Publicación: Aspectos reproductivos y crecimiento poblacional del cladócero Scapholeberis mucronata en condiciones de laboratorio
dc.contributor.advisor | Jiménez Velásquez, Cesar Augusto | |
dc.contributor.advisor | Prieto Guevara, Martha Janeth | |
dc.contributor.author | Marín González, Jian Pablo | |
dc.contributor.jury | Herazo Cárdenas, Diana Sofia | |
dc.contributor.jury | Mogollón Arismedy, Martha | |
dc.date.accessioned | 2025-07-11T21:52:48Z | |
dc.date.available | 2027-07-04 | |
dc.date.available | 2025-07-11T21:52:48Z | |
dc.date.issued | 2025-07-08 | |
dc.description.abstract | Los cladóceros son una fuente clave de alimento vivo para larvas de peces y crustáceos, pero el potencial nutricional de muchas especies sigue siendo desconocido. Scapholeberis mucronata es un cladócero poco estudiado en Colombia sin antecedentes sobre su potencial reproductivo. Este estudio evaluó sus aspectos reproductivos, crecimiento poblacional y características morfométricas en condiciones de laboratorio, utilizando tres dietas microalgales (Scenedesmus dimorphus, Chlorella minutissima y su mezcla 1:1) en concentraciones de 2×10⁵, 3×10⁵ y 4×10⁵ cel.mL⁻¹. Los mejores resultados se obtuvieron con la dieta mixta, registrando la mayor fecundidad (37 neonatos), densidad máxima (10,133 ± 305.51 y 10,466.67 ± 305.51 org.L⁻¹), tasa de crecimiento (0.18 ± 0.01), tiempo de duplicación (3.94 ± 0.17 y 3.76 ± 0.15 días) y rendimiento (1,283.33 ± 76.38 y 1,366.67 ± 76.38). En neonatos, la mayor longitud total (260.0 ± 6.3 µm) y ancho corporal (133.8 ± 4.2 µm) se encontraron en la dieta S. dimorphus, mientras que, en adultos, la LT osciló entre 476.3 ± 12.2 µm y 467.7 ± 13.4 µm y el AC entre 304.8 ± 14.3 µm y 294.9 ± 10.7 µm. En conclusión, S. mucronata alimentado con la dieta mixta alcanza altas densidades en poco tiempo, lo que sugiere su potencial para la producción masiva como presa viva en la alimentación de larvas de peces dulceacuícolas de interés comercial. | spa |
dc.description.abstract | Cladocerans are a key source of live food for larval fish and crustaceans, but the nutritional potential of many species remains unknown. Scapholeberis mucronata is a poorly studied cladoceran in Colombia with no data on its reproductive potential. This study evaluated its reproductive aspects, population growth and morphometric characteristics under laboratory conditions, using three microalgal diets (Scenedesmus dimorphus, Chlorella minutussima and their 1:1 mixture) at concentrations of 2×10⁵, 3×10⁵ and 4×10⁵ cel.mL⁻¹. The best results were obtained with the mixed diet, recording the highest fecundity (37 neonates), maximum density (10,133 ± 305.51 and 10,466.67 ± 305.51 org.L⁻¹), growth rate (0.18 ± 0.01), doubling time (3.94 ± 0.17 and 3.76 ± 0.15 days) and yield (1,283.33 ± 76.38 and 1,366.67 ± 76.38). In neonates, the greatest total length (260.0 ± 6.3 µm) and body width (133.8 ± 4.2 µm) were found in the S. dimorphus diet, while in adults, TL ranged between 476.3 ± 12.2 µm and 467.7 ± 13.4 µm and AC between 304.8 ± 14.3 µm and 294.9 ± 10.7 µm. In conclusion, S. mucronata fed the mixed diet reaches high densities in a short time, suggesting its potential for mass production as live prey in freshwater fish larvae of commercial interest. | eng |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Profesional en Acuicultura | |
dc.description.modality | Trabajos de Investigación y/o Extensión | |
dc.description.tableofcontents | LISTA DE TABLAS IX | spa |
dc.description.tableofcontents | LISTA DE FIGURAS X | spa |
dc.description.tableofcontents | LISTA DE ANEXOS XI | spa |
dc.description.tableofcontents | RESUMEN XII | spa |
dc.description.tableofcontents | ABSTRACT XIII | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN 14 | spa |
dc.description.tableofcontents | 2. OBJETIVOS 17 | spa |
dc.description.tableofcontents | 2.1 Objetivo General 17 | spa |
dc.description.tableofcontents | 2.2 Objetivos Específicos 17 | spa |
dc.description.tableofcontents | 3. MARCO TEÓRICO 18 | spa |
dc.description.tableofcontents | 3.1 Bioecología de los cladóceros 18 | spa |
dc.description.tableofcontents | 3.1.2. Reproducción de los cladóceros 19 | spa |
dc.description.tableofcontents | 3.2 El cladócero Scapholeberis mucronata 20 | spa |
dc.description.tableofcontents | 3.3 Importancia de los cladóceros en la Acuicultura 22 | spa |
dc.description.tableofcontents | 3.4 Cultivo de cladóceros en acuicultura 24 | spa |
dc.description.tableofcontents | 3.5 Aspectos reproductivos de cladóceros 32 | spa |
dc.description.tableofcontents | 3.6 Microalgas en el cultivo de cladóceros 34 | spa |
dc.description.tableofcontents | 4. MATERIALES Y MÉTODOS 36 | spa |
dc.description.tableofcontents | 4.1 Localización 36 | spa |
dc.description.tableofcontents | 4.2 Cultivo de microalgas 36 | spa |
dc.description.tableofcontents | 4.3 Aspectos reproductivos- primera fase experimental 37 | spa |
dc.description.tableofcontents | 4.4 Crecimiento poblacional- segunda fase experimental | spa |
dc.description.tableofcontents | 38 4.5 Características morfométricas de S. mucronata 40 | spa |
dc.description.tableofcontents | 4.6 Análisis estadístico 40 | spa |
dc.description.tableofcontents | 5. RESULTADOS 41 | spa |
dc.description.tableofcontents | 5.1. Aspectos Reproductivos- primera fase experimental 41 | spa |
dc.description.tableofcontents | 5.2. Crecimiento poblacional-segunda fase experimental 42 | spa |
dc.description.tableofcontents | 5.3 Características morfométricas de Scapholeberis mucronata 44 | spa |
dc.description.tableofcontents | 6. DISCUSIÓN 46 | spa |
dc.description.tableofcontents | 6.1 Aspectos reproductivos de S. mucronata 46 | spa |
dc.description.tableofcontents | 6.2 Crecimiento poblacional de S. mucronata 51 | spa |
dc.description.tableofcontents | 6.3 Características morfométricas de S. mucronata 55 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES 58 | spa |
dc.description.tableofcontents | 8. RECOMENDACIONES 59 | spa |
dc.description.tableofcontents | 9. BIBLIOGRAFÍA 60 | spa |
dc.description.tableofcontents | 10. Anexos 81 | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad de Córdoba | |
dc.identifier.reponame | Repositorio Universidad de Córdoba | |
dc.identifier.repourl | https://repositorio.unicordoba.edu.co/ | |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/9306 | |
dc.language.iso | spa | |
dc.publisher | Universidad de Córdoba | |
dc.publisher.faculty | Facultad de Medicina Veterinaria y Zootecnia | |
dc.publisher.place | Montería, Córdoba, Colombia | |
dc.publisher.program | Acuicultura | |
dc.relation.references | Adibah S, Yusoff FM, Ismail IS, Toda T. Reduced reproductive capacity in Moina micrura Kurz, 1875 exposed to toxic Microcystis spp. Asian Fish Sci. 2020; 33, 42–49. | |
dc.relation.references | Alcántara-Azuara A, Contreras-Rodríguez A, Reyes-Arroyo N, Castro-Mejía J, Castañeda-Trinidad H, Castro G, et al. Comparación de la densidad poblacional de Daphnia pulex Müller, 1785 en cultivos de laboratorio alimentadas con tres microalgas verdes unicelulares (Sphaerocystis sp., Chlorella vulgaris y Haematococcus pluvialis). Revista digital del departamento el Hombre y su Ambiente. 2014; 1(5): 18-25. | |
dc.relation.references | Alva-Martinez AF, Sarma SS, Nandini S. Effect of mixed diets (cyanobacteria and green algae) on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Aquatic Ecology. 2007; 41: 579-585. | |
dc.relation.references | Araujo J, Vargas S, Ríos IE, Ismiño R. Evaluación del efecto de tres concentraciones de microalgas Chlorella sp. y Scenedesmus sp. en la densidad poblacional del cladócero: Ceriodaphnia sp. en condiciones de laboratorio. Trabajo de grado. Universidad Nacional de la Amazonía peruana, Loreto, Perú, 2017. | |
dc.relation.references | Amarasinghe PB, Boersma M, Vijverberg J. The effect of temperature, and food quantity and quality on the growth and development rates in laboratory-cultured copepods and cladocerans from a Sri Lankan reservoir. Hydrobiologia. 1997; 350: 131-144. | |
dc.relation.references | Aravind R, Anand P, Vinay T, Biju I, Sandeep K, Raymond J, et al. Population growth and mass production of brackish water cladoceran Eurycercus beringi sp. nov. under different diet and salinity regime, and its role in P. indicus larval rearing. Regional Studies in Marine Science. 2021; 44, 101777. | |
dc.relation.references | Azani N, Abol-Munafi AB, Liew H, Kamarudin S, Arshad A, Hassan MM, et al. Different dietary effects on growth and reproduction of freshwater zooplankton Ceriodaphnia cornuta (Sars, 1885) and its potential use in Pangasius nasutus larval rearing. International Aquatic Research. 2022; 14: 193-202. | |
dc.relation.references | Azuraidi O, Yusoff F, Shamsudin M, Raha R, Alekseev V, Matias-Peralta H. Effect of food density on male appearance and ephippia production in a tropical cladoceran, Moina micrura Kurz, 1874. Aquaculture. 2013; 412-413:131-135. | |
dc.relation.references | Beerli EL, Logato VR, Freitas FD. Alimentação e comportamento de larvas de Pacú, Piaractus mesopotamicus (Holmberg, 1887). Ciência e agrotecnologia. 2004; 28: 149-155. | |
dc.relation.references | Bondarenko NA, Grachev MA, Zemskaya TI, Logacheva NF, Levina OV. ATP content in microplankton of certain regions of Lake Baikal. Soviet Journal of Ecology. 1991; 22: 380-387. | |
dc.relation.references | Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC. Chlorella minutissima a promising fuel alga for cultivation in municipal wastewaters. Applied biochemistry and biotechnology. 2010; 161: 523-536. | |
dc.relation.references | Biswas A, Saha RK, Sengupta A, Saha H. Life Cycle of a New Bosminid Cladocera: Bosmina (Bosmina) tripurae (Korinek, Saha, and Bhattacharya, 1999). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2014; 84: 953-960. | |
dc.relation.references | Bouchnak R, Steinberg C. Modulation of longevity in Daphnia magna by food quality and simultaneous exposure to disolved humic substances. Limnologica 2010; 40: 86-91. | |
dc.relation.references | Bhawna S, Reddy P. Environmental interactions of zooplankton in the chambal river at nagda (M.P.India). DAMA International. 2020; 9(1): 2319-5037. | |
dc.relation.references | Cai S, Hu C, Du S. Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. Journal of bioscience and bioengineering. 2007; 104: 391-397. | |
dc.relation.references | Carotenuto Y, Wichard T, Pohnert G, Lampert W. Life‐history responses of Daphnia pulicaria to diets containing freshwater diatoms: Effects of nutritional quality versus polyunsaturated aldehydes. Limnology and Oceanography. 2005; 50: 449-454. | |
dc.relation.references | Castillo SM y Sarma N. Las aplicaciones de dietas enriquecidas con complejo de vitamina B en el crecimiento poblacional del cladócero Moina macrocopa y su uso en la acuicultura de agua dulce. Trabajo de grado. Universidad Nacional Autónoma de México, Iztacala, México, 2022. | |
dc.relation.references | Castilho M, Wisniewski C, Santos-Wisniewski M. Life cycle of Scapholeberis armata freyi Dumont y Pensaert, 1983 (Cladocera, Daphnidae). Biota Neotrop. 2012; 12(4): 56-60. | |
dc.relation.references | Castilho DA, Wisniewski DS, Abreu BD, Orlando TC. Life history and DNA barcode of Oxyurella longicaudis (Birgei, 1910) (Cladocera, Anomopoda, Chydoridae). Zoological Studies. 2015; 54(1): 1-7. | |
dc.relation.references | Castro-Mejía J, Castro-Mejia G, Monroy-Dosta M, Davila-Sanchez F, Castro-Castellón A. Population density comparison of Ceriodaphnia dubia fed with bacteria obtained from Biofloc system. Journal of Entomology and Zoology Studies. 2017a; 5(5): 2009-2012. | |
dc.relation.references | Castro-Mejía J, Castro MG, Dávila FS, Castro CE. Density comparison of Moina macrocopa (Straus, 1820) cultured at different temperature conditions (19, 23 and 25 C) fed with bacteria obtained from Biofloc system. Journal of Entomology and Zoology Studies. 2017b; 5(6): 2433-2437. | |
dc.relation.references | Castro-Mejía J, Castro GM, Castro AEC, Ramírez JM. Comparison of population density of Simocephalus vetulus (Müller, 1776), cultured at 19, 23 and 25 C, fed with bacteria produced in a Biofloc system. International Journal of Fisheries and Aquatic Studies. 2018; 6(6): 53-57 | |
dc.relation.references | Castro-Mejía J, Castro MG, Flores AF, Rivera AO, Martínez AM. Population density comparison and reproductive potential of Daphnia pulicaria (Forbes, 1823) fed with chlorophytes (Scenedesmus sp. + Chlorococcum sp.) and diatoms (Pinnularia sp.). J. Entomol. Zool. St. 2020; 8(3): 474-478. | |
dc.relation.references | Castro-Mejía J, Ocampo-Cervantes JA, Castro-Mejía G, Cruz-Cruz I, Monroy-Dosta C, Becerril CD. Laboratory production of Daphnia magna (Straus, 1820) fed with microalgae and active dry yeast–J. Entomol. Zool. St. 2016; 4: 548-553. | |
dc.relation.references | Castro-Ruiz D, Andree KB, Blondeau-Bidet E, Fernández-Méndez C, García-Dávila C, Gisbert E, Darias MJ. Isolation, identification, and gene expression analysis of the main digestive enzymes during ontogeny of the Neotropical catfish Pseudoplatystoma punctifer (Castelnau, 1855). Aquaculture. 2021; 543, 737031. | |
dc.relation.references | Carter MJ, Silva-Flores P, Oyanedel JP, Ramos-Jiliberto R. Morphological and life-history shifts of the exotic cladoceran Daphnia exilis in response to predation risk and food availability. Limnologica. 2013; 43(3): 203-209. | |
dc.relation.references | Colina M, Calliari D, Carballo C, Kruk C. A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. Hydrobiologia. 2016; 767, 221-233. | |
dc.relation.references | Chakraborty S, Mallick P. Study on diversity of cladocerans (Cladocera: Branchiopoda) in some selected wetlands of West Midnapore district, West Bengal, India. Environmental and Experimental Biology. 2021; 19(3), 151-160 | |
dc.relation.references | Chen R, Xu N, Zhao F, Wu Y, Huang Y, Yang Z. Temperature-dependent effect of food size on the reproductive performances of the small-sized cladoceran Moina micrura. Biochemical Systematics and Ecology. 2015; 59, 297-301. | |
dc.relation.references | Choueri RB, Melão MD, Lombardi AT, Vieira AA. Effects of cyanobacterium exopolysaccharides on life-history of Ceriodaphnia cornuta SARS. Journal of plankton research. 2007; 29 (4), 339-345. | |
dc.relation.references | Day J, Gong Y, Hu Q. Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res. 2017; 27(1): 356-365. | |
dc.relation.references | Da Silva FL, Ruso MR, De Araújo-Ramos L, Rocha AS. eeding of larvae of the hybrid Surubim pseudoplatystoma sp. under two conditions of food management. Acta Scientiarum. Biological Sciences. 2013; 35(2): 149-155. | |
dc.relation.references | Das SK, Tiwari VK, Venkateshwarlu G, Reddy AK, Parhi J, Sharma P, Chettri JK. Growth, survival and fatty acid composition of Macrobrachium rosenbergii (de Man, 1879) post larvae fed HUFA-enriched Moina micrura. Aquaculture. 2007; 269(1-4): 464-475. | |
dc.relation.references | Das P, Mandal SC, Bhagabati SK, Akhtar MS, Singh SK. Important live food organisms and their role in aquaculture. Frontiers in aquaculture. 2012; 5(4): 69-86. | |
dc.relation.references | David C, Lenis G, Castañeda G, Lopera A, Restrepo LF. La dieta usada en la primera alimentación afecta la ganancia de peso y longitud total de larvas de cachama blanca (Piaractus brachypomus). Revista Colombiana de Ciencias Pecuarias. 2011; 24(1): 48-53. | |
dc.relation.references | Deng D, Xie P. Effect of Food and Temperature on the Growth and Development of Moina Irrasa (Cladocera: Moinidae). J. Freshw. Ecol. 2003;18: 503–513. | |
dc.relation.references | Ebert D. Daphnia as a versatile model system in ecology and evolution. EvoDevo. 2022; 13(1): 16. | |
dc.relation.references | Dos Santos-Silva E, Moreira RA, Da Silva MP, Orlando TC, dos Santos-Wisniewski MJ, Rocha O. Life cycle traits, secondary production and DNA barcode of Oxyurella ciliata Bergamin, 1939 (Crustacea, Branchiopoda, Anomopoda, Chydoridae). Limnetica. 2024; 43(1): 59-74. | |
dc.relation.references | Dutta A, Kar S, Das P, Das U, Das S, Kar D. Studies on Physico-Chemical Aspects and Zooplankton Diversity of a Freshwater Wetland in Cachar, Assam. Int J Sci Environ Technol. 2017; 6(3): 1877-1885. | |
dc.relation.references | Dumont HJ, Pensaert J. A revision of the Scapholeberinae (Crustacea: Cladocera). Hydrobiologia. 1983; 100: 3-45. | |
dc.relation.references | Eiras BJ, Campelo DA, de Moura LB, de Sousa LM, Nunes IS, de Oliveira LC, et al. Feeding rate and frequency during the first feeding of angelfish (Pterophyllum scalare-Schultze, 1823) and severum (Heros severus-Heckel, 1840) with Moina sp. Aquaculture. 2022; 553, 738106. | |
dc.relation.references | Elías-Gutiérrez M, Suárez-Morales E, Gutiérrez-Aguirre M, Silva-Briano M, Granados-Ramirez J, Garfias-Espejo T. Guía Ilustrada De Los Microcrustáceos (Cladocera y Copepoda) De Las Aguas Continentales De México; Universidad Nacional Autónoma de México, Ciudad de México, México, 2008. | |
dc.relation.references | Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Molecular ecology. 2021; 30(6): 1545-1558. | |
dc.relation.references | Forró L, Korovchinsky N, Kotov A, Petrusek A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia. 2008; 595: 177-184. | |
dc.relation.references | Fuentes-Reinés JM, Eslava-Eljaiek P, Elmoor-Loureiro LM. Cladocera (Crustacea, Branchiopoda) of a temporary shallow pond from northern Colombia. Rev. Peruana Biol. 2019; 26: 351–366. | |
dc.relation.references | Freitas CB, Cassuriaga PA, Morais M, Costa AV. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima. Bioresource technology. 2017; 238: 248-253. | |
dc.relation.references | Galimov Y, Walser B, Haag CR. Frequency and inheritance of nonmale producing clones in Daphnia magna: evolution towards sex specialization in a cyclical parthenogen. J Evol Biol. 2011; 24(7): 1572–1583. | |
dc.relation.references | Gándara M, Galdino RL, Caraballo P. Historia de vida de Daphnia magna y Ceriodaphnia reticulata en condiciones de laboratorio: uso potencial como alimento para peces. Revista Colombiana de Ciencia Animal. 2013; 5(2): 340-357. | |
dc.relation.references | Gao XQ, Liu ZF, Guan CT, Huang B, Lei JL, Li J, Guo ZL, Wang YH, Hong L. Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. Fish Physiology and Biochemistry. 2017; 43(2): 397-409. | |
dc.relation.references | García-Moreno LR, Rodríguez-Palacio MC, Guerra-Ramírez D, Reyes-Trejo B, Márquez-Berber SR. Cultivo de microalgas para la producción de biodiesel utilizando como medio de cultivo residuos agropecuarios. En Paz F, Wong J, Torres R (eds). Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2015. 659-663 | |
dc.relation.references | Gökçe EM, Turhan DÖ. Effects of salinity tolerances on survival and life history of 2 cladocerans. Turkish Journal of Zoology. 2014; 38(3): 347-353. | |
dc.relation.references | Góngora-Landeros E, Uría-Galicia E, Martínez-Jerónimo F, López-Villegas E. Descripción histológica de la cámara incubatriz de Moina hutchinsoni (Brem, 1937). International Journal of Morphology. 2010; 28(4): 1025-1030. | |
dc.relation.references | González A. El Plancton de las aguas continentales. Secretaria general de la O.E.A. Serie de Biología; Monografía No. 33 Washington D.C. 1988. | |
dc.relation.references | González M, Arrieta M, Jiménez-Velásquez C, Prieto-Guevara MJ. Calidad nutricional de presas vivas utilizadas en la primera alimentación de brycónidos. Trabajo de grado. Universidad de Córdoba, Montería, Colombia, 2021. | |
dc.relation.references | Gutiérrez-Quevedo, M. Contribución al estudio de la diversidad del zooplancton en tres lagos tropicales y su relación con el uso de suelo en los Tuxtlas, Veracruz. Trabajo de grado. Universidad veracruzana, Veracruz, México, 2014. | |
dc.relation.references | Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol.1962; 8(2): 229-239. | |
dc.relation.references | Hardy E, Duncan A. Food concentration and temperature effects on life cycle characteristics of tropical Cladocera (Daphnia gessneri Herbst, Diaphanosoma sarsi Richard, Moina reticulata (Daday)): I. Development time. Acta amazónica. 1994; 24, 119-134. | |
dc.relation.references | Havens KE, Pinto-Coelho RM, Beklioǧlu M, Christoffersen KS, Jeppesen E, Lauridsen TL, et al. Temperature Effects on Body Size of Freshwater Crustacean Zooplankton from Greenland to the Tropics. Hydrobiologia. 2015; 743: 27–35. | |
dc.relation.references | Hernández-Mancipe LE, Londoño-Vélez JI, Hernández-García KA, Torres-Hernández LC. Los sistemas biofloc: una estrategia eficiente en la producción acuícola. CES Medicina Veterinaria y Zootecnia. 2019;14(1), 70-99. | |
dc.relation.references | Holy NH, Sari LA. The effect of catfish and chicken cultivation waste to Daphnia sp. culture. In IOP Conference Series: Earth and Environmental Science. 2020; 441(1): 012057. | |
dc.relation.references | Huamán-Tenorio V. Crecimiento poblacional de Daphnia magna “pulga de agua” en cultivo experimental alimentado con Saccharomyces cerevisiae “levadura” y jugo de Spinacia oleracea “espinaca”. Trabajo de grado. Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Perú, 2017. | |
dc.relation.references | Huang X, Shi X, Xu S, Liu G, Ma L, Sun Z. Life history characteristics of Macrothrix rosea (Jurine, 1820) (Cladocera, Macrothricidae) in laboratory conditions. J Limnol. 2011; 70(2): 248-254. | |
dc.relation.references | Hyman M, Wang Q, Wilson A, Adhikari S, Higgins B. Production of Daphnia zooplankton on wastewater-grown algae for sustainable conversion of waste nutrients to fish feed. Journal of Cleaner Production. 2021; 310, 127501. | |
dc.relation.references | Ismail HN, Qin G, Seuront L. Regulation of life history in the brackish cladoceran, Daphniopsis australis (Sergeev and Williams, 1985) by temperature and salinity. J Plankton Res. 2011; 33(5): 763-777. | |
dc.relation.references | Ismail HN, Dini WA, Tay CC. Biological responses of tropical cladoceran, Ceriodaphnia cornuta to different algae diets. Journal of Life Sciences and Technology. 2014; 2: 48-54. | |
dc.relation.references | Ismiño R, Araujo-Solis J, Vargas-Del Castillo S, Ruiz-Tafur K, Arbildo-Ortiz H, Alvan-Aguilar M. Crecimiento del cladócero nativo Ceriodaphnia sp. con clorofitas (Scenedesmus sp. y Chlorella sp.) en condiciones de laboratorio. Revista de Investigaciones Veterinarias del Perú. 2020; 31 (1): e17555. | |
dc.relation.references | Ji G, Havens K, Beaver J, Fulton R. Response of Zooplankton to Climate Variability: Droughts Create a Perfect Storm for Cladocerans in Shallow Eutrophic Lakes. Water. 2017; 9(764): 1-20. | |
dc.relation.references | Jiménez-Velásquez C, Atencio-Garcia V, Ayazo-Genes J, Espinosa-Araujo J, Prieto-Guevara MJ. Management of the First Feeding of Dorada Brycon sinuensis with Two Species of Cladocerans. Applied Sciences. 2021;11(20), 9379. | |
dc.relation.references | Kandathil-Radhakrishnan D, AkbarAli I, Schmidt BV, John EM, Sivanpillai S, Thazhakot-Vasunambesan S. Improvement of nutritional quality of live feed for aquaculture: An overview. Aquaculture Research. 2020; 51(1): 1-17. | |
dc.relation.references | Kappes H, Sinsch U. Temperature‐and predator‐induced phenotypic plasticity in Bosmina cornuta and B. pellucida (Crustacea: Cladocera). Freshwater Biology. 2002; 47(10): 1944-1955. | |
dc.relation.references | Korponai JL, Kövér C, López-Blanco C, Gyulai I, Forró L, Katalinic A, Buczkó K. Effect of temperature on the size of sedimentary remains of littoral chydorids. Water. 2020; 12(5): 1309. | |
dc.relation.references | Kotov A, Forró L, Korovchinsky NM, Petrusek A. World checklist of freshwater Cladocera species. World Wide Web electronic publication. 2013. [citado 19 enero 2023]. Disponible en: http://fada.biodiversity.be/group/show/17. | |
dc.relation.references | Kumar R, Hwang J. Ontogenetic shifts in the ability of the cladoceran, Moina macrocopa Straus and Ceriodaphnia cornuta Sars to utilize ciliated protists as food source. International Review of Hydrobiology. 2008; 93(3): 284-296. | |
dc.relation.references | Khatoon H, Banerjee S, Yusoff FM, Shariff M. Use of microalgal‐enriched Diaphanosoma celebensis S tingelin, 1900 for rearing Litopenaeus vannamei (B oone, 1931) postlarvae. Aquaculture Nutrition. 2013; 19(2): 163-171. | |
dc.relation.references | Latib NL, Yusoff F, Nagao N, Nizar H. Growth of tropical cladocerans Ceriodaphnia cornuta GO Sars, 1885 and Moina micrura Kurz, 1875 fed with different diets. Journal of Environmental Biology. 2020; 41: 1224-1229. | |
dc.relation.references | Lemke AM, Benke AC. Growth and reproduction of three cladoceran species from a small wetland in the south‐eastern USA. Freshwater Biology. 2003;48(4): 589-603. | |
dc.relation.references | Liu B, Zhu X, Lei W, Yang Y, Han D, Jin J, Xie S. Effects of different weaning strategies on survival and growth in Chinese longsnout catfish (Leiocassis longirostris Günther) larvae. Aquaculture. 2012; 364-365, 13-18. | |
dc.relation.references | Lopatina TS, Zadereev ES. The effect of food concentration on the juvenile somatic growth rate of body length, fecundity and the production of resting eggs by Moina brachiata (Crustacea: Cladocera) single females. Journal of the Siberian Federal University. 2012;5 (4): 427-438. | |
dc.relation.references | Luna-Figueroa J, Arce E. Un menú diverso y nutritivo en la dieta de peces: “El alimento vivo”. Agroproductividad. 2017; 10(9): 112-116. | |
dc.relation.references | Marciales-Caro L, Díaz-Olarte J, Medina-Robles V, Cruz-Casallas P. Evaluación del crecimiento y sobrevivencia de larvas de bagre rayado Pseudoplatystoma fasciatum (Linneaus, 1766) alimentadas con alimento vivo natural y enriquecido con ácidos grasos. Rev Colomb Cienc Pecu. 2010; 23: 308-316. | |
dc.relation.references | Maciel-Mata CA, Manríquez-Morán N, Octavio-Aguilar P, Sánchez-Rojas G. El área de distribución de las especies: revisión del concepto. Acta universitaria. 2015; 25(2): 03-19. | |
dc.relation.references | Masclaux H, Richoux NB. Effects of temperature and food quality on isotopic turnover and discrimination in a cladoceran. Aquatic Ecology. 2017; 51: 33-44. | |
dc.relation.references | Martinez-Jeronimo F, Ventura-Lopez C. Population dynamics of the tropical cladoceran Ceriodaphnia rigaudi Richard, 1894 (Crustacea: Anomopoda). Effect of food type and temperature. Journal of Environmental Biology. 2011; 32(4): 513-521. | |
dc.relation.references | Mehdipour N, Fallahi M, Takami GA, Vossoughi G, Mashinchian A. Freshwater green algae Chlorella sp. and Scenedesmus obliquus enriched with B group of vitamins can enhance fecundity of Daphnia magna. Iran J Sci Technol. 2011; A2: 157–163. | |
dc.relation.references | Menossi CC, Takata R, Sánchez-Amaya MI, Freitas MD, Yúfera M, Portella MC. Crescimento e estruturas do sistema digestório de larvas de pacú alimentadas com dieta microencapsulada produzida experimentalmente. Revista Brasileira de Zootecnia. 2012; 41: 1-10. | |
dc.relation.references | Mercado I, Gómez R. Historia de vida de Moina reticulata y diaphanosoma birgei (Crustácea-Cladócera), provenientes del complejo lagunar de Caimito, Sucre, en condiciones de laboratorio. Trabajo de grado. Universidad de Sucre, Sincelejo, Colombia, 2005. | |
dc.relation.references | Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolf C. Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based. EvoDevo. 2014; 5 (1): 1-20. | |
dc.relation.references | Muñoz M, Medina VM, Cruz-Casallas PE. Efecto del fotoperiodo y del alimento sobre la productividad de dos cladóceros nativos (Moina sp. y Diaphanosoma sp.) de la Orinoquia colombiana. Revista UDCA Actualidad & Divulgación Científica. 2013; 16(1): 167-174. | |
dc.relation.references | Nakauth AC, Müller RL, Villacorta-Correa MA, Acioli AN, de Almeida R. Crescimento populacional do cladocera Moina sp. Em sistema de cultivo estático. ANINC-Anuário do Instituto de Natureza e Cultura. 2015; 1: 18-29. | |
dc.relation.references | Nandini S, Alonso‐Soto R, Sarma S. Growth of plankton (Scenedesmus acutus (Chlorophyceae) and Moina macracopa (Cladocera)) on domestic wastewater. CLEAN–Soil, Air, Water. 2013; 41(1): 11-5. | |
dc.relation.references | Ocampo L, Botero M, Restrepo L. Growth culture evaluation of Daphnia magna feed with Saccharomyces cereviseae enrichment with oat soy. Rev Col Cienc Pec. 2010; 23(1): 78-85. | |
dc.relation.references | Oh SH, Han JG, Kim NY, Cho JS, Yim TB, Lee SY, et al. Cell growth and lipid production from fed-batch cultivation of Chlorella minutissima according to culture conditions. KSBB Journal. 2009; 24(4): 377-382. | |
dc.relation.references | Oliveira DC, Campos MF, Santos C, Lima I, Marreira R, Arauco LR. Avaliação do crescimento populacional de Daphnia magna, alimentada com diferentes dietas. [Internet]. UFMA, 2010. [Citado 5 de enero de 2024]. Recuperado a partir de: http://www.sbpcnet.org.br/livro/62ra/resumos/resumos/3553.htm | |
dc.relation.references | Ördög V, Stirk WA, Bálint P, van Staden J, Lovász C. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology. 2012; 24: 907-914. | |
dc.relation.references | Otero A, Ramirez JA, Medina VM, Zapata BE, Mira T, Velasco YM, Cruz PE. Aspectos reproductivos del cladócero Alona sp. bajo condiciones de laboratorio. Memorias XIII Jornada de Acuicultura Unillanos. 2007; 57-60. | |
dc.relation.references | Otero A, Muñoz M, Medina V, Cruz P. Efecto del alimento sobre variables productivas de dos especies de Cladóceros bajo condiciones de laboratorio. Revista MVZ Córdoba. 2013; 18(1): 3642-3647. | |
dc.relation.references | Ovie SI y Egborge AM. The effect of different algal densities of Scenedesmus acuminatus on the population growth of Moina micrura Kurz (Crustacea: Anomopoda, Moinidae). Hydrobiologia. 2002; 477: 41-45. | |
dc.relation.references | Oviedo-Montiel H, Herrera-Cruz E, Hoya-Florez J, Prieto-Guevara MJ, Estrada-Posada A, Yepes-Blandón J. González Orinoquia. 2019; 23(2): 79-86. | |
dc.relation.references | Oviedo-Montiel HJ, Prieto-Guevara MJ, Yepes-Blandón J. Cladóceros en el desarrollo del sistema digestivo de larvas de blanquillo Sorubim cuspicaudus. Trabajo de grado. Universidad de Córdoba, Montería, Colombia, 2021. | |
dc.relation.references | Pennak RW. Fresh-water invertebrates of the United States. Journal of Aquatic Ecosystem Stress and Recovery. Formerly Journal of Aquatic Ecosystem Health. 1955; 7(1): 126-126. | |
dc.relation.references | Pereira FM, Loures CC, Amaral MS, Gomes FM, Pedro GA, Machado MA, Silva MB. Evaluation of fatty acids production by Chlorella minutissima in batch bubble-column photobioreactor. Fuel. 2018; 230: 155-162. | |
dc.relation.references | Pérez-Bravo SG, Castañeda-Chávez MD, Aguilera-Vázquez L, Gallardo-Rivas NV, Morales-Rodríguez ML, Páramo-García U. Evaluation of Scenedesmus dimorphus under Different Photoperiods with Eutrophicated Lagoon Water. Resources. 2023; 12(12): 140. | |
dc.relation.references | Pérez-Legaspi I, Pérez-Rostro C, Hernández M. Influence of temperature and food type on the life history of Ceriodaphnia cornuta Sars 1885 (Crustacea: Cladocera). Revista Investigación y Ciencia- UAA. 2015; (64): 11-18. | |
dc.relation.references | Pimentel LJ, Rivera CG, Vázquez GLI, Castro MJ, Ocampo CJA, Castro MDF, Castro CAE. Population density comparison of Daphnia pulex (Linnaeus, 1758) fed with bacteria obtained from Biofloc system. Journal of Entomology and Zoology Studies. 2016; 4(6): 612-616 | |
dc.relation.references | Pitul’ko SI. Influence of food on morphological characteristics of Daphnia galeata (Cladocera, Daphniidae) from Lake Baikal. Limnology and Freshwater Biology. 2019; (2): 199-204. | |
dc.relation.references | Puello-Cruz AC, Mezo-Villalobos S, González-Rodríguez B, Voltolina D. Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture. 2009; 290(3-4): 317-319. | |
dc.relation.references | Putra DF, Fanni M, Muchlisin ZA, Muhammadar AA. Growth performance and survival rate of climbing perch (Anabas testudineus) fed Daphnia sp. enriched with manure, coconut dregs flour and soybean meal. Aquaculture, Aquarium, Conservation & Legislation. 2016; 9(5): 944-948. | |
dc.relation.references | Prieto-Guevara MJ. Aspectos reproductivos del cladócero Moinodaphnia sp. en condiciones de laboratorio. Revista MVZ Córdoba. 2001; 6(2): 102-110. | |
dc.relation.references | Prieto-Guevara MJ, Atencio-García V. Zooplancton en la larvicultura de peces neotropicales. Revista MVZ Córdoba. 2008; 13(2): 1415-1415. | |
dc.relation.references | Prieto-Guevara MJ, De la Cruz L, Morales M. Cultivo experimental del cladócero Moina sp. alimentado con Ankistrodesmus sp. y Saccharomyces cereviseae. Revista MVZ Córdoba. 2006; 11(1): 705-714. | |
dc.relation.references | Prieto-Guevara MJ. Plancton regional y su potencial en acuicultura. Temas clave para la acuicultura. Centro de Investigaciones Piscícolas CIUC. Fondo editorial Universidad de Córdoba. Montería, Colombia. Primera edición. 2013. 179 p. | |
dc.relation.references | Ramírez F. Atlas del zooplancton del Atlantico sudoccidental y métodos de trabajo en el zooplancton marino (Apartado Cladocera). Mar de Plata (ARG): INIDEP; 1981. | |
dc.relation.references | Ramírez-Merlano J, Mira-López T, Cruz-Casallas P. Efecto de la intensidad lumínica sobre la eficiencia reproductiva del cladócero Moina sp. bajo condiciones de laboratorio. Orinoquia. 2013; 17(2): 117-182. | |
dc.relation.references | Ramírez-Merlano JA, Otero-Paternina AM, Corredor-Santamaría W, Medina-Robles VM, Cruz-Casallas PE, Velasco-Santamaría YM. Utilización de organismos vivos como primera alimentación de larvas de yaque (Leiarius marmoratus) bajo condiciones de laboratorio. Orinoquia. 2010; 14(1): 45-58. | |
dc.relation.references | Rasdi N, Arshad A, Ikhwanuddin M, Hagiwara A, Yusoff F, Azani N. A review on the improvement of cladocera (Moina) nutrition as live food for aquaculture: Using valuable plankton fisheries resources. Journal of Environmental Biology. 2020; 41, 1239-1248. | |
dc.relation.references | Rendón L, Ramírez M, Vélez Y. Microalgas para la industria alimenticia. [Internet]. 2015. [citado: 2024, mayo] Disponible en: https://repository.upb.edu.co/handle/20.500.11912/2306 | |
dc.relation.references | Ritu JR, Khan S, Uddin MH, Hossain MA, Haque MM. Unraveling the potential of the green microalga, Monoraphidium littorale in rearing some copepods and cladocerans. Aquaculture Reports. 2023; 33: 101839. | |
dc.relation.references | Rocha KC, Arauco RR, Maia AM, De Araujo LL. Crescimento populacional de Moina sp. alimentadas com diferentes dietas para uso na larvicultura e aquariofilia. Research, Society and Development. 2021; 10(13): e73101320909-e73101320909. | |
dc.relation.references | Rodmongkoldee M, Taparhudee W, Saengphan N. Laboratory study on life history of three water flea species (Cladocera: Moinidae) in Thailand. Burapha Science Journal. 2020; 25(1): 129-140. | |
dc.relation.references | Rodríguez-Estrada J, Villaseñor-Córdova R, Martínez-Jerónimo F. Effect of temperature and type of food on the growth of Moina micrura (Kurz, 1874) (Anomopoda: Moinidae), in laboratory conditions. Hidrobiológica. 2003; 13(3): 239- 245. | |
dc.relation.references | Rogel-Espinoza JC y Uría CFL. Cultivo del microcrustáceo Moina sp. como alternativa alimentaria para el cultivo en laboratorio de pez cebra (Danio rerio) en Quito-Ecuador. Trabajo de grado. Universidad Politécnica Salesiana, Cuenca, Ecuador, 2023. | |
dc.relation.references | Rojas ML, Navarrete NA, Elías G, Contreras G. Efecto de jugos vegetales sobre la producción de Daphnia pulex (Cladocera: Daphnidae) en condiciones de laboratorio. Revista de Biología Tropical. 1999; 47(3): 429-435. | |
dc.relation.references | Romero DJ, Manso B, López R, Martínez F, Moreno M. Production of Moina sp. fed with Chlorella spp. developed in organic waste waters from Cuban fishing industry. REDVET. 2010; 11(12): 121006. | |
dc.relation.references | Romero M. Atlas de organismos planctónicos en los humedales de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía. 2010; p.150-163. | |
dc.relation.references | Rose RM, Warne MSJ, Lim RP. Some life history responses of the cladoceran Ceriodaphnia cf. dubia to variations in population density at two different food concentrations. Hydrobiologia. 2002; 481, 157-164. | |
dc.relation.references | Rottmann RW, Graves JS, Watson C, Yanong RP. Culture techniques of Moina: The ideal Daphnia for feeding freshwater fry. University of Florida. 2014; CIR 1054, FAO, Rome, pp.2-9. | |
dc.relation.references | Saha H, Wisdom K, Devi A, Devi S, Kamei M, Biswas A, et al. Effects of Water pH on Life History Parameters of a New Bosminid Cladocera: Bosmina (Bosmina) Tripurae (Korinek, Saha and Bhattachaya, 1999) in Laboratory Condition. Bull Environ Contam Toxicol. 2017; 99(1): 23-26. | |
dc.relation.references | Samat NA, Yusoff FM, Rasdi NW, Karim M. Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: A review. Animals. 2020; 10(12): 2457. | |
dc.relation.references | Santos PF, Melão MGG, Lombardi AT. Life history characteristics and production of Ceriodaphnia silvestrii Daday (Crustacea, Cladocera) under different experimental conditions. Acta Limnologica Brasiliensia. 2006; 18(3): 199-212. | |
dc.relation.references | Salazar M, Ocampo D. Tasa de crecimiento del pez Ángel Pterophyllum scalare (Perciformes: Cichlidae) en condiciones de laboratorio. Acta Universitaria. 2002; 12(2): 28-33. | |
dc.relation.references | Sarma SS, López-Rómulo AJ, Nandini S. Larval feeding behaviour of blind fish Astyanax fasciatus (Characidae), black tetra Gymnocorymbus ternetzi (Characidae) and angel fish Pterophyllum scalare (Cichlidae) fed zooplankton. Hydrobiologia. 2003; 510: 207-216. | |
dc.relation.references | Silva E, Abreu C, Orlando T, Wisniewski C, Santos-Wisniewski M. Alona iheringula Sinev y Kotov, 2004 (Crustacea, Anomopoda, Chydoridae, Aloninae): Life Cycle and DNA Barcode with Implications for the Taxonomy of the Aloninae Subfamily. PLOS ONE. 2014; 9(5): 1-7. | |
dc.relation.references | Simhachalam G, Kumar NS, Rao KG. Biochemical composition and nutritional value of Streptocephalus simplex as live feed in ornamental fish culture. The Journal of Basic & Applied Zoology. 2015; 72: 66-72. | |
dc.relation.references | Sipaúba-Tavares LH, Bachion MA. Population growth and development of two species of Cladocera, Moina micrura and Diaphanosoma birgei, in laboratory. Brazilian Journal of Biology. 2002; 62: 701-711. | |
dc.relation.references | Sipaúba-Tavares LH, Truzzi BS, Berchielli-Morais DA. Growth and development time of subtropical Cladocera Diaphanosoma birgei Korinek, 1981 fed with different microalgal diets. Brazilian Journal of Biology. 2014; 74: 464-471. | |
dc.relation.references | Sinev A, Silva-Briano M. Cladocerans of genus Alona Baird, 1843 (Cladocera: Anomopoda: Chydoridae) and related genera from Aguascalientes State, Mexico. Zootaxa. 2012; 3569(1): 1-24. | |
dc.relation.references | Sinev A. Cladocerans of Alona affinis group (Cladocera: Anomopoda: Chydoridae) from North America. Zootaxa. 2013; 3693(3): 329–343. | |
dc.relation.references | Sinev A. Revision of the pulchella-group of Alona s. lato leads to its translocation to Ovalona Van Damme et Dumont, 2008 (Branchiopoda: Anomopoda: Chydoridae). Zootaxa. 2015; 4044(4): 451–492. | |
dc.relation.references | Silva-Briano M, Adabache-Ortiz A, Guerrero-Jiménez G, Rico-Martínez R, ZavalaPadilla G. Ultrastructural and morphological description of the three major groups of freshwater zooplankton (Rotifera, Cladocera, and Copepoda) from the State of Aguascalientes, Mexico. INTECH open science/open minds. 2015; 307-325. | |
dc.relation.references | Sousa LM, Eiras BJ, Magalhães A, da Costa RM. Development of Moina minuta (Hansen, 1899) (Cladocera: Anomopoda: Moinidae) under different food sources. Observatório de la economía latinoamericana. 2023; 21(6), 4232-4245. | |
dc.relation.references | Suhaimi H, Yuslan A, Azani N, Habib A, Liew HJ, Rasdi NW. Effect of dietary enhanced Moina macrocopa (Straus, 1820) on the growth, survival and nutritional profiles of hybrid Nile tilapia fry. The Egyptian Journal of Aquatic Research. 2022; 48(1): 67-73. | |
dc.relation.references | Storch V, Welsch U. Crustacea, Krebse. Kükenthal-Zoologisches Praktikum. 2009; 213-244. | |
dc.relation.references | Tadeo A, Veracruz E. Larval rearing of giant gourami, Osphronemus goramy Lacépède 1801 Fed with different live food organisms. Asian Fisheries Science. 2018;31: 113–126. | |
dc.relation.references | Taghavi D, Farhadian O, Soofiani N, Keivany Y. Effects of different light/dark regimes and algal food on growth, fecundity, ephippial induction and molting of freshwater cladoceran, Ceriodaphnia quadrangula. Aquaculture. 2013; 410: 190- 196. | |
dc.relation.references | Tian W, Zhang H, Zhang J, Zhao L, Miao M, Huang H. Responses of Zooplankton Community to Environmental Factors and Phytoplankton Biomass in Lake Nansihu, China. Pakistan J Zool. 2017; 49(2): 461-470. | |
dc.relation.references | Tucker AE, Ackerman MS, Eads BD, Xu S, Lynch M. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci USA. 2013; 110: 15740–5. | |
dc.relation.references | Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Science of the Total Environment. 2021; 763, 143038. | |
dc.relation.references | Valbuena R, Zapata-Berruecos B, Otero-Paternina A. Evaluación de la primera alimentación en larvas de capaz Pimelodus grosskopfii bajo condiciones de laboratorio. Revista MVZ Córdoba. 2013; 18 (2): 3518-3524. | |
dc.relation.references | Vignatti A, Paggi J, Echaniz S, Cabrera, G. Tolerancia a la salinidad de dos cladóceros halófilos autóctonos: Daphnia menucoensis y Moina eugeniae (Artropoda, Crustacea). Biología Acuática. 2012; (27): 219-231. | |
dc.relation.references | Vijverberg J, Richter AF. Population Dynamics and Production of Daphnia Hyalina (Leydig) and Daphnia Cucullata Sars in Tjeukemeer. Hydrobiologia. 1982; 9: 235–259. | |
dc.relation.references | Villalobos M, González E. Estudios sobre la biología y ecología de Ceriodaphnia cornuta Sars: Una revisión. Interciencia. 2006; 31(5): 351-357. | |
dc.relation.references | Viti T, Wisniewski C, Orlando T, Santos-Wisniewski M. Life history, biomass and production of Coronatella rectangular (Branchiopoda, Anomopoda, Chydoridae) from Minas Gerais. Iheringia, Se Zoologia. 2013; 103(2): 110-117. | |
dc.relation.references | Wang L, Zhao W, Huo Y, Yin X, Wei J, Wang S, Wang Y. Influence of Seawater Salinity on the Survival, Growth, Development and Neonate Production of Scapholeberis mucronata (OF Müller) (Crustacea: Cladocera). Water. 2022; 14(22): 3706. | |
dc.relation.references | Wei J, Zhao W, Wang S, Wang M, Wang X, Ji S, An H. Effect of temperature, salinity, and body length on the energy Budget of Daphniopsis tibetana Sars (Cladocera: Daphniidae). Journal of Oceanology and Limnology (JOL). 2018; 36(5): 1812-1824. | |
dc.relation.references | Yampolsky LY. Genetic-variation in the sexual reproduction rate within a population of a cyclic parthenogen, Daphnia-magna. Evolution. 1992; 46: 833–7. | |
dc.relation.references | Yusof-Hanan M, Amatul-Samahah MA, Jaapar MZ, Ramli SF, Mohamad SN. Moina sp. as Artemia replacement in the larval rearing of river catfish, Pangasius nasutus (Bleeker, 1863). Journal of Applied Aquaculture. 2023; 36(3): 557-573. | |
dc.relation.references | Zhang L, Baer KN. The influence of feeding, photoperiod and selected solvents on the reproductive strategies of the water flea, Daphnia magna. Environmental Pollution. 2000; 110 (3): 425. | |
dc.relation.references | Zheng HJ, Sun J, Cao L, Yin XH. Toxicity effect of coumoxystrobin on scapholeberis mucronata. Chinese Journal of Pesticide Science. 2020; 22 (4), 716-720 | |
dc.relation.references | Zhou Q, Lu N, Gu L, Sun Y, Zhang L, Huang Y, Yang Z. Daphnia enhances relative reproductive allocation in response to toxic microcystis: Changes in the performance of parthenogenetic and sexual reproduction. Environmental Pollution. 2020; 259: 113890. | |
dc.rights | Copyright Universidad de Córdoba, 2025 | |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keywords | Microalgae | eng |
dc.subject.keywords | Microcrustaceans | eng |
dc.subject.keywords | Zooplankton | eng |
dc.subject.keywords | Live food | eng |
dc.subject.keywords | Live prey | eng |
dc.subject.proposal | Microalgas | spa |
dc.subject.proposal | Microcrustáceos | spa |
dc.subject.proposal | Zooplancton | spa |
dc.subject.proposal | Alimento vivo | spa |
dc.subject.proposal | Presa viva | spa |
dc.title | Aspectos reproductivos y crecimiento poblacional del cladócero Scapholeberis mucronata en condiciones de laboratorio | spa |
dc.type | Trabajo de grado - Pregrado | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 15.18 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: