Publicación: Análisis comparativo de tres métodos rápidos de extracción de ADN a partir de flebotomíneos para la vigilancia de patógenos en Colombia
dc.audience | ||
dc.contributor.advisor | Paternina Tuirán, Luis Enrique | |
dc.contributor.advisor | Rodríguez Páez, Luis Alfonso | |
dc.contributor.author | Pérez Pérez, María Victoria | |
dc.contributor.jury | Lopez Rivero, Arleth Susana | |
dc.contributor.jury | Hoyos López, Richard | |
dc.date.accessioned | 2024-11-07T16:26:59Z | |
dc.date.available | 2024-11-07T16:26:59Z | |
dc.date.issued | 2024-11-06 | |
dc.description.abstract | La extracción de ADN el punto de partida para la mayoría de análisis genéticos y evolutivos, por lo que se requiere un extracto de ADN óptimo, sin embargo, la mayoría de métodos de extracción existentes son laboriosos, costosos y/o emplean compuestos tóxicos, por lo que el presente estudio tuvo como objetivo evaluar la eficacia de tres métodos rápidos de extracción de ADN para la vigilancia de patógenos en Colombia. Para lo cual, se emplearon flebotomíneos del género Lutzomyia, se procesaron en grupos de (1, 5, 10 y 30 individuos), cada uno de esos grupos de insectos se usó en los distintos métodos rápidos de extracción de ADN: I) Edwards (EOT), II) HotSHOT (HS), y III) Gloor and Engels (GE), empleando como referencia el método de Salting Out. Posteriormente, se evaluó el desempeño de cada protocolo de extracción mediante estimaciones del rendimiento (ng/uL), relaciones de pureza, y cualitativamente por PCR con el fin de determinar el rendimiento de cada protocolo. También se evaluó la estabilidad temporal del ADN durante ocho semanas. El análisis en la evaluación de la concentración y la pureza de los extractos de ADN demuestra que estas variables no están asociadas directamente con el éxito en la amplificación por PCR. En cuanto a la estabilidad temporal, HS y GE permiten la amplificación de un mayor porcentaje de muestras a lo largo del tiempo con respecto a los otros métodos evaluados. Finalmente, HS y GE lograron detectar parásitos tripanosomatídeos, demostrando así su potencial uso como métodos alternativos para la vigilancia de patógenos. | spa |
dc.description.abstract | DNA extraction is the starting point for most genetic and evolutionary analyses, so an optimal DNA extract is required, however, most existing extraction methods are laborious, expensive and use toxic compounds, so the present study aimed to evaluate the efficacy of three rapid DNA extraction methods for pathogen surveillance in Colombia. For this purpose, phlebotomine sandflies of the genus Lutzomyia were processed in (1, 5, 10 and 30 individuals), each of these groups was used in the different rapid DNA extraction methods: I) Edwards (EOT), II) HotSHOT (HS), and III) Gloor and Engels (GE), using the Salting Out method as a reference. Subsequently, the performance of each extraction protocol was evaluated by yield estimates (ng/uL), purity ratios, and qualitatively by PCR in order to determine the yield of each protocol. Temporal stability of DNA over eight weeks was also evaluated. Analysis in evaluating the concentration and purity of DNA extracts demonstrates that these variables are not directly associated with success in PCR amplification. In terms of temporal stability, HS and GE allow the amplification of a higher percentage of samples over time with respect to the other methods evaluated. Finally, HS and GE were able to detect trypanosomatid parasites, thus demonstrating their potential use as alternative methods for pathogen surveillance. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Biotecnología | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | Lista de Figuras | |
dc.description.tableofcontents | Lista de Tablas | |
dc.description.tableofcontents | Lista de Anexos | |
dc.description.tableofcontents | Resumen | |
dc.description.tableofcontents | Abstract | |
dc.description.tableofcontents | Capítulo 1 Introducción | |
dc.description.tableofcontents | Capítulo 2 Objetivos | |
dc.description.tableofcontents | Objetivo general | |
dc.description.tableofcontents | Objetivos específicos | |
dc.description.tableofcontents | Capítulo 3 Marco teórico | |
dc.description.tableofcontents | 3.1. Enfermedades zoonóticas | |
dc.description.tableofcontents | 3.2. Importancia médica y económica de las enfermedades zoonóticas | |
dc.description.tableofcontents | 3.3. Vectores de enfermedades | |
dc.description.tableofcontents | 3.4. Enfermedades transmitidas por vectores | |
dc.description.tableofcontents | 3.5. Importancia médica de los flebotomíneos | |
dc.description.tableofcontents | 3.6. Sistemática molecular de flebotomíneos y vigilancia de patógenos asociados | |
dc.description.tableofcontents | 3.7. Métodos de extracción de ADN a partir de insectos vectores | |
dc.description.tableofcontents | Capítulo 4 Metodología | |
dc.description.tableofcontents | 4.1. Captura de flebotomíneos | |
dc.description.tableofcontents | 4.2. Procesamiento e identificación taxonómica de los flebotomíneos | |
dc.description.tableofcontents | 4.3. Extracción de ADN | |
dc.description.tableofcontents | 4.3.1. Extracción de ADN mediante Edwards One-Tube (EOT) | |
dc.description.tableofcontents | 4.3.2. Extracción de ADN mediante HotSHOT (HS) | |
dc.description.tableofcontents | 4.3.3. Extracción de ADN mediante Gloor & Engels (GE) | |
dc.description.tableofcontents | 4.3.4. Extracción de ADN por altas concentraciones de sales (Ref) | |
dc.description.tableofcontents | 4.4. Evaluación de la calidad, rendimiento y utilidad de extractos de ADN | |
dc.description.tableofcontents | 4.4.1. Calidad y rendimiento de los extractos | |
dc.description.tableofcontents | 4.4.2. Valoración en la utilidad de los extractos | |
dc.description.tableofcontents | 4.5. Estabilidad temporal e integridad de los ácidos nucleicos | |
dc.description.tableofcontents | 4.6. Eficacia del mejor método alternativo para la vigilancia de patógenos | |
dc.description.tableofcontents | 4.7. Análisis de costo / beneficio de los métodos de extracción evaluados | |
dc.description.tableofcontents | Capítulo 5 Resultados | |
dc.description.tableofcontents | 5.1. Identificación taxonómica de los flebotomíneos | |
dc.description.tableofcontents | 5.2. Evaluación de la calidad, rendimiento y utilidad de los extractos de ADN | |
dc.description.tableofcontents | 5.2.1. Calidad y rendimiento de los extractos | |
dc.description.tableofcontents | 5.2.2. Valoración en la utilidad de los extractos | |
dc.description.tableofcontents | 5.3. Estabilidad temporal e integridad de los ácidos nucleicos | |
dc.description.tableofcontents | 5.4. Eficacia del mejor método alternativo para la vigilancia de patógenos | |
dc.description.tableofcontents | 5.5. Análisis de costo / beneficio de los métodos de extracción evaluados | |
dc.description.tableofcontents | Capítulo 6 Discusión | |
dc.description.tableofcontents | Capítulo 7 Conclusiones | |
dc.description.tableofcontents | Referencias | |
dc.description.tableofcontents | Anexos | |
dc.description.tableofcontents | Tabla de Contenido | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/8690 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Maestría en Biotecnología | |
dc.relation.references | Adeniran, A. A., Fernández‐Santos, N. A., Rodríguez‐Rojas, J. J., Treviño‐Garza, N., Huerta‐Jiménez, H., Mis‐Ávila, P. C., Pérez‐Pech, W. A., Hernández‐Triana, L. M., & Rodríguez‐Pérez, M. A. (2019, 2019/12//). Identification of phlebotomine sand flies (Diptera: Psychodidae) from leishmaniasis endemic areas in southeastern Mexico using DNA barcoding. Ecology and Evolution, 9(23), 13543-13554. https://doi.org/10.1002/ece3.5811 | |
dc.relation.references | Adler, S., & Theodor, O. (1957). Transmission of Disease Agents by Phlebotomine Sand Flies. Annual Review of Entomology, 2(Volume 2, 1957), 203-226. https://doi.org/https://doi.org/10.1146/annurev.en.02.010157.001223 | |
dc.relation.references | Aljanabi, S. M., & Martinez, I. (1997, Nov 15). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res, 25(22), 4692-4693. https://doi.org/10.1093/nar/25.22.4692 | |
dc.relation.references | Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S., & Thompson, W. F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 1(5), 2320-2325. https://doi.org/10.1038/nprot.2006.384 | |
dc.relation.references | Alonso, A. (2013). DNA Extraction and Quantification. In (pp. 214-218). https://doi.org/10.1016/B978-0-12-382165-2.00039-8 | |
dc.relation.references | Asato, Y., Oshiro, M., Myint, C. K., Yamamoto, Y., Kato, H., Marco, J. D., Mimori, T., Gomez, E. A., Hashiguchi, Y., & Uezato, H. (2009, Apr). Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Exp Parasitol, 121(4), 352-361. https://doi.org/10.1016/j.exppara.2008.12.013 | |
dc.relation.references | Barker, K. (1998). Phenol-chloroform isoamyl alcohol (PCI) DNA extraction. At the Bench, 735 | |
dc.relation.references | Bejarano, E. E., & Estrada, L. G. (2016). Family psychodidae. Zootaxa, 4122(1), 187-238 | |
dc.relation.references | Bejarano, E. E., Uribe, S., Rojas, W., & Iván Darío, V. (2019). Presence of Lutzomyia evansi, a vector of American visceral leishmaniasis, in an urban area of the Colombian Caribbean coast. Articulo de revista | |
dc.relation.references | Bloom, D. E., & Cadarette, D. (2019). Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Front Immunol, 10, 549. https://doi.org/10.3389/fimmu.2019.00549 | |
dc.relation.references | Bonsu, D. N. O., Higgins, D., Simon, C., Goodwin, C. S., Henry, J. M., & Austin, J. J. (2023). Quantitative PCR overestimation of DNA in samples contaminated with tin. Journal of Forensic Sciences, 68(4), 1302-1309 | |
dc.relation.references | Brian, M. (2015). Assessment of Nucleic Acid Purity. Wilmington, MA, USA: Thermo Fisher Scientific | |
dc.relation.references | Cai, Y., Wang, X., Zhang, N., Li, J., Gong, P., He, B., & Zhang, X. (2019, Oct). First report of the prevalence and genotype of Trypanosoma spp. in bats in Yunnan Province, Southwestern China. Acta Trop, 198, 105105. https://doi.org/10.1016/j.actatropica.2019.105105 | |
dc.relation.references | Carrero-Sarmiento, D., & Hoyos-López, R. (2018, Mar 1). Molecular identification and genetic diversity of Lutzomyia gomezi (Diptera: Psychodidae) using DNAbarcodes in Cordoba, Colombia. Trop Biomed, 35(1), 100-110 | |
dc.relation.references | Casaril, A. E., de Oliveira, L. P., Alonso, D. P., de Oliveira, E. F., Gomes Barrios, S. P., de Oliveira Moura Infran, J., Fernandes, W. S., Oshiro, E. T., Ferreira, A. M. T., Ribolla, P. E. M., & de Oliveira, A. G. (2017, Jun). Standardization of DNA extraction from sand flies: Application to genotyping by next generation sequencing. Exp Parasitol, 177, 66-72. https://doi.org/10.1016/j.exppara.2017.04.010 | |
dc.relation.references | Chacon-Cortes, D., Haupt, L. M., Lea, R. A., & Griffiths, L. R. (2012). Comparison of genomic DNA extraction techniques from whole blood samples: a time, cost and quality evaluation study. Molecular biology reports, 39, 5961-5966. https://link.springer.com/article/10.1007/s11033-011-1408-8 | |
dc.relation.references | Chen, H., Rangasamy, M., Tan, S. Y., Wang, H., & Siegfried, B. D. (2010, Aug 13). Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One, 5(8), e11963. https://doi.org/10.1371/journal.pone.0011963 | |
dc.relation.references | Chen, T. Y., Vorsino, A. E., Kosinski, K. J., Romero-Weaver, A. L., Buckner, E. A., Chiu, J. C., & Lee, Y. (2021, Apr 15). A Magnetic-Bead-Based Mosquito DNA Extraction Protocol for Next-Generation Sequencing. J Vis Exp(170). https://doi.org/10.3791/62354 | |
dc.relation.references | Chomel, B. B. (2009, 2009). Zoonoses. Encyclopedia of Microbiology, 820-829. https://doi.org/10.1016/B978-012373944-5.00213-3 | |
dc.relation.references | Collins, F. H., Mendez, M. A., Rasmussen, M. O., Mehaffey, P. C., Besansky, N. J., & Finnerty, V. (1987, Jul). A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg, 37(1), 37-41. https://doi.org/10.4269/ajtmh.1987.37.37 | |
dc.relation.references | Cooper, B. S., Vanderpool, D., Conner, W. R., Matute, D. R., & Turelli, M. (2019). Wolbachia acquisition by Drosophila yakuba-clade hosts and transfer of incompatibility loci between distantly related Wolbachia. Genetics, 212(4), 1399-1419 | |
dc.relation.references | de Almeida Ferreira, S., Leite, R. S., Ituassu, L. T., Almeida, G. G., Souza, D. M., Fujiwara, R. T., de Andrade, A. S., & Melo, M. N. (2012). Canine skin and conjunctival swab samples for the detection and quantification of Leishmania infantum DNA in an endemic urban area in Brazil. PLoS Negl Trop Dis, 6(4), e1596. https://doi.org/10.1371/journal.pntd.0001596 | |
dc.relation.references | Ditrich‐Schroder, G., Wingfield, M. J., Klein, H., & Slippers, B. (2012). DNA extraction techniques for DNA barcoding of minute gall‐inhabiting wasps. Molecular Ecology Resources, 12(1), 109-115 | |
dc.relation.references | el Tai, N. O., Osman, O. F., el Fari, M., Presber, W., & Schönian, G. (2000, Sep-Oct). Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg, 94(5), 575-579. https://doi.org/10.1016/s0035-9203(00)90093-2 | |
dc.relation.references | Feng, X., Kambic, L., Nishimoto, J. H. K., Reed, F. A., Denton, J. A., Sutton, J. T., & Gantz, V. M. (2021, Aug). Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. Crispr j, 4(4), 595-608. https://doi.org/10.1089/crispr.2021.0028 | |
dc.relation.references | Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994, Oct). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 3(5), 294-299 | |
dc.relation.references | Gloor, G. B., Preston, C. R., Johnson-Schlitz, D. M., Nassif, N. A., Phillis, R. W., Benz, W. K., Robertson, H. M., & Engels, W. R. (1993, Sep). Type I repressors of P element mobility. Genetics, 135(1), 81-95. https://doi.org/10.1093/genetics/135.1.81 | |
dc.relation.references | Golczer, G., & Arrivillaga, J. (2008, 2008/12/31/). Modificación de un protocolo estándar de extracción de ADN para flebotominos pequeños (Phlebotominae: Lutzomyia). Revista Colombiana de Entomología, 34(2), 199-202. https://doi.org/10.25100/socolen.v34i2.9290 | |
dc.relation.references | Goldberg, S. (2008). Mechanical/physical methods of cell disruption and tissue homogenization. 2D PAGE: Sample preparation and fractionation, 3-22. | |
dc.relation.references | Grace, D., Mutua, F. K., Ochungo, P., Kruska, R., Jones, K., Brierley, L., Lapar, M. L., Said, M. Y., Herrero, M. T., & Phuc, P. (2012). Mapping of poverty and likely zoonoses hotspots. | |
dc.relation.references | Gross, L. (2007, 2007/03//). Untapped Bounty: Sampling the Seas to Survey Microbial Biodiversity. PLOS Biology, 5(3), e85. https://doi.org/10.1371/journal.pbio.0050085 | |
dc.relation.references | Gualda, K. P., Marcussi, L. M., Neitzke-Abreu, H. C., Aristides, S. M., Lonardoni, M. V., Cardoso, R. F., & Silveira, T. G. (2015, Sep-Oct). NEW PRIMERS FOR DETECTION OF Leishmania infantum USING POLYMERASE CHAIN REACTION. Rev Inst Med Trop Sao Paulo, 57(5), 377-383. https://doi.org/10.1590/s0036-46652015000500002 | |
dc.relation.references | Gutiérrez-López, R., Martínez-de la Puente, J., Gangoso, L., Soriguer, R. C., & Figuerola, J. (2015, Jun). Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae). J Vector Ecol, 40(1), 11-15. https://doi.org/10.1111/jvec.12127 | |
dc.relation.references | Gutierrez, M. A. C., Lopez, R. O. H., Ramos, A. T., Vélez, I. D., Gomez, R. V., Arrivillaga-Henríquez, J., & Uribe, S. (2021, Sep). DNA barcoding of Lutzomyia longipalpis species complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta Trop, 221, 105983. https://doi.org/10.1016/j.actatropica.2021.105983 | |
dc.relation.references | Hakkour, M., Hmamouch, A., Mahmoud El Alem, M., Bouyahya, A., Balahbib, A., El Khazraji, A., Fellah, H., Sadak, A., & Sebti, F. (2020). Risk Factors Associated with Leishmaniasis in the Most Affected Provinces by Leishmania infantum in Morocco. Interdiscip Perspect Infect Dis, 2020, 6948650. https://doi.org/10.1155/2020/6948650 | |
dc.relation.references | Halos, L., Jamal, T., Vial, L., Maillard, R., Suau, A., Le Menach, A., Boulouis, H. J., & Vayssier-Taussat, M. (2004, Nov-Dec). Determination of an efficient and reliable method for DNA extraction from ticks. Vet Res, 35(6), 709-713. https://doi.org/10.1051/vetres:2004038 | |
dc.relation.references | Hu, W., & Lagarias, J. C. (2020a). https://doi.org/10.1101/2020.02.13.948455 | |
dc.relation.references | Hunter, P. (2007, Mar). Dig this. Biomolecular archaeology provides new insights into past civilizations, cultures and practices. EMBO Rep, 8(3), 215-217. https://doi.org/10.1038/sj.embor.7400923 | |
dc.relation.references | Jangra, S., & Ghosh, A. (2022). Rapid and zero-cost DNA extraction from soft-bodied insects for routine PCR-based applications. PLoS One, 17(7), e0271312. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271312&type=printable | |
dc.relation.references | Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008, Feb 21). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993. https://doi.org/10.1038/nature06536 | |
dc.relation.references | Kaewmee, S., Mano, C., Phanitchakun, T., Ampol, R., Yasanga, T., Pattanawong, U., Junkum, A., Siriyasatien, P., Bates, P. A., & Jariyapan, N. (2023). Natural infection with Leishmania (Mundinia) martiniquensis supports Culicoides peregrinus (Diptera: Ceratopogonidae) as a potential vector of leishmaniasis and characterization of a Crithidia sp. isolated from the midges. Front Microbiol, 14, 1235254. https://doi.org/10.3389/fmicb.2023.1235254 | |
dc.relation.references | Kato, H., Uezato, H., Katakura, K., Calvopiña, M., Marco, J. D., Barroso, P. A., Gomez, E. A., Mimori, T., Korenaga, M., Iwata, H., Nonaka, S., & Hashiguchi, Y. (2005, Jan). Detection and identification of Leishmania species within naturally infected sand flies in the andean areas of ecuador by a polymerase chain reaction. Am J Trop Med Hyg, 72(1), 87-93. https://core.ac.uk/download/pdf/70354377 | |
dc.relation.references | Koetsier, G., & Cantor, E. (2019). A practical guide to analyzing nucleic acid concentration and purity with microvolume spectrophotometers. New England Biolabs Inc, 1-8. | |
dc.relation.references | Kong, W. J., Wang, Y., Wang, Q., Han, Y. C., & Hu, Y. J. (2006, Jun 20). Comparison of three methods for isolation of nucleic acids from membranate inner ear tissue of rats. Chin Med J (Engl), 119(12), 986-990 | |
dc.relation.references | Kuno, G., & Chang, G. J. (2005, Oct). Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev, 18(4), 608-637. https://doi.org/10.1128/cmr.18.4.608-637.2005 | |
dc.relation.references | Lachaud, L., Marchergui-Hammami, S., Chabbert, E., Dereure, J., Dedet, J. P., & Bastien, P. (2002, Jan). Comparison of six PCR methods using peripheral blood for detection of canine visceral leishmaniasis. J Clin Microbiol, 40(1), 210-215. https://doi.org/10.1128/jcm.40.1.210-215.2002 | |
dc.relation.references | Lainson, R., Shaw, J. J., Ryan, L., Ribeiro, R. S. M., & Silveira, F. T. (1985, 1985/01//). Leishmaniasis in Brazil. XXI. visceral leishmaniasis in the Amazon Region and further observations on the role of Lutzomyia longipalpis (Lutz & Neiva, 1912) as the vector. Transactions of The Royal Society of Tropical Medicine and Hygiene, 79(2), 223-226. https://doi.org/10.1016/0035-9203(85)90340-2 | |
dc.relation.references | Lambraño Cruz, L. F., Manjarrez Pinzón, G., & Bejarano Martínez, E. E. (2012). Variación temporal de especies de Lutzomyia (Diptera: Psychodidae) en el área urbana de Sincelejo (Colombia). Revista Salud Uninorte, 28(2), 191-200 | |
dc.relation.references | Leonel, J. A. F., Vioti, G., Alves, M. L., da Silva, D. T., Meneghesso, P. A., Benassi, J. C., Spada, J. C. P., Galvis-Ovallos, F., Soares, R. M., & Oliveira, T. (2020, Nov). DNA extraction from individual Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) specimens: Which is the method with better results? Exp Parasitol, 218, 107981. https://doi.org/10.1016/j.exppara.2020.107981 | |
dc.relation.references | Lindahl, T. (1993, Apr 22). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709-715. https://doi.org/10.1038/362709a0 | |
dc.relation.references | Long, M. T. (2014, 2014/12/01/). West Nile Virus and Equine Encephalitis Viruses: New Perspectives. Veterinary Clinics of North America: Equine Practice, 30(3), 523-542. https://doi.org/10.1016/j.cveq.2014.08.009 (New Perspectives in Infectious Diseases) | |
dc.relation.references | Lucena-Aguilar, G., Sánchez-López, A. M., Barberán-Aceituno, C., Carrillo-Avila, J. A., López-Guerrero, J. A., & Aguilar-Quesada, R. (2016). DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and biobanking, 14(4), 264-270. | |
dc.relation.references | Maitre, A., Wu-Chuang, A., Aželytė, J., Palinauskas, V., Mateos-Hernández, L., Obregon, D., Hodžić, A., Valiente Moro, C., Estrada-Peña, A., Paoli, J.-C., Falchi, A., & Cabezas-Cruz, A. (2022, 2022/01/04). Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasites & Vectors, 15(1), 4. https://doi.org/10.1186/s13071-021-05122-5 | |
dc.relation.references | Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr Trop Med Rep, 8(2), 121-132. https://doi.org/10.1007/s40475-021-00232-7 | |
dc.relation.references | Mekonnen, S. A., Gezehagn, A., Berju, A., Haile, B., Dejene, H., Nigatu, S., Molla, W., & Jemberu, W. T. (2021). Health and economic burden of foodborne zoonotic diseases in Amhara region, Ethiopia. PLoS One, 16(12), e0262032. https://doi.org/10.1371/journal.pone.0262032 | |
dc.relation.references | Michalsky, E. M., Fortes-Dias, C. L., Pimenta, P. F., Secundino, N. F., & Dias, E. S. (2002, Sep-Oct). Assessment of PCR in the detection of Leishmania spp in experimentally infected individual phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae). Rev Inst Med Trop Sao Paulo, 44(5), 255-259. https://doi.org/10.1590/s0036-46652002000500004 | |
dc.relation.references | Milani, C., Hevia, A., Foroni, E., Duranti, S., Turroni, F., Lugli, G. A., Sanchez, B., Martin, R., Gueimonde, M., van Sinderen, D., Margolles, A., & Ventura, M. (2013). Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One, 8(7), e68739. https://doi.org/10.1371/journal.pone.0068739 | |
dc.relation.references | Miller, S. A., Dykes, D. D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research, 16(3), 1215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC334765/pdf/nar00145-0424 | |
dc.relation.references | Montalvo, A. M., Fraga, J., El Safi, S., Gramiccia, M., Jaffe, C. L., Dujardin, J. C., & Van der Auwera, G. (2014, Sep). Direct Leishmania species typing in Old World clinical samples: evaluation of 3 sensitive methods based on the heat-shock protein 70 gene. Diagn Microbiol Infect Dis, 80(1), 35-39. https://doi.org/10.1016/j.diagmicrobio.2014.05.012 | |
dc.relation.references | Montalvo, A. M., Fraga, J., Monzote, L., Montano, I., De Doncker, S., Dujardin, J. C., & Van der Auwera, G. (2010, Jul). Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology, 137(8), 1159-1168. https://doi.org/10.1017/s0031182010000089 | |
dc.relation.references | Montesino Pérez, A. M., & Vergara Meza, J. G. (2015). Código de barras de adn aplicado a la identificación de restos de ingestas sanguíneas en especies del género lutzomyia (diptera: psychodidae) en un microfoco periurbano de leishmaniasis cutánea de Sincelejo, Sucre. | |
dc.relation.references | Munyua, P., Bitek, A., Osoro, E., Pieracci, E. G., Muema, J., Mwatondo, A., Kungu, M., Nanyingi, M., Gharpure, R., & Njenga, K. (2016). Prioritization of zoonotic diseases in Kenya, 2015. PLoS One, 11(8), e0161576. | |
dc.relation.references | Musapa, M., Kumwenda, T., Mkulama, M., Chishimba, S., Norris, D. E., Thuma, P. E., & Mharakurwa, S. (2013, Jan 9). A simple Chelex protocol for DNA extraction from Anopheles spp. J Vis Exp(71). https://doi.org/10.3791/3281 | |
dc.relation.references | Noyes, H., Stevens, J., Teixeira, M., Phelan, J., & Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia1. International Journal for Parasitology, 29(2), 331-339. | |
dc.relation.references | Noyes, H., Stevens, J., Teixeira, M., Phelan, J., & Holz, P. (2000). Corrigendum to''A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia''[International Journal for Parasitology 29 (2)(1999) 331-339]. International Journal for Parasitology, 2(30), 228. | |
dc.relation.references | Noyes, H. A., Camps, A. P., & Chance, M. L. (1996, Sep). Leishmania herreri (Kinetoplastida; Trypanosomatidae) is more closely related to Endotrypanum (Kinetoplastida; Trypanosomatidae) than to Leishmania. Mol Biochem Parasitol, 80(1), 119-123. https://doi.org/10.1016/0166-6851(96)02679-5 | |
dc.relation.references | Papatheodorou, S. A., Halvatsiotis, P., & Houhoula, D. (2021). A comparison of different DNA extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiol, 7(3), 304-319. https://doi.org/10.3934/microbiol.2021019 | |
dc.relation.references | Pérez-Doria, A., Bejarano, E. E., Sierra, D., & Vélez, I. D. (2008). Molecular Evidence Confirms the Taxonomic Separation of Lutzomyia tihuiliensis from Lutzomyia pia (Diptera: Psychodidae) and the Usefulness of Pleural Pigmentation Patterns in Species Identification. Journal of Medical Entomology, 45(4), 653-659, 657. https://doi.org/10.1603/0022-2585(2008)45[653:MECTTS]2.0.CO;2 | |
dc.relation.references | Psifidi, A., Dovas, C. I., Bramis, G., Lazou, T., Russel, C. L., Arsenos, G., & Banos, G. (2015). Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PLoS One, 10(1), e0115960. https://doi.org/10.1371/journal.pone.0115960 | |
dc.relation.references | Raja, K. K. B., Bachman, E. A., Fernholz, C. E., Trine, D. S., Hobmeier, R. E., Maki, N. J., Massoglia, T. J., & Werner, T. (2023, Jan 24). The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel), 14(2). https://doi.org/10.3390/genes14020304 | |
dc.relation.references | Ready, P. (2014, 2014/05//). Epidemiology of visceral leishmaniasis. Clinical Epidemiology, 147. https://doi.org/10.2147/CLEP.S44267 | |
dc.relation.references | Rider, M. A., Byrd, B. D., Keating, J., Wesson, D. M., & Caillouet, K. A. (2012). PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature. Malaria journal, 11, 193. Retrieved 2012/06//, from http://europepmc.org/abstract/MED/22682161 | |
dc.relation.references | Riemann, K., Adamzik, M., Frauenrath, S., Egensperger, R., Schmid, K. W., Brockmeyer, N. H., & Siffert, W. (2007). Comparison of manual and automated nucleic acid extraction from whole-blood samples. J Clin Lab Anal, 21(4), 244-248. https://doi.org/10.1002/jcla.20174 | |
dc.relation.references | Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., Hudson, P. J., Jouanard, N., Nguyen, K. H., Ostfeld, R. S., Remais, J. V., Riveau, G., Sokolow, S. H., & Tilman, D. (2019, 2019/06/01). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. https://doi.org/10.1038/s41893-019-0293-3 | |
dc.relation.references | Rueda-Concha, K. L., Payares-Mercado, A., Guerra-Castillo, J., Melendrez, J., Arroyo-Munive, Y., Martínez-Abad, L., Cochero, S., Bejarano, E. E., & Paternina, L. E. (2022, Dec 1). [Circulación de Leishmania infantum y Trypanosoma cruzi en perros domésticos de áreas urbanas de Sincelejo, región Caribe de Colombia]. Biomedica, 42(4), 633-649. https://doi.org/10.7705/biomedica.6369 | |
dc.relation.references | Salonen, A., Nikkilä, J., Jalanka-Tuovinen, J., Immonen, O., Rajilić-Stojanović, M., Kekkonen, R. A., Palva, A., & de Vos, W. M. (2010, May). Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods, 81(2), 127-134. https://doi.org/10.1016/j.mimet.2010.02.007 | |
dc.relation.references | Santos, M., Martínez-Pérez, L., Rivero, M., Cortés-Alemán, L., Pérez-Doria, A., & Bejarano-Martínez, E. (2021, 11/24). Detección de Leishmania spp. (Trypanosomatidae) e identificación de ingestas sanguíneas en flebotomíneos de un nuevo foco de leishmaniasis en el Caribe colombiano. Ciencia e Innovación en Salud. https://doi.org/10.17081/innosa.142 | |
dc.relation.references | Savić, S., Vidić, B., Grgić, Z., Potkonjak, A., & Spasojevic, L. (2014). Emerging Vector-Borne Diseases - Incidence through Vectors. Front Public Health, 2, 267. https://doi.org/10.3389/fpubh.2014.00267 | |
dc.relation.references | Senne, N. A., Santos, H. A., Araujo, T. R., Paulino, P. G., Mendonca, L. P., Moreira, H. V. S., Camilo, T. A., & da Costa Angelo, I. (2022, Jun). Robust comparative performance of genomic DNA extraction methods from non-engorged phlebotomine sandflies. Med Vet Entomol, 36(2), 203-211. https://doi.org/10.1111/mve.12567 | |
dc.relation.references | Shaik, M., Shivanna, D. K., Kamate, M., Ab, V., & Tp, K. V. (2016, Nov). Single Lysis-Salting Out Method of Genomic DNA Extraction From Dried Blood Spots. J Clin Lab Anal, 30(6), 1009-1012. https://doi.org/10.1002/jcla.21972 | |
dc.relation.references | Shwani, A., Zuo, B., Alrubaye, A., Zhao, J., & Rhoads, D. D. (2023). A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses. Applied Sciences, 14(1), 141. | |
dc.relation.references | Sierra, D., Vélez, I. D., & Uribe, S. (2000). Identificación de Lutzomyia spp.(Diptera: Psychodidae) grupo verrucarum por medio de microscopía electrónica de sus huevos. Revista de Biología Tropical, 48(2-3), 615-622 | |
dc.relation.references | Sleator, R. D. (2010, Jul-Aug). The story of Mycoplasma mycoides JCVI-syn1.0: the forty million dollar microbe. Bioeng Bugs, 1(4), 229-230. https://doi.org/10.4161/bbug.1.4.12465 | |
dc.relation.references | Spitzer, M., Wildenhain, J., Rappsilber, J., & Tyers, M. (2014, 2014/02/01). BoxPlotR: a web tool for generation of box plots. Nature Methods, 11(2), 121-122. https://doi.org/10.1038/nmeth.2811 | |
dc.relation.references | Sudia, W. D., & Chamberlain, R. W. (1988, 1988/12//). Battery-operated light trap, an improved model. By W. D. Sudia and R. W. Chamberlain, 1962. Journal of the American Mosquito Control Association, 4(4), 536-538. http://www.ncbi.nlm.nih.gov/pubmed/3066845 | |
dc.relation.references | Takamiya, N. T., Rogerio, L. A., Torres, C., Leonel, J. A. F., Vioti, G., de Sousa Oliveira, T. M. F., Valeriano, K. C., Porcino, G. N., de Miranda Santos, I. K. F., Costa, C. H. N., Costa, D. L., Ferreira, T. S., Gurgel-Gonçalves, R., da Silva, J. S., Teixeira, F. R., De Almeida, R. P., Ribeiro, J. M. C., & Maruyama, S. R. (2023, Aug 8). Parasite Detection in Visceral Leishmaniasis Samples by Dye-Based qPCR Using New Gene Targets of Leishmania infantum and Crithidia. Trop Med Infect Dis, 8(8). https://doi.org/10.3390/tropicalmed8080405 | |
dc.relation.references | Takano, A., Goka, K., Une, Y., Shimada, Y., Fujita, H., Shiino, T., Watanabe, H., & Kawabata, H. (2010, Jan). Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol, 12(1), 134-146. https://doi.org/10.1111/j.1462-2920.2009.02054.x | |
dc.relation.references | Thiombiano, N. G., Boungou, M., Chabi, B. A. M., Oueda, A., Werb, O., & Schaer, J. (2023, Dec). First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol Res, 122(12), 3121-3129. https://doi.org/10.1007/s00436-023-08002-2 | |
dc.relation.references | Topcu, A., Asir, S., & Türkmen, D. (2016, 07/01). DNA Purification by Solid Phase Extraction (SPE) Methods Katı Faz Ayırma Yöntemiyle DNA Saflaştırılması Review Article. Hacettepe Journal of Biology and Chemistry, 44, 259-266. https://doi.org/10.15671/HJBC.20164420568 | |
dc.relation.references | Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., & Warman, M. L. (2000, Jul). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques, 29(1), 52, 54. https://doi.org/10.2144/00291bm09 | |
dc.relation.references | Ushijima, Y., Oliver, J. H., Jr., Keirans, J. E., Tsurumi, M., Kawabata, H., Watanabe, H., & Fukunaga, M. (2003, Feb). Mitochondrial sequence variation in Carlos capensis (Neumann), a parasite of seabirds, collected on Torishima Island in Japan. J Parasitol, 89(1), 196-198. https://doi.org/10.1645/0022-3395(2003)089[0196:Msvicc]2.0.Co;2 | |
dc.relation.references | van Eys, G. J., Schoone, G. J., Kroon, N. C., & Ebeling, S. B. (1992, Mar). Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol, 51(1), 133-142. https://doi.org/10.1016/0166-6851(92)90208-2 | |
dc.relation.references | Vasuki, V., Subramanian, S., Hoti, S. L., & Jambulingam, P. (2012, Dec). Use of a simple DNA extraction method for high-throughput detection of filarial parasite Wuchereria bancrofti in the vector mosquitoes. Parasitol Res, 111(6), 2479-2481. https://doi.org/10.1007/s00436-012-3026-3 | |
dc.relation.references | Weirather, J. L., Jeronimo, S. M., Gautam, S., Sundar, S., Kang, M., Kurtz, M. A., Haque, R., Schriefer, A., Talhari, S., Carvalho, E. M., Donelson, J. E., & Wilson, M. E. (2011, Nov). Serial quantitative PCR assay for detection, species discrimination, and quantification of Leishmania spp. in human samples. J Clin Microbiol, 49(11), 3892-3904. https://doi.org/10.1128/JCM.r00764-11 | |
dc.relation.references | WHO. (2020). Vector-borne Diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases | |
dc.relation.references | Wilfinger, W. W., Mackey, K., & Chomczynski, P. (1997, Mar). Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques, 22(3), 474-476, 478-481. https://doi.org/10.2144/97223st01 | |
dc.relation.references | Wilson, A. J., Morgan, E. R., Booth, M., Norman, R., Perkins, S. E., Hauffe, H. C., Mideo, N., Antonovics, J., McCallum, H., & Fenton, A. (2017, 2017/05/05/). What is a vector? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1719), 20160085. https://doi.org/10.1098/rstb.2016.0085 | |
dc.relation.references | Wilson, I. G. (1997, Oct). Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol, 63(10), 3741-3751. https://doi.org/10.1128/aem.63.10.3741-3751.1997 | |
dc.relation.references | Young, D. G., & Duran, M. A. (1994). Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera:Psychodidae). | |
dc.relation.references | Zink, F. A., Tembrock, L. R., Timm, A. E., Farris, R. E., Perera, O. P., & Gilligan, T. M. (2017). A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples. PLoS One, 12(5), e0178704. https://doi.org/10.1371/journal.pone.0178704 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Extraction methods | |
dc.subject.keywords | Phlebotomine | |
dc.subject.keywords | DNA | |
dc.subject.proposal | Métodos de extracción | |
dc.subject.proposal | Flebotomíneos | |
dc.subject.proposal | ADN | |
dc.title | Análisis comparativo de tres métodos rápidos de extracción de ADN a partir de flebotomíneos para la vigilancia de patógenos en Colombia | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: