Publicación: Análisis exergético de la generación de vapor mediante la combustión de gas de gasificación en lecho fijo de los residuos de la agroindustria del maíz
dc.contributor.advisor | Sofán Germán, Stiven Javier | spa |
dc.contributor.author | Argumedo Berona, Germán Elías | |
dc.contributor.author | Mora Agámez, Manuel Enrique | |
dc.date.accessioned | 2021-09-28T23:55:17Z | |
dc.date.available | 2021-09-28T23:55:17Z | |
dc.date.issued | 2021-09-24 | |
dc.description.abstract | The objective of this applicative monograph is to carry out an exergy analysis of steam generation through the gasification of industrial corn residues as working biomass; To achieve this objective, a characterization of the biomass was first carried out to determine the last and next analyzes, in order to obtain the chemical composition of the corn cob. Then a computational model was made in Aspen Plus® where the data of a syngas with a lower heating value (LHV) of 6.18 MJ/Nm3 were produced, which was later injected into a boiler for the generation of steam in the system. After this, an exergy analysis was carried out on the data obtained in the simulation, which showed that 14.37 kW are used in steam generation, and it was also determined that the exergetic efficiency of the system is 35%, largely part due to irreversibility’s and exergy destroyed. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografías | spa |
dc.description.resumen | El objetivo de esta monografía aplicativa es hacer un análisis exergético a la generación de vapor mediante la gasificación de residuos industriales del maíz como biomasa de trabajo; para alcanzar dicho objetivo primeramente se realizó una caracterización de la biomasa para determinar los análisis últimos y próximos, con la finalidad de obtener la composición química de la tusa del maíz. Luego se realizó un modelo computacional en Aspen Plus® donde se arrojaron los datos de un syngas con un poder calorífico inferior (LHV) de 6.18 MJ/Nm3 , el cual posteriormente se inyectó a una caldera para la generación de vapor del sistema. Luego de esto se realizó un análisis exergético con los datos arrojados en la simulación que, que arrojó como resultado que 14.37 kW son los utilizados en la generación de vapor, así mismo se determinó que la eficiencia exergética del sistema es de 35%, en gran parte debido a irreversibilidades y exergía destruida. | spa |
dc.description.tableofcontents | INTRODUCCIÓN ................................................................................................................ 14 | spa |
dc.description.tableofcontents | OBJETIVOS ......................................................................................................................... 16 | spa |
dc.description.tableofcontents | 1.1 OBJETIVO GENERAL ......................................................................................... 16 | spa |
dc.description.tableofcontents | 1.2 OBJETIVOS ESPECIFICOS................................................................................. 16 | spa |
dc.description.tableofcontents | 2 REVISIÓN DE LITERATURA ................................................................................... 17 | spa |
dc.description.tableofcontents | 2.1 MARCO TEORICO............................................................................................... 17 | spa |
dc.description.tableofcontents | 2.1.1 El Maíz ........................................................................................................... 17 | spa |
dc.description.tableofcontents | 2.1.2 Aspectos generales de la biomasa .................................................................. 17 | spa |
dc.description.tableofcontents | 2.1.3 Biomasa .......................................................................................................... 18 | spa |
dc.description.tableofcontents | 2.1.4 Métodos de análisis de composición .............................................................. 19 | spa |
dc.description.tableofcontents | 2.1.5 Gasificación .................................................................................................... 21 | spa |
dc.description.tableofcontents | 2.1.6 Gasificador de lecho fijo................................................................................. 23 | spa |
dc.description.tableofcontents | 2.1.7 Gas de síntesis ................................................................................................ 24 | spa |
dc.description.tableofcontents | 2.1.8 Caldera ............................................................................................................ 24 | spa |
dc.description.tableofcontents | 2.1.9 Exergía ............................................................................................................ 25 | spa |
dc.description.tableofcontents | 2.2 Antecedentes generales relacionados a nuestra investigación ............................... 26 | spa |
dc.description.tableofcontents | 3 MATERIALES Y METODOS ..................................................................................... 30 | spa |
dc.description.tableofcontents | 3.1 Propiedades termoquímicas de los residuos agroindustriales del Maíz. ................ 30 | spa |
dc.description.tableofcontents | 3.1.1 Análisis próximo y análisis elemental ............................................................ 30 | spa |
dc.description.tableofcontents | 3.1.2 Poder calorífico............................................................................................... 30 | spa |
dc.description.tableofcontents | 3.1.3 Características físicas de la biomasa .............................................................. 30 | spa |
dc.description.tableofcontents | 3.2 Modelo computacional........................................................................................... 31 | spa |
dc.description.tableofcontents | 3.2.1 Selección del gasificador ................................................................................ 31 | spa |
dc.description.tableofcontents | 3.2.2 Consideraciones .............................................................................................. 32 | spa |
dc.description.tableofcontents | 3.2.3 Descripción del modelo de gasificación y caldera ......................................... 33 | spa |
dc.description.tableofcontents | 3.2.4 Desarrollo del modelo de gasificación y caldera en Aspen Plus® ................. 34 | spa |
dc.description.tableofcontents | 3.3 Análisis exergético ................................................................................................. 38 | spa |
dc.description.tableofcontents | 3.3.1 Consideraciones .............................................................................................. 38 | spa |
dc.description.tableofcontents | 3.3.2 Análisis energético ......................................................................................... 38 | spa |
dc.description.tableofcontents | 3.3.3 Cálculo de la exergía ...................................................................................... 39 | spa |
dc.description.tableofcontents | 4 ANÁLISIS Y RESULTADOS ..................................................................................... 43 | spa |
dc.description.tableofcontents | 4.1 Eficiencia gasificador............................................................................................. 45 | spa |
dc.description.tableofcontents | 4.1.1 Eficiencia energética....................................................................................... 45 | spa |
dc.description.tableofcontents | 4.1.2 Eficiencia exergética....................................................................................... 45 | spa |
dc.description.tableofcontents | 4.2 Eficiencia caldera ................................................................................................... 46 | spa |
dc.description.tableofcontents | 4.2.1 Eficiencia energética....................................................................................... 46 | spa |
dc.description.tableofcontents | 4.2.2 Eficiencia exergética....................................................................................... 47 | spa |
dc.description.tableofcontents | 4.3 Eficiencia del sistema ............................................................................................ 47 | spa |
dc.description.tableofcontents | 4.3.1 Eficiencia energética del sistema .................................................................... 48 | spa |
dc.description.tableofcontents | 4.3.2 Eficiencia exergética del sistema .................................................................... 48 | spa |
dc.description.tableofcontents | 4.4 Análisis de sensibilidad.......................................................................................... 51 | spa |
dc.description.tableofcontents | 4.5 Validación .............................................................................................................. 55 | spa |
dc.description.tableofcontents | CONCLUSIONES ................................................................................................................ 58 | spa |
dc.description.tableofcontents | REFERENCIAS ................................................................................................................... 59 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4582 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | Aspen Plus® | eng |
dc.subject.keywords | Exergetic analysis | eng |
dc.subject.keywords | Boilers | eng |
dc.subject.keywords | Gasification | eng |
dc.subject.keywords | Syngas | eng |
dc.subject.proposal | Aspen Plus® | spa |
dc.subject.proposal | Análisis exergético | spa |
dc.subject.proposal | Calderas | spa |
dc.subject.proposal | Gasificación | spa |
dc.subject.proposal | Syngas | spa |
dc.title | Análisis exergético de la generación de vapor mediante la combustión de gas de gasificación en lecho fijo de los residuos de la agroindustria del maíz | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Amaro, J., Rosado, D. J. M., Mendiburu, A. Z., dos Santos, L. R., & de Carvalho., J. A. (2021). Modeling of syngas composition obtained from fixed bed gasifiers using Kuhn–Tucker multipliers. Fuel. https://doi.org/10.1016/j.fuel.2020.119068 | spa |
dcterms.references | Aponte Cárdenas, J. A. (2012). Caracterización de las propiedades energéticas de Gynerium sagittatum para ser usado como biomasa. https://repositorio.uniandes.edu.co/bitstream/handle/1992/14993/u615572.pdf?sequence=1&isAllowed=y%0Ahttp://biblioteca.uniandes.edu.co/acepto120121101.php?id=1253 | spa |
dcterms.references | Arango, J., & González, L. (2016). EVALUACIÓN DEL POTENCIAL ENERGÉTICO DE LA GASIFICACIÓN EN LECHO FIJO PARA CUATRO BIOMASAS RESIDUALES EN EL DEPARTAMENTO DE CÓRDOBA. | spa |
dcterms.references | Aspen Technology Inc. (2013). Getting Started Modeling Processes with Solids. Aspen Technology, Inc., 83. | spa |
dcterms.references | Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013). Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies, 6(12), 6508–6524. https://doi.org/10.3390/en6126508 | spa |
dcterms.references | Behbahaninia, A., Ramezani, S., & Lotfi Hejrandoost, M. (2017). A loss method for exergy auditing of steam boilers. Energy. https://doi.org/10.1016/j.energy.2017.08.090 | spa |
dcterms.references | Bhattacharya, A., Das, A., & Datta, A. (2014). Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification. Energy, 69, 525–533. https://doi.org/10.1016/j.energy.2014.03.047 | spa |
dcterms.references | Biagini, E., Barontini, F., & Tognotti, L. (2015). Gasification of agricultural residues in a demonstrative plant: Corn cobs. Bioresource Technology, 173, 110–116. https://doi.org/10.1016/j.biortech.2014.09.086 | spa |
dcterms.references | Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of 60 agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046 | spa |
dcterms.references | Cai, J., Zeng, R., Zheng, W., Wang, S., Han, J., Li, K., Luo, M., & Tang, X. (2021). Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2020.09.063 | spa |
dcterms.references | CCA. (2014). La quema de residuos agrícolas: fuente de dioxinas. In Comisión para la Cooperación Ambiental. Montreal, Canadá. http://www3.cec.org/islandora/en/item/11405-la-quema-de-residuos-agr-colas-es-una-fuente-de-dioxinas-es.pdf | spa |
dcterms.references | Chen, Z. S., & Wang, L. Q. (2013). Energy and exergy analysis of gas production from biomass intermittent gasification. Journal of Renewable and Sustainable Energy, 5(6), 1–11. https://doi.org/10.1063/1.4857395 | spa |
dcterms.references | Compton, M., & Rezaie, B. (2017). Enviro-exergy sustainability analysis of boiler evolution in district energy system. Energy. https://doi.org/10.1016/j.energy.2016.11.139 | spa |
dcterms.references | De la Vega González, T. de J., & Mestra Morgan, J. F. (2020). Evaluación del desempeño energético de un sistema de refrigeración por absorción híbrido empleando energía solar fotovoltaica y gas de síntesis de un gasificador multizona. https://repositorio.unicordoba.edu.co/handle/ucordoba/2897 | spa |
dcterms.references | Dhanavath, K. N., Shah, K., Bhargava, S. K., Bankupalli, S., & Parthasarathy, R. (2018). Oxygen-steam gasification of karanja press seed cake: Fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.04.046 | spa |
dcterms.references | Dogbe, E. S., Mandegari, M. A., & Görgens, J. F. (2018). Exergetic diagnosis and 61 performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process. Energy. https://doi.org/10.1016/j.energy.2017.12.134 | spa |
dcterms.references | Fan, C., Cui, Z., Wang, J., Liu, Z., & Tian, W. (2021). Exergy analysis and dynamic control of chemical looping combustion for power generation system. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.113728 | spa |
dcterms.references | Faraji, M., & Saidi, M. (2021). Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass: Process simulation and evaluation using Aspen Plus software. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.03.047 | spa |
dcterms.references | Fenalce. (2020). ESTADÍSTICAS FENALCE. Indice Cerealista. https://www.fenalce.org/alfa/pg.php?pa=60 | spa |
dcterms.references | Fernandez-Lopez, M., Pedroche, J., Valverde, J. L., & Sanchez-Silva, L. (2017). Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.03.008 | spa |
dcterms.references | Gagliano, A., Nocera, F., Bruno, M., & Cardillo, G. (2017). Development of an Equilibrium-based Model of Gasification of Biomass by Aspen Plus. Energy Procedia, 111, 1010–1019. https://doi.org/10.1016/j.egypro.2017.03.264 | spa |
dcterms.references | Guo, F., Dong, Y., Dong, L., & Guo, C. (2014). Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study. International Journal of Hydrogen Energy, 39(11), 5625–5633. https://doi.org/10.1016/j.ijhydene.2014.01.130 | spa |
dcterms.references | Han, J., Liang, Y., Hu, J., Qin, L., Street, J., Lu, Y., & Yu, F. (2017). Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.10.030 | spa |
dcterms.references | Hoyos Gómez, G. M., & Ocampo, J. E. (2018). Producción y consumo del maíz en Colombia , cadena y propuesta de estrategias para un mejor desempeño de la misma. 62 BIOGÉNESIS, 95–112. | spa |
dcterms.references | Hu, Z., Peng, Y., Sun, F., Chen, S., & Zhou, Y. (2021). Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel. https://doi.org/10.1016/j.fuel.2021.120462 | spa |
dcterms.references | Jaén, L., Recio, R., Ruiz, O., Termodinámico, A., Gasificador, D. E. U. N., & Modelo, A. (2008). Análisis Termodinámico De Un Gasificador “Ankur” Modelo Wbg-10 Trabajando Con Diferentes Biomasas. Tecnología Química, XXVIII(3), 71–76. | spa |
dcterms.references | Keche, A. J., Gaddale, A. P. R., & Tated, R. G. (2015). Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technologies and Environmental Policy, 17(2), 465–473. https://doi.org/10.1007/s10098-014-0804-x | spa |
dcterms.references | Kumar, R. (2017). A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. In Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2016.08.018 | spa |
dcterms.references | Li, G., Liu, Z., Liu, F., Yang, B., Ma, S., Weng, Y., Zhang, Y., & Fang, Y. (2019). Advanced exergy analysis of ash agglomerating fluidized bed gasification. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.111952 | spa |
dcterms.references | Li, X., Gao, J., Zhang, Y., Zhang, Y., Du, Q., Wu, S., & Qin, Y. (2020). Energy, exergy and economic analyses of a combined heating and power system with turbine-driving fans and pumps in Northeast China. Energies, 13(4). https://doi.org/10.3390/en13040878 | spa |
dcterms.references | Liu, Z., Zhong, W., Shao, Y., & Liu, X. (2020). Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process. Energy. https://doi.org/10.1016/j.energy.2020.118327 | spa |
dcterms.references | López García, D. E., & Sofán Germán, S. J. (2019). CARACTERIZACIÓN ENERGÉTICA DE LOS RESIDUOS DE LA AGROINDUSTRIA DEL MAÍZ EN UN PROTOTIPO DE GASIFICACIÓN MULTIZONA. | spa |
dcterms.references | Mahapatro, A., Kumar, A., & Mahanta, P. (2020). Parametric study and exergy analysis of the gasification of sugarcane bagasse in a pressurized circulating fluidized bed gasifier. Journal of Thermal Analysis and Calorimetry, 141(6), 2635–2645. https://doi.org/10.1007/s10973-020-10108-z | spa |
dcterms.references | Maluenda Garcia, M. J. (2019). MAIZ 2019/20. PRODUCCION RECORD Y DESCENSO DE STOCKS EN CAMPAÑAS CONSECUTIVAS. 1–7. | spa |
dcterms.references | McCormick. (2020). Todos los datos actualizados sobre la producción de maíz en el mundo. 14 de Mayo. https://www.mccormick.it/mx/todos-los-datos-actualizados-sobre-la-produccion-de-maiz-en-el-mundo/ | spa |
dcterms.references | Minagricultura. (2019). Maiz, Dirección de Cadenas Agrícolas y Forestales. Sioc, 24. https://sioc.minagricultura.gov.co/AlimentosBalanceados/Documentos/2019-03-30 Cifras Sectoriales Fríjol.pdf#search=frijol | spa |
dcterms.references | Mitrović, D. M., Stojanović, B. V., Janevski, J. N., Ignjatović, M. G., & Vučković, G. D. (2018). Exergy and exergoeconomic analysis of a steam boiler. Thermal Science, 22, S1601–S1612. https://doi.org/10.2298/TSCI18S5601M | spa |
dcterms.references | Mojaver, P., Jafarmadar, S., Khalilarya, S., & Chitsaz, A. (2019). Study of synthesis gas composition, exergy assessment, and multi-criteria decision-making analysis of fluidized bed gasifier. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.08.240 | spa |
dcterms.references | Nadir, M., & Ghenaiet, A. (2015). Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures. Energy. https://doi.org/10.1016/j.energy.2015.04.023 | spa |
dcterms.references | Ohijeagbon, I. O., Waheed, M. A., & Jekayinfa, S. O. (2013). Methodology for the physical and chemical exergetic analysis of steam boilers. Energy, 53, 153–164. https://doi.org/10.1016/j.energy.2013.02.039 | spa |
dcterms.references | Pala, L. P. R., Wang, Q., Kolb, G., & Hessel, V. (2017). Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen 64 Plus model. Renewable Energy. https://doi.org/10.1016/j.renene.2016.08.069 | spa |
dcterms.references | Quintero Lopez, L. A. (2017). EVALUACIÓN DE POTENCIAL ENERGÉTICO DE LA BIOMASA RESIDUAL DE PALMA AFRICANA EN EL DEPARTAMENTO DEL CESAR. Congreso Internacional De Energías Renovables CIERG - III Versión, 364–376. | spa |
dcterms.references | Ramos, V. F., Pinheiro, O. S., Ferreira da Costa, E., & Souza da Costa, A. O. (2019). A method for exergetic analysis of a real kraft biomass boiler. Energy, 183, 946–957. https://doi.org/10.1016/j.energy.2019.07.001 | spa |
dcterms.references | Rhenals Julio, J. D., & Torres Montes, M. L. (2016). Análisis exergoeconómico de la gasificación de tusa de maíz empleando vapor de agua como agente gasificante, integrado a un sistema de generación de potencia. https://repositorio.unicordoba.edu.co/handle/ucordoba/669 | spa |
dcterms.references | Rupesh, S., Muraleedharan, C., & Arun, P. (2020). Energy and exergy analysis of syngas production from different biomasses through air-steam gasification. Frontiers in Energy, 14(3), 607–619. https://doi.org/10.1007/s11708-016-0439-1 | spa |
dcterms.references | Sánchez Ortega, I. (2014). Maíz I (Zea mays). Reduca (Biología). Serie Botánica, 7(2), 151–171. http://revistareduca.es/index.php/biologia/article/viewFile/1739/1776%0A%0A | spa |
dcterms.references | Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.03.112 | spa |
dcterms.references | Terhan, M., & Comakli, K. (2017). Energy and exergy analyses of natural gas-fired boilers in a district heating system. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.04.091 | spa |
dcterms.references | TLV. (2021). Aplicaciones Principales para el Vapor de Agua. Teoría Del Vapor. https://www.tlv.com/global/LA/steam-theory/principal-applications-for-steam.html | spa |
dcterms.references | Ucar, M., & Arslan, O. (2021). Assessment of improvement potential of a condensed combi boiler via advanced exergy analysis. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2021.100853 | spa |
dcterms.references | Vilardi, G., Bassano, C., Deiana, P., & Verdone, N. (2020). Exergy and energy analysis of three biogas upgrading processes. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.113323 | spa |
dcterms.references | Wang, H., Zhang, C., & Liu, X. (2020). Heat transfer calculation methods in three-dimensional CFD model for pulverized coal-fired boilers. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.114633 | spa |
dcterms.references | Zhang, Q., Yi, H., Yu, Z., Gao, J., Wang, X., Lin, H., & Shen, B. (2018). Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.08.069 | spa |
dcterms.references | Zhang, X., Li, K., Zhang, C., & Wang, A. (2020). Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads. Waste Management. https://doi.org/10.1016/j.wasman.2020.01.039 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- ArgumedoBeronaGermanElias-MoraAgamezManuelEnrique.pdf
- Tamaño:
- 825.86 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Formato de Autorizacion.pdf
- Tamaño:
- 631.09 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexos - Trabajo Monografía - Argumedo&Mora.rar
- Tamaño:
- 1.63 MB
- Formato:
- Unknown data format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: