across the scales. Engineering Analysis with Boundary Elements, 128(April), 149–170. https://doi.org/10.1016/j.enganabound.2021.04.004 | spa |
dcterms.references | Mendelev, M. I., Kramer, M. J., Becker, C. A., & Asta, M. (2008). Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philosophical Magazine, 88(12), 1723–1750. https://doi.org/10.1080/14786430802206482 | spa |
dcterms.references | Moseley, Philip., Oswald, Jay., & Belytschko, T. . (2012). Adaptive atomistic-to-continuum modeling of propagating defects. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, February. https://doi.org/10.1002/nme | spa |
dcterms.references | Plimpton, S. J. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19. https://doi.org/https://doi.org/10.1006/jcph.1995.1039 | spa |
dcterms.references | Shiari, B., & Miller, R. E. (2016). Multiscale modeling of crack initiation and propagation at the nanoscale. Journal of the Mechanics and Physics of Solids, 88, 35–49. https://doi.org/10.1016/j.jmps.2015.12.003 | spa |
dcterms.references | Shilkrot, L. E., Miller, R. E., & Curtin, W. A. (2004). Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics. Journal of the Mechanics and Physics of Solids, 52(4), 755–787. https://doi.org/10.1016/j.jmps.2003.09.023 | spa |
dcterms.references | Stepanova, L., & Bronnikov, S. (2020). A computational study of the mixed–mode crack behavior by molecular dynamics method and the multi – Parameter crack field description of classical fracture mechanics. Theoretical and Applied Fracture Mechanics, 109(June), 102691. https://doi.org/10.1016/j.tafmec.2020.102691 | spa |
dcterms.references | Templeton, J. A., Jones, R. E., & Wagner, G. J. (2010). Application of a field-based method to spatially varying thermal transport problems in molecular dynamics. Modelling and Simulation in Materials Science and Engineering, 18(8). https://doi.org/10.1088/0965-0393/18/8/085007 | spa |
dcterms.references | Tsai, D. H. (1979). The virial theorem and stress calculation in molecular dynamics. The Journal of Chemical Physics, 70(3), 1375–1382. https://doi.org/10.1063/1.437577 | spa |
dcterms.references | Van der Giessen, E., & Needleman, A. (1995). Discrete dislocation plasticity: A simple planar model. Modelling and Simulation in Materials Science and Engineering, 3(5), 689–735. https://doi.org/10.1088/0965-0393/3/5/008 | spa |
dcterms.references | Velilla Diaz, W. (2019). Efecto de las fronteras de grano en la tenacidad a la fractura de materiales nano-cristalinos fisurados [Tesis para el grado de Doctor en Ingeniería Mecánica, Universidad del Norte, Barranquilla,Colombia]. https://manglar.uninorte.edu.co/bitstream/handle/10584/8601/136553.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Velilla Díaz, W., & Palencia Díaz, A. (2015). Design Methodology for the Selection of the Best Alternative of Industrial Machine Maintenance for Time Reduction. Inge CUC, 11(2), 18–26. https://doi.org/10.17981/ingecuc.11.2.2015.02 | spa |
dcterms.references | Velilla-Díaz, W., Pacheco-Sanjuan, A., & Zambrano, H. R. (2019a). The role of the grain boundary in the fracture toughness of aluminum bicrystal. Computational Materials Science, 167(March), 34–41. https://doi.org/10.1016/j.commatsci.2019.05.031 | spa |
dcterms.references | Velilla-Díaz, W., Pacheco-Sanjuan, A., & Zambrano, H. R. (2019b). The role of the grain boundary in the fracture toughness of aluminum bicrystal. Computational Materials Science, 167(March), 34–41. https://doi.org/10.1016/j.commatsci.2019.05.031 | spa |
dcterms.references | Velilla-Díaz, W., Ricardo, L., Palencia, A., & Zambrano, H. R. (2021). Fracture toughness estimation of single-crystal aluminum at nanoscale. Nanomaterials, 11(3), 1–11. https://doi.org/10.3390/nano11030680 | spa |
dcterms.references | Velilla-Díaz, W., & Zambrano, H. R. (2021). Crack Length Effect on the Fracture Behavior of Single-Crystals and Bi-Crystals of Aluminum. Figure 1, 1–9. | spa |
dcterms.references | Wagner, G. J., Jones, R. E., Templeton, J. A., & Parks, M. L. (2008). An atomistic-to-continuum coupling method for heat transfer in solids. Computer Methods in Applied Mechanics and Engineering, 197(41–42), 3351–3365. https://doi.org/10.1016/j.cma.2008.02.004 | spa |
dcterms.references | Weinan, E., & Huang, Z. (2002). A dynamic atomistic-continuum method for the simulation of crystalline materials. Journal of Computational Physics, 182(1), 234–261. https://doi.org/10.1006/jcph.2002.7164 | spa |
dcterms.references | Winey, J. M., Kubota, A., & Gupta, Y. M. (2010). Erratum: Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: Thermoelastic response of aluminum (Modelling Simul. Mater. Sci. Eng. (2009) 17 (055004). In Modelling and Simulation in Materials Science and Engineering (Vol. 18, Issue 2). https://doi.org/10.1088/0965-0393/18/2/029801 | spa |
dcterms.references | Xiong, L., Deng, Q., Tucker, G., McDowell, D. L., & Chen, Y. (2012a). A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Materialia, 60(3), 899–913. https://doi.org/10.1016/j.actamat.2011.11.002 | spa |
dcterms.references | Xiong, L., Deng, Q., Tucker, G., McDowell, D. L., & Chen, Y. (2012b). A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Materialia, 60(3), 899–913. https://doi.org/10.1016/j.actamat.2011.11.002 | spa |
dcterms.references | Xu, W., & Dávila, L. P. (2017a). Size dependence of elastic mechanical properties of nanocrystalline aluminum. Materials Science and Engineering A, 692(March), 90–94. https://doi.org/10.1016/j.msea.2017.03.065 | spa |
dcterms.references | Xu, W., & Dávila, L. P. (2017b). Size dependence of elastic mechanical properties of nanocrystalline aluminum. Materials Science and Engineering A, 692(February), 90–94. https://doi.org/10.1016/j.msea.2017.03.065 | spa |
dcterms.references | Xu, W., & Dávila, L. P. (2018). Tensile nanomechanics and the Hall-Petch effect in nanocrystalline aluminium. Materials Science and Engineering A, 710(October 2017), 413–418. https://doi.org/10.1016/j.msea.2017.10.021 | spa |
dcterms.references | Yamakov, V. I., Warner, D. H., Zamora, R. J., Saether, E., Curtin, W. A., & Glaessgen, E. H. (2014). Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling. Journal of the Mechanics and Physics of Solids, 65(1), 35–53. https://doi.org/10.1016/j.jmps.2013.12.009 | spa |
dcterms.references | Yamakov, V., Saether, E., & Glaessgen, E. H. (2008). Multiscale modeling of intergranular fracture in aluminum: Constitutive relation for interface debonding. Journal of Materials Science, 43(23–24), 7488–7494. https://doi.org/10.1007/s10853-008-2823-7 | spa |
dcterms.references | Yue, S., Jing, Y., Sun, Y., Huang, R., Wang, Z., Zhao, J., & Aluru, N. R. (2022). Multi-scale simulation of anisotropic fracture behavior in BaZrO3. Applied Physics A: Materials Science and Processing, 128(10), 1–12. https://doi.org/10.1007/s00339-022-06023-9 | spa |
dcterms.references | Zimmerman, J. A., & Jones, R. E. (2013). The application of an atomistic J-integral to a ductile crack. Journal of Physics Condensed Matter, 25(15). https://doi.org/10.1088/0953-8984/25/15/155402 | spa |
dcterms.references | Zimmerman, J. A., Jones, R. E., & Templeton, J. A. (2010). A material frame approach for evaluating continuum variables in atomistic simulations. Journal of Computational Physics, 229(6), 2364–2389. https://doi.org/10.1016/j.jcp.2009.11.039 | spa |
dcterms.references | Zimmerman, J. A., Webb, E. B., Hoyt, J. J., Jones, R. E., Klein, P. A., & Bammann, D. J. (2004). Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 12(4). https://doi.org/10.1088/0965-0393/12/4/S03 | spa |
dcterms.references | Zimmerman, Jonathan., Jones, R. E., & Templeton, J. A. (2016). Principles of coarse-graining and coupling using the atom-to-continuum method. In Springer Series in Materials Science (Vol. 245). https://doi.org/10.1007/978-3-319-33480-6 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- PachecoAgámezMiguelJose.pdf
- Tamaño:
- 2.37 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de grado Magister
No hay miniatura disponible
- Nombre:
- Autorización Publicación Pacheco.pdf
- Tamaño:
- 360.98 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: