Publicación:
Análisis comparativo de tres métodos rápidos de extracción de ADN a partir de flebotomíneos para la vigilancia de patógenos en Colombia

dc.audience
dc.contributor.advisorPaternina Tuirán, Luis Enrique
dc.contributor.advisorRodríguez Páez, Luis Alfonso
dc.contributor.authorPérez Pérez, María Victoria
dc.contributor.juryLopez Rivero, Arleth Susana
dc.contributor.juryHoyos López, Richard
dc.date.accessioned2024-11-07T16:26:59Z
dc.date.available2024-11-07T16:26:59Z
dc.date.issued2024-11-06
dc.description.abstractLa extracción de ADN el punto de partida para la mayoría de análisis genéticos y evolutivos, por lo que se requiere un extracto de ADN óptimo, sin embargo, la mayoría de métodos de extracción existentes son laboriosos, costosos y/o emplean compuestos tóxicos, por lo que el presente estudio tuvo como objetivo evaluar la eficacia de tres métodos rápidos de extracción de ADN para la vigilancia de patógenos en Colombia. Para lo cual, se emplearon flebotomíneos del género Lutzomyia, se procesaron en grupos de (1, 5, 10 y 30 individuos), cada uno de esos grupos de insectos se usó en los distintos métodos rápidos de extracción de ADN: I) Edwards (EOT), II) HotSHOT (HS), y III) Gloor and Engels (GE), empleando como referencia el método de Salting Out. Posteriormente, se evaluó el desempeño de cada protocolo de extracción mediante estimaciones del rendimiento (ng/uL), relaciones de pureza, y cualitativamente por PCR con el fin de determinar el rendimiento de cada protocolo. También se evaluó la estabilidad temporal del ADN durante ocho semanas. El análisis en la evaluación de la concentración y la pureza de los extractos de ADN demuestra que estas variables no están asociadas directamente con el éxito en la amplificación por PCR. En cuanto a la estabilidad temporal, HS y GE permiten la amplificación de un mayor porcentaje de muestras a lo largo del tiempo con respecto a los otros métodos evaluados. Finalmente, HS y GE lograron detectar parásitos tripanosomatídeos, demostrando así su potencial uso como métodos alternativos para la vigilancia de patógenos.spa
dc.description.abstractDNA extraction is the starting point for most genetic and evolutionary analyses, so an optimal DNA extract is required, however, most existing extraction methods are laborious, expensive and use toxic compounds, so the present study aimed to evaluate the efficacy of three rapid DNA extraction methods for pathogen surveillance in Colombia. For this purpose, phlebotomine sandflies of the genus Lutzomyia were processed in (1, 5, 10 and 30 individuals), each of these groups was used in the different rapid DNA extraction methods: I) Edwards (EOT), II) HotSHOT (HS), and III) Gloor and Engels (GE), using the Salting Out method as a reference. Subsequently, the performance of each extraction protocol was evaluated by yield estimates (ng/uL), purity ratios, and qualitatively by PCR in order to determine the yield of each protocol. Temporal stability of DNA over eight weeks was also evaluated. Analysis in evaluating the concentration and purity of DNA extracts demonstrates that these variables are not directly associated with success in PCR amplification. In terms of temporal stability, HS and GE allow the amplification of a higher percentage of samples over time with respect to the other methods evaluated. Finally, HS and GE were able to detect trypanosomatid parasites, thus demonstrating their potential use as alternative methods for pathogen surveillance.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Biotecnología
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsLista de Figuras
dc.description.tableofcontentsLista de Tablas
dc.description.tableofcontentsLista de Anexos
dc.description.tableofcontentsResumen
dc.description.tableofcontentsAbstract
dc.description.tableofcontentsCapítulo 1 Introducción
dc.description.tableofcontentsCapítulo 2 Objetivos
dc.description.tableofcontentsObjetivo general
dc.description.tableofcontentsObjetivos específicos
dc.description.tableofcontentsCapítulo 3 Marco teórico
dc.description.tableofcontents3.1. Enfermedades zoonóticas
dc.description.tableofcontents3.2. Importancia médica y económica de las enfermedades zoonóticas
dc.description.tableofcontents3.3. Vectores de enfermedades
dc.description.tableofcontents3.4. Enfermedades transmitidas por vectores
dc.description.tableofcontents3.5. Importancia médica de los flebotomíneos
dc.description.tableofcontents3.6. Sistemática molecular de flebotomíneos y vigilancia de patógenos asociados
dc.description.tableofcontents3.7. Métodos de extracción de ADN a partir de insectos vectores
dc.description.tableofcontentsCapítulo 4 Metodología
dc.description.tableofcontents4.1. Captura de flebotomíneos
dc.description.tableofcontents4.2. Procesamiento e identificación taxonómica de los flebotomíneos
dc.description.tableofcontents4.3. Extracción de ADN
dc.description.tableofcontents4.3.1. Extracción de ADN mediante Edwards One-Tube (EOT)
dc.description.tableofcontents4.3.2. Extracción de ADN mediante HotSHOT (HS)
dc.description.tableofcontents4.3.3. Extracción de ADN mediante Gloor & Engels (GE)
dc.description.tableofcontents4.3.4. Extracción de ADN por altas concentraciones de sales (Ref)
dc.description.tableofcontents4.4. Evaluación de la calidad, rendimiento y utilidad de extractos de ADN
dc.description.tableofcontents4.4.1. Calidad y rendimiento de los extractos
dc.description.tableofcontents4.4.2. Valoración en la utilidad de los extractos
dc.description.tableofcontents4.5. Estabilidad temporal e integridad de los ácidos nucleicos
dc.description.tableofcontents4.6. Eficacia del mejor método alternativo para la vigilancia de patógenos
dc.description.tableofcontents4.7. Análisis de costo / beneficio de los métodos de extracción evaluados
dc.description.tableofcontentsCapítulo 5 Resultados
dc.description.tableofcontents5.1. Identificación taxonómica de los flebotomíneos
dc.description.tableofcontents5.2. Evaluación de la calidad, rendimiento y utilidad de los extractos de ADN
dc.description.tableofcontents5.2.1. Calidad y rendimiento de los extractos
dc.description.tableofcontents5.2.2. Valoración en la utilidad de los extractos
dc.description.tableofcontents5.3. Estabilidad temporal e integridad de los ácidos nucleicos
dc.description.tableofcontents5.4. Eficacia del mejor método alternativo para la vigilancia de patógenos
dc.description.tableofcontents5.5. Análisis de costo / beneficio de los métodos de extracción evaluados
dc.description.tableofcontentsCapítulo 6 Discusión
dc.description.tableofcontentsCapítulo 7 Conclusiones
dc.description.tableofcontentsReferencias
dc.description.tableofcontentsAnexos
dc.description.tableofcontentsTabla de Contenido
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/8690
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programMaestría en Biotecnología
dc.relation.referencesAdeniran, A. A., Fernández‐Santos, N. A., Rodríguez‐Rojas, J. J., Treviño‐Garza, N., Huerta‐Jiménez, H., Mis‐Ávila, P. C., Pérez‐Pech, W. A., Hernández‐Triana, L. M., & Rodríguez‐Pérez, M. A. (2019, 2019/12//). Identification of phlebotomine sand flies (Diptera: Psychodidae) from leishmaniasis endemic areas in southeastern Mexico using DNA barcoding. Ecology and Evolution, 9(23), 13543-13554. https://doi.org/10.1002/ece3.5811
dc.relation.referencesAdler, S., & Theodor, O. (1957). Transmission of Disease Agents by Phlebotomine Sand Flies. Annual Review of Entomology, 2(Volume 2, 1957), 203-226. https://doi.org/https://doi.org/10.1146/annurev.en.02.010157.001223
dc.relation.referencesAljanabi, S. M., & Martinez, I. (1997, Nov 15). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res, 25(22), 4692-4693. https://doi.org/10.1093/nar/25.22.4692
dc.relation.referencesAllen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S., & Thompson, W. F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 1(5), 2320-2325. https://doi.org/10.1038/nprot.2006.384
dc.relation.referencesAlonso, A. (2013). DNA Extraction and Quantification. In (pp. 214-218). https://doi.org/10.1016/B978-0-12-382165-2.00039-8
dc.relation.referencesAsato, Y., Oshiro, M., Myint, C. K., Yamamoto, Y., Kato, H., Marco, J. D., Mimori, T., Gomez, E. A., Hashiguchi, Y., & Uezato, H. (2009, Apr). Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Exp Parasitol, 121(4), 352-361. https://doi.org/10.1016/j.exppara.2008.12.013
dc.relation.referencesBarker, K. (1998). Phenol-chloroform isoamyl alcohol (PCI) DNA extraction. At the Bench, 735
dc.relation.referencesBejarano, E. E., & Estrada, L. G. (2016). Family psychodidae. Zootaxa, 4122(1), 187-238
dc.relation.referencesBejarano, E. E., Uribe, S., Rojas, W., & Iván Darío, V. (2019). Presence of Lutzomyia evansi, a vector of American visceral leishmaniasis, in an urban area of the Colombian Caribbean coast. Articulo de revista
dc.relation.referencesBloom, D. E., & Cadarette, D. (2019). Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Front Immunol, 10, 549. https://doi.org/10.3389/fimmu.2019.00549
dc.relation.referencesBonsu, D. N. O., Higgins, D., Simon, C., Goodwin, C. S., Henry, J. M., & Austin, J. J. (2023). Quantitative PCR overestimation of DNA in samples contaminated with tin. Journal of Forensic Sciences, 68(4), 1302-1309
dc.relation.referencesBrian, M. (2015). Assessment of Nucleic Acid Purity. Wilmington, MA, USA: Thermo Fisher Scientific
dc.relation.referencesCai, Y., Wang, X., Zhang, N., Li, J., Gong, P., He, B., & Zhang, X. (2019, Oct). First report of the prevalence and genotype of Trypanosoma spp. in bats in Yunnan Province, Southwestern China. Acta Trop, 198, 105105. https://doi.org/10.1016/j.actatropica.2019.105105
dc.relation.referencesCarrero-Sarmiento, D., & Hoyos-López, R. (2018, Mar 1). Molecular identification and genetic diversity of Lutzomyia gomezi (Diptera: Psychodidae) using DNAbarcodes in Cordoba, Colombia. Trop Biomed, 35(1), 100-110
dc.relation.referencesCasaril, A. E., de Oliveira, L. P., Alonso, D. P., de Oliveira, E. F., Gomes Barrios, S. P., de Oliveira Moura Infran, J., Fernandes, W. S., Oshiro, E. T., Ferreira, A. M. T., Ribolla, P. E. M., & de Oliveira, A. G. (2017, Jun). Standardization of DNA extraction from sand flies: Application to genotyping by next generation sequencing. Exp Parasitol, 177, 66-72. https://doi.org/10.1016/j.exppara.2017.04.010
dc.relation.referencesChacon-Cortes, D., Haupt, L. M., Lea, R. A., & Griffiths, L. R. (2012). Comparison of genomic DNA extraction techniques from whole blood samples: a time, cost and quality evaluation study. Molecular biology reports, 39, 5961-5966. https://link.springer.com/article/10.1007/s11033-011-1408-8
dc.relation.referencesChen, H., Rangasamy, M., Tan, S. Y., Wang, H., & Siegfried, B. D. (2010, Aug 13). Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One, 5(8), e11963. https://doi.org/10.1371/journal.pone.0011963
dc.relation.referencesChen, T. Y., Vorsino, A. E., Kosinski, K. J., Romero-Weaver, A. L., Buckner, E. A., Chiu, J. C., & Lee, Y. (2021, Apr 15). A Magnetic-Bead-Based Mosquito DNA Extraction Protocol for Next-Generation Sequencing. J Vis Exp(170). https://doi.org/10.3791/62354
dc.relation.referencesChomel, B. B. (2009, 2009). Zoonoses. Encyclopedia of Microbiology, 820-829. https://doi.org/10.1016/B978-012373944-5.00213-3
dc.relation.referencesCollins, F. H., Mendez, M. A., Rasmussen, M. O., Mehaffey, P. C., Besansky, N. J., & Finnerty, V. (1987, Jul). A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg, 37(1), 37-41. https://doi.org/10.4269/ajtmh.1987.37.37
dc.relation.referencesCooper, B. S., Vanderpool, D., Conner, W. R., Matute, D. R., & Turelli, M. (2019). Wolbachia acquisition by Drosophila yakuba-clade hosts and transfer of incompatibility loci between distantly related Wolbachia. Genetics, 212(4), 1399-1419
dc.relation.referencesde Almeida Ferreira, S., Leite, R. S., Ituassu, L. T., Almeida, G. G., Souza, D. M., Fujiwara, R. T., de Andrade, A. S., & Melo, M. N. (2012). Canine skin and conjunctival swab samples for the detection and quantification of Leishmania infantum DNA in an endemic urban area in Brazil. PLoS Negl Trop Dis, 6(4), e1596. https://doi.org/10.1371/journal.pntd.0001596
dc.relation.referencesDitrich‐Schroder, G., Wingfield, M. J., Klein, H., & Slippers, B. (2012). DNA extraction techniques for DNA barcoding of minute gall‐inhabiting wasps. Molecular Ecology Resources, 12(1), 109-115
dc.relation.referencesel Tai, N. O., Osman, O. F., el Fari, M., Presber, W., & Schönian, G. (2000, Sep-Oct). Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg, 94(5), 575-579. https://doi.org/10.1016/s0035-9203(00)90093-2
dc.relation.referencesFeng, X., Kambic, L., Nishimoto, J. H. K., Reed, F. A., Denton, J. A., Sutton, J. T., & Gantz, V. M. (2021, Aug). Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. Crispr j, 4(4), 595-608. https://doi.org/10.1089/crispr.2021.0028
dc.relation.referencesFolmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994, Oct). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 3(5), 294-299
dc.relation.referencesGloor, G. B., Preston, C. R., Johnson-Schlitz, D. M., Nassif, N. A., Phillis, R. W., Benz, W. K., Robertson, H. M., & Engels, W. R. (1993, Sep). Type I repressors of P element mobility. Genetics, 135(1), 81-95. https://doi.org/10.1093/genetics/135.1.81
dc.relation.referencesGolczer, G., & Arrivillaga, J. (2008, 2008/12/31/). Modificación de un protocolo estándar de extracción de ADN para flebotominos pequeños (Phlebotominae: Lutzomyia). Revista Colombiana de Entomología, 34(2), 199-202. https://doi.org/10.25100/socolen.v34i2.9290
dc.relation.referencesGoldberg, S. (2008). Mechanical/physical methods of cell disruption and tissue homogenization. 2D PAGE: Sample preparation and fractionation, 3-22.
dc.relation.referencesGrace, D., Mutua, F. K., Ochungo, P., Kruska, R., Jones, K., Brierley, L., Lapar, M. L., Said, M. Y., Herrero, M. T., & Phuc, P. (2012). Mapping of poverty and likely zoonoses hotspots.
dc.relation.referencesGross, L. (2007, 2007/03//). Untapped Bounty: Sampling the Seas to Survey Microbial Biodiversity. PLOS Biology, 5(3), e85. https://doi.org/10.1371/journal.pbio.0050085
dc.relation.referencesGualda, K. P., Marcussi, L. M., Neitzke-Abreu, H. C., Aristides, S. M., Lonardoni, M. V., Cardoso, R. F., & Silveira, T. G. (2015, Sep-Oct). NEW PRIMERS FOR DETECTION OF Leishmania infantum USING POLYMERASE CHAIN REACTION. Rev Inst Med Trop Sao Paulo, 57(5), 377-383. https://doi.org/10.1590/s0036-46652015000500002
dc.relation.referencesGutiérrez-López, R., Martínez-de la Puente, J., Gangoso, L., Soriguer, R. C., & Figuerola, J. (2015, Jun). Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae). J Vector Ecol, 40(1), 11-15. https://doi.org/10.1111/jvec.12127
dc.relation.referencesGutierrez, M. A. C., Lopez, R. O. H., Ramos, A. T., Vélez, I. D., Gomez, R. V., Arrivillaga-Henríquez, J., & Uribe, S. (2021, Sep). DNA barcoding of Lutzomyia longipalpis species complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta Trop, 221, 105983. https://doi.org/10.1016/j.actatropica.2021.105983
dc.relation.referencesHakkour, M., Hmamouch, A., Mahmoud El Alem, M., Bouyahya, A., Balahbib, A., El Khazraji, A., Fellah, H., Sadak, A., & Sebti, F. (2020). Risk Factors Associated with Leishmaniasis in the Most Affected Provinces by Leishmania infantum in Morocco. Interdiscip Perspect Infect Dis, 2020, 6948650. https://doi.org/10.1155/2020/6948650
dc.relation.referencesHalos, L., Jamal, T., Vial, L., Maillard, R., Suau, A., Le Menach, A., Boulouis, H. J., & Vayssier-Taussat, M. (2004, Nov-Dec). Determination of an efficient and reliable method for DNA extraction from ticks. Vet Res, 35(6), 709-713. https://doi.org/10.1051/vetres:2004038
dc.relation.referencesHu, W., & Lagarias, J. C. (2020a). https://doi.org/10.1101/2020.02.13.948455
dc.relation.referencesHunter, P. (2007, Mar). Dig this. Biomolecular archaeology provides new insights into past civilizations, cultures and practices. EMBO Rep, 8(3), 215-217. https://doi.org/10.1038/sj.embor.7400923
dc.relation.referencesJangra, S., & Ghosh, A. (2022). Rapid and zero-cost DNA extraction from soft-bodied insects for routine PCR-based applications. PLoS One, 17(7), e0271312. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271312&type=printable
dc.relation.referencesJones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008, Feb 21). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993. https://doi.org/10.1038/nature06536
dc.relation.referencesKaewmee, S., Mano, C., Phanitchakun, T., Ampol, R., Yasanga, T., Pattanawong, U., Junkum, A., Siriyasatien, P., Bates, P. A., & Jariyapan, N. (2023). Natural infection with Leishmania (Mundinia) martiniquensis supports Culicoides peregrinus (Diptera: Ceratopogonidae) as a potential vector of leishmaniasis and characterization of a Crithidia sp. isolated from the midges. Front Microbiol, 14, 1235254. https://doi.org/10.3389/fmicb.2023.1235254
dc.relation.referencesKato, H., Uezato, H., Katakura, K., Calvopiña, M., Marco, J. D., Barroso, P. A., Gomez, E. A., Mimori, T., Korenaga, M., Iwata, H., Nonaka, S., & Hashiguchi, Y. (2005, Jan). Detection and identification of Leishmania species within naturally infected sand flies in the andean areas of ecuador by a polymerase chain reaction. Am J Trop Med Hyg, 72(1), 87-93. https://core.ac.uk/download/pdf/70354377
dc.relation.referencesKoetsier, G., & Cantor, E. (2019). A practical guide to analyzing nucleic acid concentration and purity with microvolume spectrophotometers. New England Biolabs Inc, 1-8.
dc.relation.referencesKong, W. J., Wang, Y., Wang, Q., Han, Y. C., & Hu, Y. J. (2006, Jun 20). Comparison of three methods for isolation of nucleic acids from membranate inner ear tissue of rats. Chin Med J (Engl), 119(12), 986-990
dc.relation.referencesKuno, G., & Chang, G. J. (2005, Oct). Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev, 18(4), 608-637. https://doi.org/10.1128/cmr.18.4.608-637.2005
dc.relation.referencesLachaud, L., Marchergui-Hammami, S., Chabbert, E., Dereure, J., Dedet, J. P., & Bastien, P. (2002, Jan). Comparison of six PCR methods using peripheral blood for detection of canine visceral leishmaniasis. J Clin Microbiol, 40(1), 210-215. https://doi.org/10.1128/jcm.40.1.210-215.2002
dc.relation.referencesLainson, R., Shaw, J. J., Ryan, L., Ribeiro, R. S. M., & Silveira, F. T. (1985, 1985/01//). Leishmaniasis in Brazil. XXI. visceral leishmaniasis in the Amazon Region and further observations on the role of Lutzomyia longipalpis (Lutz & Neiva, 1912) as the vector. Transactions of The Royal Society of Tropical Medicine and Hygiene, 79(2), 223-226. https://doi.org/10.1016/0035-9203(85)90340-2
dc.relation.referencesLambraño Cruz, L. F., Manjarrez Pinzón, G., & Bejarano Martínez, E. E. (2012). Variación temporal de especies de Lutzomyia (Diptera: Psychodidae) en el área urbana de Sincelejo (Colombia). Revista Salud Uninorte, 28(2), 191-200
dc.relation.referencesLeonel, J. A. F., Vioti, G., Alves, M. L., da Silva, D. T., Meneghesso, P. A., Benassi, J. C., Spada, J. C. P., Galvis-Ovallos, F., Soares, R. M., & Oliveira, T. (2020, Nov). DNA extraction from individual Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) specimens: Which is the method with better results? Exp Parasitol, 218, 107981. https://doi.org/10.1016/j.exppara.2020.107981
dc.relation.referencesLindahl, T. (1993, Apr 22). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709-715. https://doi.org/10.1038/362709a0
dc.relation.referencesLong, M. T. (2014, 2014/12/01/). West Nile Virus and Equine Encephalitis Viruses: New Perspectives. Veterinary Clinics of North America: Equine Practice, 30(3), 523-542. https://doi.org/10.1016/j.cveq.2014.08.009 (New Perspectives in Infectious Diseases)
dc.relation.referencesLucena-Aguilar, G., Sánchez-López, A. M., Barberán-Aceituno, C., Carrillo-Avila, J. A., López-Guerrero, J. A., & Aguilar-Quesada, R. (2016). DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and biobanking, 14(4), 264-270.
dc.relation.referencesMaitre, A., Wu-Chuang, A., Aželytė, J., Palinauskas, V., Mateos-Hernández, L., Obregon, D., Hodžić, A., Valiente Moro, C., Estrada-Peña, A., Paoli, J.-C., Falchi, A., & Cabezas-Cruz, A. (2022, 2022/01/04). Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasites & Vectors, 15(1), 4. https://doi.org/10.1186/s13071-021-05122-5
dc.relation.referencesMann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr Trop Med Rep, 8(2), 121-132. https://doi.org/10.1007/s40475-021-00232-7
dc.relation.referencesMekonnen, S. A., Gezehagn, A., Berju, A., Haile, B., Dejene, H., Nigatu, S., Molla, W., & Jemberu, W. T. (2021). Health and economic burden of foodborne zoonotic diseases in Amhara region, Ethiopia. PLoS One, 16(12), e0262032. https://doi.org/10.1371/journal.pone.0262032
dc.relation.referencesMichalsky, E. M., Fortes-Dias, C. L., Pimenta, P. F., Secundino, N. F., & Dias, E. S. (2002, Sep-Oct). Assessment of PCR in the detection of Leishmania spp in experimentally infected individual phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae). Rev Inst Med Trop Sao Paulo, 44(5), 255-259. https://doi.org/10.1590/s0036-46652002000500004
dc.relation.referencesMilani, C., Hevia, A., Foroni, E., Duranti, S., Turroni, F., Lugli, G. A., Sanchez, B., Martin, R., Gueimonde, M., van Sinderen, D., Margolles, A., & Ventura, M. (2013). Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One, 8(7), e68739. https://doi.org/10.1371/journal.pone.0068739
dc.relation.referencesMiller, S. A., Dykes, D. D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research, 16(3), 1215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC334765/pdf/nar00145-0424
dc.relation.referencesMontalvo, A. M., Fraga, J., El Safi, S., Gramiccia, M., Jaffe, C. L., Dujardin, J. C., & Van der Auwera, G. (2014, Sep). Direct Leishmania species typing in Old World clinical samples: evaluation of 3 sensitive methods based on the heat-shock protein 70 gene. Diagn Microbiol Infect Dis, 80(1), 35-39. https://doi.org/10.1016/j.diagmicrobio.2014.05.012
dc.relation.referencesMontalvo, A. M., Fraga, J., Monzote, L., Montano, I., De Doncker, S., Dujardin, J. C., & Van der Auwera, G. (2010, Jul). Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology, 137(8), 1159-1168. https://doi.org/10.1017/s0031182010000089
dc.relation.referencesMontesino Pérez, A. M., & Vergara Meza, J. G. (2015). Código de barras de adn aplicado a la identificación de restos de ingestas sanguíneas en especies del género lutzomyia (diptera: psychodidae) en un microfoco periurbano de leishmaniasis cutánea de Sincelejo, Sucre.
dc.relation.referencesMunyua, P., Bitek, A., Osoro, E., Pieracci, E. G., Muema, J., Mwatondo, A., Kungu, M., Nanyingi, M., Gharpure, R., & Njenga, K. (2016). Prioritization of zoonotic diseases in Kenya, 2015. PLoS One, 11(8), e0161576.
dc.relation.referencesMusapa, M., Kumwenda, T., Mkulama, M., Chishimba, S., Norris, D. E., Thuma, P. E., & Mharakurwa, S. (2013, Jan 9). A simple Chelex protocol for DNA extraction from Anopheles spp. J Vis Exp(71). https://doi.org/10.3791/3281
dc.relation.referencesNoyes, H., Stevens, J., Teixeira, M., Phelan, J., & Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia1. International Journal for Parasitology, 29(2), 331-339.
dc.relation.referencesNoyes, H., Stevens, J., Teixeira, M., Phelan, J., & Holz, P. (2000). Corrigendum to''A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia''[International Journal for Parasitology 29 (2)(1999) 331-339]. International Journal for Parasitology, 2(30), 228.
dc.relation.referencesNoyes, H. A., Camps, A. P., & Chance, M. L. (1996, Sep). Leishmania herreri (Kinetoplastida; Trypanosomatidae) is more closely related to Endotrypanum (Kinetoplastida; Trypanosomatidae) than to Leishmania. Mol Biochem Parasitol, 80(1), 119-123. https://doi.org/10.1016/0166-6851(96)02679-5
dc.relation.referencesPapatheodorou, S. A., Halvatsiotis, P., & Houhoula, D. (2021). A comparison of different DNA extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiol, 7(3), 304-319. https://doi.org/10.3934/microbiol.2021019
dc.relation.referencesPérez-Doria, A., Bejarano, E. E., Sierra, D., & Vélez, I. D. (2008). Molecular Evidence Confirms the Taxonomic Separation of Lutzomyia tihuiliensis from Lutzomyia pia (Diptera: Psychodidae) and the Usefulness of Pleural Pigmentation Patterns in Species Identification. Journal of Medical Entomology, 45(4), 653-659, 657. https://doi.org/10.1603/0022-2585(2008)45[653:MECTTS]2.0.CO;2
dc.relation.referencesPsifidi, A., Dovas, C. I., Bramis, G., Lazou, T., Russel, C. L., Arsenos, G., & Banos, G. (2015). Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PLoS One, 10(1), e0115960. https://doi.org/10.1371/journal.pone.0115960
dc.relation.referencesRaja, K. K. B., Bachman, E. A., Fernholz, C. E., Trine, D. S., Hobmeier, R. E., Maki, N. J., Massoglia, T. J., & Werner, T. (2023, Jan 24). The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel), 14(2). https://doi.org/10.3390/genes14020304
dc.relation.referencesReady, P. (2014, 2014/05//). Epidemiology of visceral leishmaniasis. Clinical Epidemiology, 147. https://doi.org/10.2147/CLEP.S44267
dc.relation.referencesRider, M. A., Byrd, B. D., Keating, J., Wesson, D. M., & Caillouet, K. A. (2012). PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature. Malaria journal, 11, 193. Retrieved 2012/06//, from http://europepmc.org/abstract/MED/22682161
dc.relation.referencesRiemann, K., Adamzik, M., Frauenrath, S., Egensperger, R., Schmid, K. W., Brockmeyer, N. H., & Siffert, W. (2007). Comparison of manual and automated nucleic acid extraction from whole-blood samples. J Clin Lab Anal, 21(4), 244-248. https://doi.org/10.1002/jcla.20174
dc.relation.referencesRohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., Hudson, P. J., Jouanard, N., Nguyen, K. H., Ostfeld, R. S., Remais, J. V., Riveau, G., Sokolow, S. H., & Tilman, D. (2019, 2019/06/01). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. https://doi.org/10.1038/s41893-019-0293-3
dc.relation.referencesRueda-Concha, K. L., Payares-Mercado, A., Guerra-Castillo, J., Melendrez, J., Arroyo-Munive, Y., Martínez-Abad, L., Cochero, S., Bejarano, E. E., & Paternina, L. E. (2022, Dec 1). [Circulación de Leishmania infantum y Trypanosoma cruzi en perros domésticos de áreas urbanas de Sincelejo, región Caribe de Colombia]. Biomedica, 42(4), 633-649. https://doi.org/10.7705/biomedica.6369
dc.relation.referencesSalonen, A., Nikkilä, J., Jalanka-Tuovinen, J., Immonen, O., Rajilić-Stojanović, M., Kekkonen, R. A., Palva, A., & de Vos, W. M. (2010, May). Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods, 81(2), 127-134. https://doi.org/10.1016/j.mimet.2010.02.007
dc.relation.referencesSantos, M., Martínez-Pérez, L., Rivero, M., Cortés-Alemán, L., Pérez-Doria, A., & Bejarano-Martínez, E. (2021, 11/24). Detección de Leishmania spp. (Trypanosomatidae) e identificación de ingestas sanguíneas en flebotomíneos de un nuevo foco de leishmaniasis en el Caribe colombiano. Ciencia e Innovación en Salud. https://doi.org/10.17081/innosa.142
dc.relation.referencesSavić, S., Vidić, B., Grgić, Z., Potkonjak, A., & Spasojevic, L. (2014). Emerging Vector-Borne Diseases - Incidence through Vectors. Front Public Health, 2, 267. https://doi.org/10.3389/fpubh.2014.00267
dc.relation.referencesSenne, N. A., Santos, H. A., Araujo, T. R., Paulino, P. G., Mendonca, L. P., Moreira, H. V. S., Camilo, T. A., & da Costa Angelo, I. (2022, Jun). Robust comparative performance of genomic DNA extraction methods from non-engorged phlebotomine sandflies. Med Vet Entomol, 36(2), 203-211. https://doi.org/10.1111/mve.12567
dc.relation.referencesShaik, M., Shivanna, D. K., Kamate, M., Ab, V., & Tp, K. V. (2016, Nov). Single Lysis-Salting Out Method of Genomic DNA Extraction From Dried Blood Spots. J Clin Lab Anal, 30(6), 1009-1012. https://doi.org/10.1002/jcla.21972
dc.relation.referencesShwani, A., Zuo, B., Alrubaye, A., Zhao, J., & Rhoads, D. D. (2023). A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses. Applied Sciences, 14(1), 141.
dc.relation.referencesSierra, D., Vélez, I. D., & Uribe, S. (2000). Identificación de Lutzomyia spp.(Diptera: Psychodidae) grupo verrucarum por medio de microscopía electrónica de sus huevos. Revista de Biología Tropical, 48(2-3), 615-622
dc.relation.referencesSleator, R. D. (2010, Jul-Aug). The story of Mycoplasma mycoides JCVI-syn1.0: the forty million dollar microbe. Bioeng Bugs, 1(4), 229-230. https://doi.org/10.4161/bbug.1.4.12465
dc.relation.referencesSpitzer, M., Wildenhain, J., Rappsilber, J., & Tyers, M. (2014, 2014/02/01). BoxPlotR: a web tool for generation of box plots. Nature Methods, 11(2), 121-122. https://doi.org/10.1038/nmeth.2811
dc.relation.referencesSudia, W. D., & Chamberlain, R. W. (1988, 1988/12//). Battery-operated light trap, an improved model. By W. D. Sudia and R. W. Chamberlain, 1962. Journal of the American Mosquito Control Association, 4(4), 536-538. http://www.ncbi.nlm.nih.gov/pubmed/3066845
dc.relation.referencesTakamiya, N. T., Rogerio, L. A., Torres, C., Leonel, J. A. F., Vioti, G., de Sousa Oliveira, T. M. F., Valeriano, K. C., Porcino, G. N., de Miranda Santos, I. K. F., Costa, C. H. N., Costa, D. L., Ferreira, T. S., Gurgel-Gonçalves, R., da Silva, J. S., Teixeira, F. R., De Almeida, R. P., Ribeiro, J. M. C., & Maruyama, S. R. (2023, Aug 8). Parasite Detection in Visceral Leishmaniasis Samples by Dye-Based qPCR Using New Gene Targets of Leishmania infantum and Crithidia. Trop Med Infect Dis, 8(8). https://doi.org/10.3390/tropicalmed8080405
dc.relation.referencesTakano, A., Goka, K., Une, Y., Shimada, Y., Fujita, H., Shiino, T., Watanabe, H., & Kawabata, H. (2010, Jan). Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol, 12(1), 134-146. https://doi.org/10.1111/j.1462-2920.2009.02054.x
dc.relation.referencesThiombiano, N. G., Boungou, M., Chabi, B. A. M., Oueda, A., Werb, O., & Schaer, J. (2023, Dec). First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol Res, 122(12), 3121-3129. https://doi.org/10.1007/s00436-023-08002-2
dc.relation.referencesTopcu, A., Asir, S., & Türkmen, D. (2016, 07/01). DNA Purification by Solid Phase Extraction (SPE) Methods Katı Faz Ayırma Yöntemiyle DNA Saflaştırılması Review Article. Hacettepe Journal of Biology and Chemistry, 44, 259-266. https://doi.org/10.15671/HJBC.20164420568
dc.relation.referencesTruett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., & Warman, M. L. (2000, Jul). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques, 29(1), 52, 54. https://doi.org/10.2144/00291bm09
dc.relation.referencesUshijima, Y., Oliver, J. H., Jr., Keirans, J. E., Tsurumi, M., Kawabata, H., Watanabe, H., & Fukunaga, M. (2003, Feb). Mitochondrial sequence variation in Carlos capensis (Neumann), a parasite of seabirds, collected on Torishima Island in Japan. J Parasitol, 89(1), 196-198. https://doi.org/10.1645/0022-3395(2003)089[0196:Msvicc]2.0.Co;2
dc.relation.referencesvan Eys, G. J., Schoone, G. J., Kroon, N. C., & Ebeling, S. B. (1992, Mar). Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol, 51(1), 133-142. https://doi.org/10.1016/0166-6851(92)90208-2
dc.relation.referencesVasuki, V., Subramanian, S., Hoti, S. L., & Jambulingam, P. (2012, Dec). Use of a simple DNA extraction method for high-throughput detection of filarial parasite Wuchereria bancrofti in the vector mosquitoes. Parasitol Res, 111(6), 2479-2481. https://doi.org/10.1007/s00436-012-3026-3
dc.relation.referencesWeirather, J. L., Jeronimo, S. M., Gautam, S., Sundar, S., Kang, M., Kurtz, M. A., Haque, R., Schriefer, A., Talhari, S., Carvalho, E. M., Donelson, J. E., & Wilson, M. E. (2011, Nov). Serial quantitative PCR assay for detection, species discrimination, and quantification of Leishmania spp. in human samples. J Clin Microbiol, 49(11), 3892-3904. https://doi.org/10.1128/JCM.r00764-11
dc.relation.referencesWHO. (2020). Vector-borne Diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
dc.relation.referencesWilfinger, W. W., Mackey, K., & Chomczynski, P. (1997, Mar). Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques, 22(3), 474-476, 478-481. https://doi.org/10.2144/97223st01
dc.relation.referencesWilson, A. J., Morgan, E. R., Booth, M., Norman, R., Perkins, S. E., Hauffe, H. C., Mideo, N., Antonovics, J., McCallum, H., & Fenton, A. (2017, 2017/05/05/). What is a vector? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1719), 20160085. https://doi.org/10.1098/rstb.2016.0085
dc.relation.referencesWilson, I. G. (1997, Oct). Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol, 63(10), 3741-3751. https://doi.org/10.1128/aem.63.10.3741-3751.1997
dc.relation.referencesYoung, D. G., & Duran, M. A. (1994). Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera:Psychodidae).
dc.relation.referencesZink, F. A., Tembrock, L. R., Timm, A. E., Farris, R. E., Perera, O. P., & Gilligan, T. M. (2017). A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples. PLoS One, 12(5), e0178704. https://doi.org/10.1371/journal.pone.0178704
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsExtraction methods
dc.subject.keywordsPhlebotomine
dc.subject.keywordsDNA
dc.subject.proposalMétodos de extracción
dc.subject.proposalFlebotomíneos
dc.subject.proposalADN
dc.titleAnálisis comparativo de tres métodos rápidos de extracción de ADN a partir de flebotomíneos para la vigilancia de patógenos en Colombiaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Pérez Pérez, María Victoria.pdf
Tamaño:
1.48 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Formato de autorización. Maria V. Perez Perez.pdf
Tamaño:
593.2 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Colecciones