Publicación:
Caracterización de variedades e híbridos de arroz bajo condiciones controladas para tolerancia a altas temperaturas y sequía

dc.contributor.advisorAraméndiz Tatis, Hermes
dc.contributor.authorVargas Mendoza, Yani Sandrid
dc.date.accessioned2022-02-28T02:08:29Z
dc.date.available2026-02-27
dc.date.available2022-02-28T02:08:29Z
dc.date.issued2022-02-27
dc.description.abstractEl estrés ambiental es uno de los principales factores limitantes para la productividad de los cultivos de cereales en todo el mundo. El crecimiento de la planta de arroz está estrechamente con su entorno y su adaptación a las condiciones variables provocadas por la gran cantidad de factores ambientales que generan estrés abiótico. Con el objetivo de caracterizar variedades e híbridos de arroz bajo diferentes condiciones de estrés abiótico en condiciones controladas, se realizaron experimentos en el Centro Internacional de Agricultura Tropical durante 2021, para evaluar el efecto de sequía, altas temperaturas nocturnas y baja radiación sobre el rendimiento y sus componentes. Los resultaron indican que la baja radiación redujo significativamente el porcentaje de fertilidad y el peso de 1000 granos lo que significa una reducción del rendimiento entre los genotipos evaluados; por su parte, el estrés por sequía causa una reducción de rendimiento principalmente en el hibrido HL23057. Estos resultados evidencian que estos estreses abióticos son factores limitantes para la productividad del cultivo y que el arroz es sensible a la falta de irrigación y baja radiación durante la fase de llenado de grano. Por lo tanto, comprender estos estreses e identificar genotipos tolerantes ayudará a lograr el objetivo de mejorar los cultivos y, por lo tanto, minimizar la pérdida en el rendimiento del cultivo del arroz, en aras de preservar la seguridad alimentaria de la población mundial.spa
dc.description.abstractEnvironmental stress is one of the main limiting factors for the productivity of cereal crops worldwide. The growth of the rice plant is closely related to its environment and its adaptation to the variable conditions caused by the large number of environmental factors that cause abiotic stress. With the aim of characterizing rice varieties and hybrids under different conditions of abiotic stress under controlled conditions, experiments were carried out at the International Center for Tropical Agriculture during 2021, to evaluate the effect of drought, high night temperatures and low radiation on yield and its components. The results indicate that low radiation significantly reduced the percentage of fertility and the weight of 1000 grains, which means a reduction in yield among the genotypes evaluated; On the other hand, drought stress causes a reduction in yield, mainly in the hybrid HL23057. These results show that these abiotic stresses are limiting factors for crop productivity and that rice is sensitive to lack of irrigation and low radiation during the grain-filling phase. Therefore, understanding these stresses and identifying tolerant genotypes will help to achieve the goal of improving crops and thus minimizing the loss in rice crop yield, in the interests of preserving the food security of the world population.eng
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Agronómico(a)spa
dc.description.modalityPasantíasspa
dc.description.tableofcontents1. ALIANZA DE BIOVERSITY INTERNATIONAL Y EL CENTRO INTERNACIONAL DE AGRICULTURA TROPICAL (CIAT) ............................................................................. 19spa
dc.description.tableofcontents1.1 MISIÓN ................................................................................................................. 20spa
dc.description.tableofcontents1.2 VISIÓN ................................................................................................................... 20spa
dc.description.tableofcontents2. OBJETIVOS ............................................................................................................... 21spa
dc.description.tableofcontents2.1 OBJETIVO GENERAL ............................................................................................ 21spa
dc.description.tableofcontents2.2 OBJETIVOS ESPECIFICOS .................................................................................... 21spa
dc.description.tableofcontents3. MARCO TEÓRICO .................................................................................................. 22spa
dc.description.tableofcontents3.1 IMPORTANCIA ECONOMICA ............................................................................. 22spa
dc.description.tableofcontents3.2 DIVERSIDAD GENÉTICA DEL ARROZ ................................................................. 22spa
dc.description.tableofcontents3.3 CRECIMIENTO Y DESARROLLO DE LA PLANTA DE ARROZ ............................ 23spa
dc.description.tableofcontents3.3.1 Fase vegetativa ................................................................................................ 23spa
dc.description.tableofcontents3.3.2 Fase reproductiva ............................................................................................ 24spa
dc.description.tableofcontents3.3.3 Fase de madurez ............................................................................................. 25spa
dc.description.tableofcontents3.4 RENDIMIENTO Y SUS COMPONENTES EN EL CULTIVO DE ARROZ ............. 26spa
dc.description.tableofcontents3.4.1 Número de panículas por metro cuadrado ................................................ 27spa
dc.description.tableofcontents3.4.2 Número de espiguilla por panícula ............................................................. 28spa
dc.description.tableofcontents3.4.3 Porcentaje de fertilidad ................................................................................. 28spa
dc.description.tableofcontents3.4.4 Peso de 1000 gramos .................................................................................... 29spa
dc.description.tableofcontents3.5 ESTRÉS ABIOTICO .............................................................................................. 29spa
dc.description.tableofcontents3.5.1 Estrés por sequía ........................................................................................... 30spa
dc.description.tableofcontents3.5.2 Estrés por altas temperaturas ...................................................................... 30spa
dc.description.tableofcontents3.5.3 Estrés por baja radiación ............................................................................... 31spa
dc.description.tableofcontents3.6 HÍBRIDOS DE ARROZ ......................................................................................... 31spa
dc.description.tableofcontents4. ACTIVIDADES DESARROLLADAS ......................................................................... 33spa
dc.description.tableofcontents4.1 EVALUACIÓN DE COMPONENTES DEL RENDIMIENTO EN TRES GENOTIPOS DE ARROZ ........................................................................................................................ 33spa
dc.description.tableofcontents4.1.1 Sitio experimental y material genético ........................................................ 33spa
dc.description.tableofcontents4.1.2 Muestreos y mediciones ................................................................................ 33spa
dc.description.tableofcontents4.1.3 Análisis estadístico .......................................................................................... 38spa
dc.description.tableofcontents4.1.4 Resultados y análisis ...................................................................................... 38spa
dc.description.tableofcontents4.2 EVALUACIÓN PARA LA TOLERANCIA A ALTAS TEMPERATURAS NOCTURNAS EN EL INVERNADERO HIGH TUNNEL MOVIL ........................................................ 42spa
dc.description.tableofcontents4.2.1 Sitio experimental y material genético ........................................................ 42spa
dc.description.tableofcontents4.2.2 Diseño experimental y manejo agronómico ............................................... 42spa
dc.description.tableofcontents4.2.4 Tratamiento de estrés .................................................................................... 45spa
dc.description.tableofcontents4.2.5 Cosecha ............................................................................................................ 47spa
dc.description.tableofcontents4.3 EVALUACIÓN PARA LA TOLERANCIA A SEQUÍA EN EL RAINOUT SHELTER ..................................................................................................................................... 48spa
dc.description.tableofcontents4.3.1 Sitio experimental y material genético ........................................................ 48spa
dc.description.tableofcontents4.3.2 Diseño experimental y manejo agronómico ............................................... 48spa
dc.description.tableofcontents4.3.3 Muestreos y mediciones ................................................................................ 53spa
dc.description.tableofcontents4.3.4 Tratamiento de estrés .................................................................................... 55spa
dc.description.tableofcontents4.3.5 Cosecha de panículas y selección de plantas ............................................. 56spa
dc.description.tableofcontents4.3.6 Resultados y discusión ................................................................................... 57spa
dc.description.tableofcontents5. CONCLUSIONES .................................................................................................... 60spa
dc.description.tableofcontents6. RECOMENDACIONES ........................................................................................... 61spa
dc.description.tableofcontents7. REFERENCIAS BIBLIOGRAFICAS .......................................................................... 62spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4825
dc.language.isospaspa
dc.publisher.facultyFacultad de Ciencias Agrícolasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Agronómicaspa
dc.rightsCopyright Universidad de Córdoba, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsToleranceeng
dc.subject.keywordsAbiotic stresseng
dc.subject.keywordsYieldeng
dc.subject.keywordsGenotypeeng
dc.subject.proposalToleranciaspa
dc.subject.proposalEstrés abióticospa
dc.subject.proposalRendimientospa
dc.subject.proposalGenotipospa
dc.titleCaracterización de variedades e híbridos de arroz bajo condiciones controladas para tolerancia a altas temperaturas y sequíaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAcevedo, M., Castrillo, W., & Belmonte, U. (2006). Origen, evolución y diversidad del arroz. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002192X2006000200001spa
dcterms.referencesÁlvarez, R., Pérez, M., Reyes, E., Moreno, O., Delgado, N., Torrealba, G., Acevedo, M., Castrillo, W., Navas, M., Salazar, M., Torres, O., Torres, E., García, P., & Pérez, A. (2008). Evaluación comparativa de híbridos y variedades de arroz en los Llanos Centroccidentales de Venezuela. Agronomía Tropical, 58(2), 101110. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002192X2008000200001&lng=es&nrm=iso&tlng=esspa
dcterms.referencesBioversity international, & CIAT. (2018). Alianza CIAT- Bioversity alcanza importantes hitos. https://ciat.cgiar.org/ar18/the-alliance/?lang=esienspa
dcterms.referencesBioversity International, & CIAT. (2019). Centro Internacional de Agricultura Tropical. https://ciat.cgiar.org/about/spa
dcterms.referencesBioversity International, & CIAT. (2021). Mejoramiento de cultivos. https://ciat.cgiar.org/lo-que-hacemos/mejoramiento-de-cultivos/?lang=esspa
dcterms.referencesChaudhary, R., Nanda, J., & Tran, D. (2003). Guía para identificar las limitaciones de campo en la producción de arroz (FAO (ed.)). https://www.fao.org/3/y2778s/y2778s.pdfspa
dcterms.referencesChen, H., Li, Q., Zeng, Y., Deng, F., & Ren, W. (2019). Effect of different shading materials on grain yield and quality of rice. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46437-9spa
dcterms.referencesCIAT. (1986). Componentes del rendimiento en arroz (N.o 001). http://ciatlibrary.ciat.cgiar.org/ciat_digital/CIAT/books/historical/143.pdfspa
dcterms.referencesCounce, P., Keisling, T., & Mitchell, A. (2000). A Uniform, Objective, and Adaptive 63 System for Expressing Rice Development. Crop Science, 40(2), 436-443. https://doi.org/10.2135/CROPSCI2000.402436Xspa
dcterms.referencesDar, M., Bano, D., Waza, S., Zaidi, N., Majid, A., Shikari, A., Ahangar, M., Hossain, M., Kumar, A., & Singh, U. (2021). Abiotic Stress Tolerance-Progress and Pathways of Sustainable Rice Production. Sustainability. https://doi.org/10.3390/su13042078spa
dcterms.referencesDeng, F., Wang, L., Yao, X., Wang, J., Ren, W., & Yang, W. (2009). Effects of different-growing-stage shading on rice grain-filling and yield. Journal of Sichuan Agricultural University, 27(3), 265-269spa
dcterms.referencesDobermann, A., & Fairhurst, T. (2000). Arroz: Desórdenes Nutricionales y Manejo de Nutrientes. 214.spa
dcterms.referencesDolferus, R. (2014). To grow or not to grow: A stressful decision for plants. Plant Science, 229, 247-261. https://doi.org/10.1016/j.plantsci.2014.10.002spa
dcterms.referencesFageria, N. . (2007). Yield physiology of rice. Journal of plant Nutrition, (Vol 30). https://doi.org/10.1080/15226510701374831spa
dcterms.referencesFAO. (2017). Seguimiento del mercado del arroz de la FAO. Seguimiento del mercado del arroz de la FAO. http://www.fao.org/3/I8317ES/i8317es.pdfspa
dcterms.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basora, S. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 185212. https://doi.org/https://doi.org/10.1051/agro:2008021spa
dcterms.referencesFEDEARROZ. (2020). Area, Producción y Rendimientos. http://www.fedearroz.com.co/new/apr_public.phpspa
dcterms.referencesFEDEARROZ. (2021). Arroz híbrido otro logro tecnológico de FEDEARROZ para Colombia. ARROZ, 69(553), 6-8. https://fedearroz.s3.amazonaws.com/media/documents/Revista_Arroz553.pdfspa
dcterms.referencesFLAR. (2021). HIAAL: Nueve años impulsando el desarrollo de híbridos en la región - FLAR. https://flar.org/hiaal-nueve-anos-impulsando-desarrollo-hibridos-enla-region/spa
dcterms.referencesFukagawa, N., & Ziska, L. (2019). Rice: Importance for Global Nutrition. J Nutr Sci Vitaminol, 65, 2-3. http://www.riceassociation.org.uk/content/1/18/types-spa
dcterms.referencesGao, J., Chao, D., & Lin, H. (2007). Understanding abiotic stress tolerance mechanisms: Recent studies on stress response in rice. Journal of Integrative Plant Biology, 49(6), 742-750. https://doi.org/10.1111/J.1744-7909.2007.00495.Xspa
dcterms.referencesGuan, Y., Serra, R., Liu, S., Xu, J., Ali, J., Wang, W., Venus, E., Zhu, L., & Li, Z. (2010). Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). Journal of Experimental Botany, 61, 4145-4156. https://doi.org/doi:10.1093/jxb/erq212spa
dcterms.referencesHaider, Z., Khan, A., & Zia, S. (2012). Correlation and Path Coefficient Analysis of Yield Components in Rice (Oryza sativa L.) Under Simulated Drought Stress Condition. Am-Euras. J. Agric. & Environ. Sci., 12, 100-104. https://www.researchgate.net/profile/ZulqarnainHaider/publication/281240180_Correlation_and_Path_Coefficient_Analysis_of_Yiel d_Components_in_Rice_Oryza_sativa_L_Under_Simulated_Drought_Stress_Con dition/links/55dc76ec08aec156b9b17d53/Correlation-and-Path-spa
dcterms.referencesHe, H., & Serraj, R. (2012). Involvement of peduncle elongation, anther dehiscence and spikelet sterility in upland rice response to reproductive-stage drought stress. Environmental and Experimental Botany, 75, 120-127. https://doi.org/10.1016/J.ENVEXPBOT.2011.09.004spa
dcterms.referencesImpa, S., Raju, B., Hein, N., Sandhu, J., Prasad, P., Walia, H., & Jagadish, S. (2021). High night temperature effects on wheat and rice: Current status and way forward. Plant, cell & environment, 44(7), 2049-2065. https://doi.org/10.1111/PCE.14028spa
dcterms.referencesIshibashi, Y., Okamura, K., Miyazaki, M., Phan, T., Yuasa, T., & Iwaya-Inoue, M. (2014). Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environmental and Experimental Botany, 97, 49-54. https://doi.org/10.1016/j.envexpbot.2013.08.005spa
dcterms.referencesKhush, G. (2001). Green revolution the way forward. Nature Reviews Genetics, 2(10), 815-822.spa
dcterms.referencesKim, Y., Chung, Y., Lee, E., Tripathi, P., Heo, S., & Kim, K. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences 2020, Vol. 21, Page 1513, 21(4), 1513. https://doi.org/10.3390/IJMS21041513spa
dcterms.referencesLi, J., Wang, J., & Zeigler, R. (2014). The 3,000 rice genomes project: new opportunities and challenges for future rice research. GigaScience, 3(1), 8. https://doi.org/10.1186/2047-217X-3-8spa
dcterms.referencesLi, T., Ohsugi, R., Yamagishi, T., & Sasaki, H. (2006). Effects of weak light on rice starch accumulation and starch synthesis enzyme activities at grain filling stage. Chinese Journal of Rice Science, 19(6), 545-550.spa
dcterms.referencesLiakat Ali, M., McClung, A., Jia, M., Kimball, J., McCouch, S., & Eizenga, G. (2011). A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Science, 51(5), 2021-2035. https://doi.org/10.2135/cropsci2010.11.0641spa
dcterms.referencesLiu, K., Yang, R., Lu, J., Wang, X., Lu, B., Tian, X., & Zhang, Y. (2019). Radiation Use Efficiency and Source-Sink Changes of Super Hybrid Rice under Shade Stress during Grain-Filling Stage. Agronomy Journal, 111(4), 1788-1798. https://doi.org/10.2134/AGRONJ2018.10.0662spa
dcterms.referencesLiu, Q., Wu, X., Chen, B., Ma, J., & Gao, J. (2014). Effects of Low Light on Agronomic and Physiological Characteristics of Rice Including Grain Yield and Quality. Rice Science, 21(5), 243-251. https://doi.org/http://dx.doi.org/10.1016/S1672-6308(13)60192-4spa
dcterms.referencesLu, B., Cai, X., & Jin, X. (2009). Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Progress in Natural Science, 19(10), 1241-1252. https://doi.org/10.1016/j.pnsc.2009.01.011spa
dcterms.referencesLynam, J., & Byerlee, D. (2017). Siempre pioneros-CIAT: 50 años contribuyendo a la sostenibilidad alimentaria futura. En CIAT No. 446. Centro Internacional de Agricultura Tropical (CIAT). Publicación CIAT No.446. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia. https://cgspace.cgiar.org/handle/10568/89083spa
dcterms.referencesMoldenhauer, K., Counce, P., & Hardke, J. (2013). Rice Growth and Development. En U. of A. Cooperative Extension Service (Ed.), Arkansas Rice Production Handbook - MP192 (1.a ed., Vol. 192, pp. 9-20). https://www.uaex.uada.edu/publications/pdf/mp192/mp192.pdfspa
dcterms.referencesMoldenhauer, K., & Gibbons, J. (2003). Rice Morphology and Development. En In W. Smith & R. Dilday (Eds.) (Ed.), Rice origin history technolgy and production (pp. 103-125). Rice: Origin, History, Technology, and Production. https://books.google.es/books?id=-mLZY-PCCkC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q &f=falsespa
dcterms.referencesMostajeran, A., & Rahimi-Eichi, V. (2009). Effects of Drought Stress on Growth and Yield of Rice (Oryza sativa L.) Cultivars and Accumulation of Proline and Soluble Sugars in Sheath and Blades of Their Different Ages Leaves. undefined.spa
dcterms.referencesMurata, Y., & Matsushima, S. (1978). Rice. En L. Evans (Ed.), Crop Physiology (Cambridge, pp. 73-99).spa
dcterms.referencesMurty, K. (1977). Physiological aspects of production in rice. En B. Padhi (Ed.), Frontiers of plant sciences (Utkal Univ, pp. 79-86).spa
dcterms.referencesNakano, H. (2000). Effect of early-stage shading of direct seeded ricec on growth and yield components. Japanese Journal of Crop Science, 69(2), 182-188. https://doi.org/10.1248/cpb.37.3229spa
dcterms.referencesPan, S., Liu, H., Mo, Z., Patterson, B., Duan, M., Tian, H., Hu, S., & Tang, X. (2016). Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes. Scientific reports, 6(August), 32148. https://doi.org/10.1038/srep32148spa
dcterms.referencesPeng, S., Laza, R., Visperas, R., Khush, G., Virk, P., & Zhu, D. (2004). Rice: Progress in Breaking the Yield Ceiling. Proceedings of the 4th International Crop Science Congress, Chandler 1982, 1-11.spa
dcterms.referencesPingali, P. (2012). Green Revolution:Impacts, Limits, and the path ahead. Proceedings of the National Academy of Science, 109(31), 12302-12308. https://doi.org/10.1073/pnas.0912953109spa
dcterms.referencesPrasad, P., Boote, K., Allen, L., Sheehy, J., & Thomas, J. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. En Field Crops Research (pp. 398--411). https://doi.org/10.1016/j.fcr.2005.04.008spa
dcterms.referencesRaza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). plants Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. plants, 8. https://doi.org/10.3390/plants8020034spa
dcterms.referencesRen, W., Yang, W., Fan, G., Zhu, X., Ma, Z., & Xu, J. (2003). Effect of low light on dry matter accumulation and yield of rice. J Sichuan Agric Univ, 29(4), 292–296spa
dcterms.referencesRen, W., Yang, W., Xu, J., Fan, G., Wang, L., & Guan, H. (2002). mpact of lowlight stress on leaves characteristics of rice after heading. J Sichuan Agric Univ, 20(3), 205–208spa
dcterms.referencesSchaarschmidt, S., Lawas, L., Glaubitz, U., Li, X., Erban, A., Kopka, J., Krishna Jagadish, S., Hincha, D., & Zuther, E. (2020). Season Affects Yield and Metabolic Profiles of Rice (Oryza sativa) under High Night Temperature Stress in the Field. International Journal of Molecular Sciences 2020, Vol. 21, Page 3187, 21(9), 3187. https://doi.org/10.3390/IJMS21093187spa
dcterms.referencesSharma, A., & Singh, D. (1999). Rice. En D. Smith & C. Hamel (Eds.), Crop Yield (pp. 109-168). Springerspa
dcterms.referencesSibounheuang, V., Basnayake, J., & Fukai, S. (2006). Genotypic consistency in the expression of leaf water potential in rice (Oryza sativa L.). Field Crops Research, 97(2-3), 142-154. https://doi.org/10.1016/J.FCR.2005.09.006spa
dcterms.referencesSingh, T., Pun, K., Saikia, K., Satapathy, B., Bhagat, K., Das, A., & Lal, B. (2015). Abiotic Stress Management in Rice. Researchgate. https://www.researchgate.net/publication/315688729_Abiotic_Stress_Management _in_Ricespa
dcterms.referencesSOSBAI. (2018). Arroz Irrigado - Recomendacões técnicas da pesquisa para o Sul do Brasil. Sociedade Sul-Brasileira de Arroz Irrigado - XXXII REUNIÃO TÉCNICA DA CULTURA DO ARROZ IRRIGADO.spa
dcterms.referencesSuryanto, A., Maghfoer, M., & Kartinaty, T. (2018). Radiation use efficiency on the different varieties and the number of seedlings of rice (Oryza sativa l.). Agrivita, 40(3), 536-543. https://doi.org/10.17503/AGRIVITA.V40I3.1851spa
dcterms.referencesVaughan, D., Lu, B., & Tomooka, N. (2008). The evolving story of rice evolution. Plant Science, 174(4), 394-408. https://doi.org/10.1016/j.plantsci.2008.01.016spa
dcterms.referencesWang, L., Deng, F., & Ren, W. (2015). Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. Field Crops Research, 180, 54-62. https://doi.org/10.1016/j.fcr.2015.05.010spa
dcterms.referencesWei, H., Zhu, Y., Qiu, S., Han, C., Hu, L., Xu, D., Zhou, N., Xing, Z., HU, Y., Cui, P., Dai, Q., & Zhang, H. (2018). Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. Journal of Integrative Agriculture, 17(11), 2405-2417. https://doi.org/10.1016/S2095-3119(18)62025-8spa
dcterms.referencesWu, W., Nie, L., Liao, Y., Shah, F., Cui, K., Wang, Q., Lian, Y., & Huang, J. (2013). Toward yield improvement of early-season rice: Other options under double ricecropping system in central China. European Journal of Agronomy, 45, 75-86. https://doi.org/10.1016/j.eja.2012.10.009spa
dcterms.referencesXiong, Z., Zhang, S., Ford-Lloyd, B., Jin, X., Wu, Y., Yan, H., Liu, P., Yang, X., & Lu, B. R. (2011). Latitudinal distribution and differentiation of rice germplasm: Its implications in breeding. Crop Science, 51(3), 1050-1058. https://doi.org/10.2135/cropsci2010.07.0431spa
dcterms.referencesYamori, W., Shikanai, T., & Makino, A. (2015). Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Scientific reports, 5(August), 13908. https://doi.org/10.1038/srep13908spa
dcterms.referencesYang, J., & Zhang, J. (2010). Grain-filling problem in «super» rice. Journal of Experimental Botany, 61(1), 1-5. https://doi.org/10.1093/jxb/erp348spa
dcterms.referencesYoshida, S. (1981). Fundamentals of Rice Crop Science (I. R. R. I. (IRRI) (ed.)).spa
dcterms.referencesZhang, J., Chen, L., Xing, F., Kudrna, D., Yao, W., Copetti, D., Mu, T., Li, W., Song, J., Xie, W., Lee, S., Talag, J., Shao, L., An, Y., Zhang, C., Ouyang, Y., Sun, S., Jiao, W., Lv, F., … Zhang, Q. 2016 . Extensive sequence divergence etween the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proceedings of the National Academy of Sciences of the United States of America, 113(35), E5163-E5171. https://doi.org/10.1073/pnas.1611012113spa
dcterms.referencesZhu, P., Yang, S., Ma, J., Li, S., & Chen, Y. (2008). Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination. Acta Agronomica Sinica, 34(11), 2003-2009spa
dcterms.referencesZuluaga, A., Bidzinski, P., Chanclud, E., Ducasse, A., Cayrol, B., Gomez Selvaraj, M., Ishitani, M., Jauneau, A., Deslandes, L., Kroj, T., Michel, C., Szurek, B., Koebnik, R., & Morel, J. (2020). The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought. Frontiers in Plant Science, 11, 1265. https://doi.org/10.3389/FPLS.2020.01265/BIBTEXspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
VargasMendozaYaniSandrid.pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato_Autorización.pdf
Tamaño:
286.22 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: