Publicación:
Análisis exergético de la generación de vapor mediante la combustión de gas de gasificación en lecho fijo de los residuos de la agroindustria del maíz

dc.contributor.advisorSofán Germán, Stiven Javierspa
dc.contributor.authorArgumedo Berona, Germán Elías
dc.contributor.authorMora Agámez, Manuel Enrique
dc.date.accessioned2021-09-28T23:55:17Z
dc.date.available2021-09-28T23:55:17Z
dc.date.issued2021-09-24
dc.description.abstractThe objective of this applicative monograph is to carry out an exergy analysis of steam generation through the gasification of industrial corn residues as working biomass; To achieve this objective, a characterization of the biomass was first carried out to determine the last and next analyzes, in order to obtain the chemical composition of the corn cob. Then a computational model was made in Aspen Plus® where the data of a syngas with a lower heating value (LHV) of 6.18 MJ/Nm3 were produced, which was later injected into a boiler for the generation of steam in the system. After this, an exergy analysis was carried out on the data obtained in the simulation, which showed that 14.37 kW are used in steam generation, and it was also determined that the exergetic efficiency of the system is 35%, largely part due to irreversibility’s and exergy destroyed.eng
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Mecánico(a)spa
dc.description.modalityMonografíasspa
dc.description.resumenEl objetivo de esta monografía aplicativa es hacer un análisis exergético a la generación de vapor mediante la gasificación de residuos industriales del maíz como biomasa de trabajo; para alcanzar dicho objetivo primeramente se realizó una caracterización de la biomasa para determinar los análisis últimos y próximos, con la finalidad de obtener la composición química de la tusa del maíz. Luego se realizó un modelo computacional en Aspen Plus® donde se arrojaron los datos de un syngas con un poder calorífico inferior (LHV) de 6.18 MJ/Nm3 , el cual posteriormente se inyectó a una caldera para la generación de vapor del sistema. Luego de esto se realizó un análisis exergético con los datos arrojados en la simulación que, que arrojó como resultado que 14.37 kW son los utilizados en la generación de vapor, así mismo se determinó que la eficiencia exergética del sistema es de 35%, en gran parte debido a irreversibilidades y exergía destruida.spa
dc.description.tableofcontentsINTRODUCCIÓN ................................................................................................................ 14spa
dc.description.tableofcontentsOBJETIVOS ......................................................................................................................... 16spa
dc.description.tableofcontents1.1 OBJETIVO GENERAL ......................................................................................... 16spa
dc.description.tableofcontents1.2 OBJETIVOS ESPECIFICOS................................................................................. 16spa
dc.description.tableofcontents2 REVISIÓN DE LITERATURA ................................................................................... 17spa
dc.description.tableofcontents2.1 MARCO TEORICO............................................................................................... 17spa
dc.description.tableofcontents2.1.1 El Maíz ........................................................................................................... 17spa
dc.description.tableofcontents2.1.2 Aspectos generales de la biomasa .................................................................. 17spa
dc.description.tableofcontents2.1.3 Biomasa .......................................................................................................... 18spa
dc.description.tableofcontents2.1.4 Métodos de análisis de composición .............................................................. 19spa
dc.description.tableofcontents2.1.5 Gasificación .................................................................................................... 21spa
dc.description.tableofcontents2.1.6 Gasificador de lecho fijo................................................................................. 23spa
dc.description.tableofcontents2.1.7 Gas de síntesis ................................................................................................ 24spa
dc.description.tableofcontents2.1.8 Caldera ............................................................................................................ 24spa
dc.description.tableofcontents2.1.9 Exergía ............................................................................................................ 25spa
dc.description.tableofcontents2.2 Antecedentes generales relacionados a nuestra investigación ............................... 26spa
dc.description.tableofcontents3 MATERIALES Y METODOS ..................................................................................... 30spa
dc.description.tableofcontents3.1 Propiedades termoquímicas de los residuos agroindustriales del Maíz. ................ 30spa
dc.description.tableofcontents3.1.1 Análisis próximo y análisis elemental ............................................................ 30spa
dc.description.tableofcontents3.1.2 Poder calorífico............................................................................................... 30spa
dc.description.tableofcontents3.1.3 Características físicas de la biomasa .............................................................. 30spa
dc.description.tableofcontents3.2 Modelo computacional........................................................................................... 31spa
dc.description.tableofcontents3.2.1 Selección del gasificador ................................................................................ 31spa
dc.description.tableofcontents3.2.2 Consideraciones .............................................................................................. 32spa
dc.description.tableofcontents3.2.3 Descripción del modelo de gasificación y caldera ......................................... 33spa
dc.description.tableofcontents3.2.4 Desarrollo del modelo de gasificación y caldera en Aspen Plus® ................. 34spa
dc.description.tableofcontents3.3 Análisis exergético ................................................................................................. 38spa
dc.description.tableofcontents3.3.1 Consideraciones .............................................................................................. 38spa
dc.description.tableofcontents3.3.2 Análisis energético ......................................................................................... 38spa
dc.description.tableofcontents3.3.3 Cálculo de la exergía ...................................................................................... 39spa
dc.description.tableofcontents4 ANÁLISIS Y RESULTADOS ..................................................................................... 43spa
dc.description.tableofcontents4.1 Eficiencia gasificador............................................................................................. 45spa
dc.description.tableofcontents4.1.1 Eficiencia energética....................................................................................... 45spa
dc.description.tableofcontents4.1.2 Eficiencia exergética....................................................................................... 45spa
dc.description.tableofcontents4.2 Eficiencia caldera ................................................................................................... 46spa
dc.description.tableofcontents4.2.1 Eficiencia energética....................................................................................... 46spa
dc.description.tableofcontents4.2.2 Eficiencia exergética....................................................................................... 47spa
dc.description.tableofcontents4.3 Eficiencia del sistema ............................................................................................ 47spa
dc.description.tableofcontents4.3.1 Eficiencia energética del sistema .................................................................... 48spa
dc.description.tableofcontents4.3.2 Eficiencia exergética del sistema .................................................................... 48spa
dc.description.tableofcontents4.4 Análisis de sensibilidad.......................................................................................... 51spa
dc.description.tableofcontents4.5 Validación .............................................................................................................. 55spa
dc.description.tableofcontentsCONCLUSIONES ................................................................................................................ 58spa
dc.description.tableofcontentsREFERENCIAS ................................................................................................................... 59spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4582
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsAspen Plus®eng
dc.subject.keywordsExergetic analysiseng
dc.subject.keywordsBoilerseng
dc.subject.keywordsGasificationeng
dc.subject.keywordsSyngaseng
dc.subject.proposalAspen Plus®spa
dc.subject.proposalAnálisis exergéticospa
dc.subject.proposalCalderasspa
dc.subject.proposalGasificaciónspa
dc.subject.proposalSyngasspa
dc.titleAnálisis exergético de la generación de vapor mediante la combustión de gas de gasificación en lecho fijo de los residuos de la agroindustria del maízspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAmaro, J., Rosado, D. J. M., Mendiburu, A. Z., dos Santos, L. R., & de Carvalho., J. A. (2021). Modeling of syngas composition obtained from fixed bed gasifiers using Kuhn–Tucker multipliers. Fuel. https://doi.org/10.1016/j.fuel.2020.119068spa
dcterms.referencesAponte Cárdenas, J. A. (2012). Caracterización de las propiedades energéticas de Gynerium sagittatum para ser usado como biomasa. https://repositorio.uniandes.edu.co/bitstream/handle/1992/14993/u615572.pdf?sequence=1&isAllowed=y%0Ahttp://biblioteca.uniandes.edu.co/acepto120121101.php?id=1253spa
dcterms.referencesArango, J., & González, L. (2016). EVALUACIÓN DEL POTENCIAL ENERGÉTICO DE LA GASIFICACIÓN EN LECHO FIJO PARA CUATRO BIOMASAS RESIDUALES EN EL DEPARTAMENTO DE CÓRDOBA.spa
dcterms.referencesAspen Technology Inc. (2013). Getting Started Modeling Processes with Solids. Aspen Technology, Inc., 83.spa
dcterms.referencesBegum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013). Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies, 6(12), 6508–6524. https://doi.org/10.3390/en6126508spa
dcterms.referencesBehbahaninia, A., Ramezani, S., & Lotfi Hejrandoost, M. (2017). A loss method for exergy auditing of steam boilers. Energy. https://doi.org/10.1016/j.energy.2017.08.090spa
dcterms.referencesBhattacharya, A., Das, A., & Datta, A. (2014). Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification. Energy, 69, 525–533. https://doi.org/10.1016/j.energy.2014.03.047spa
dcterms.referencesBiagini, E., Barontini, F., & Tognotti, L. (2015). Gasification of agricultural residues in a demonstrative plant: Corn cobs. Bioresource Technology, 173, 110–116. https://doi.org/10.1016/j.biortech.2014.09.086spa
dcterms.referencesBiswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of 60 agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046spa
dcterms.referencesCai, J., Zeng, R., Zheng, W., Wang, S., Han, J., Li, K., Luo, M., & Tang, X. (2021). Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2020.09.063spa
dcterms.referencesCCA. (2014). La quema de residuos agrícolas: fuente de dioxinas. In Comisión para la Cooperación Ambiental. Montreal, Canadá. http://www3.cec.org/islandora/en/item/11405-la-quema-de-residuos-agr-colas-es-una-fuente-de-dioxinas-es.pdfspa
dcterms.referencesChen, Z. S., & Wang, L. Q. (2013). Energy and exergy analysis of gas production from biomass intermittent gasification. Journal of Renewable and Sustainable Energy, 5(6), 1–11. https://doi.org/10.1063/1.4857395spa
dcterms.referencesCompton, M., & Rezaie, B. (2017). Enviro-exergy sustainability analysis of boiler evolution in district energy system. Energy. https://doi.org/10.1016/j.energy.2016.11.139spa
dcterms.referencesDe la Vega González, T. de J., & Mestra Morgan, J. F. (2020). Evaluación del desempeño energético de un sistema de refrigeración por absorción híbrido empleando energía solar fotovoltaica y gas de síntesis de un gasificador multizona. https://repositorio.unicordoba.edu.co/handle/ucordoba/2897spa
dcterms.referencesDhanavath, K. N., Shah, K., Bhargava, S. K., Bankupalli, S., & Parthasarathy, R. (2018). Oxygen-steam gasification of karanja press seed cake: Fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.04.046spa
dcterms.referencesDogbe, E. S., Mandegari, M. A., & Görgens, J. F. (2018). Exergetic diagnosis and 61 performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process. Energy. https://doi.org/10.1016/j.energy.2017.12.134spa
dcterms.referencesFan, C., Cui, Z., Wang, J., Liu, Z., & Tian, W. (2021). Exergy analysis and dynamic control of chemical looping combustion for power generation system. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.113728spa
dcterms.referencesFaraji, M., & Saidi, M. (2021). Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass: Process simulation and evaluation using Aspen Plus software. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.03.047spa
dcterms.referencesFenalce. (2020). ESTADÍSTICAS FENALCE. Indice Cerealista. https://www.fenalce.org/alfa/pg.php?pa=60spa
dcterms.referencesFernandez-Lopez, M., Pedroche, J., Valverde, J. L., & Sanchez-Silva, L. (2017). Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.03.008spa
dcterms.referencesGagliano, A., Nocera, F., Bruno, M., & Cardillo, G. (2017). Development of an Equilibrium-based Model of Gasification of Biomass by Aspen Plus. Energy Procedia, 111, 1010–1019. https://doi.org/10.1016/j.egypro.2017.03.264spa
dcterms.referencesGuo, F., Dong, Y., Dong, L., & Guo, C. (2014). Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study. International Journal of Hydrogen Energy, 39(11), 5625–5633. https://doi.org/10.1016/j.ijhydene.2014.01.130spa
dcterms.referencesHan, J., Liang, Y., Hu, J., Qin, L., Street, J., Lu, Y., & Yu, F. (2017). Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.10.030spa
dcterms.referencesHoyos Gómez, G. M., & Ocampo, J. E. (2018). Producción y consumo del maíz en Colombia , cadena y propuesta de estrategias para un mejor desempeño de la misma. 62 BIOGÉNESIS, 95–112.spa
dcterms.referencesHu, Z., Peng, Y., Sun, F., Chen, S., & Zhou, Y. (2021). Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel. https://doi.org/10.1016/j.fuel.2021.120462spa
dcterms.referencesJaén, L., Recio, R., Ruiz, O., Termodinámico, A., Gasificador, D. E. U. N., & Modelo, A. (2008). Análisis Termodinámico De Un Gasificador “Ankur” Modelo Wbg-10 Trabajando Con Diferentes Biomasas. Tecnología Química, XXVIII(3), 71–76.spa
dcterms.referencesKeche, A. J., Gaddale, A. P. R., & Tated, R. G. (2015). Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technologies and Environmental Policy, 17(2), 465–473. https://doi.org/10.1007/s10098-014-0804-xspa
dcterms.referencesKumar, R. (2017). A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. In Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2016.08.018spa
dcterms.referencesLi, G., Liu, Z., Liu, F., Yang, B., Ma, S., Weng, Y., Zhang, Y., & Fang, Y. (2019). Advanced exergy analysis of ash agglomerating fluidized bed gasification. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.111952spa
dcterms.referencesLi, X., Gao, J., Zhang, Y., Zhang, Y., Du, Q., Wu, S., & Qin, Y. (2020). Energy, exergy and economic analyses of a combined heating and power system with turbine-driving fans and pumps in Northeast China. Energies, 13(4). https://doi.org/10.3390/en13040878spa
dcterms.referencesLiu, Z., Zhong, W., Shao, Y., & Liu, X. (2020). Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process. Energy. https://doi.org/10.1016/j.energy.2020.118327spa
dcterms.referencesLópez García, D. E., & Sofán Germán, S. J. (2019). CARACTERIZACIÓN ENERGÉTICA DE LOS RESIDUOS DE LA AGROINDUSTRIA DEL MAÍZ EN UN PROTOTIPO DE GASIFICACIÓN MULTIZONA.spa
dcterms.referencesMahapatro, A., Kumar, A., & Mahanta, P. (2020). Parametric study and exergy analysis of the gasification of sugarcane bagasse in a pressurized circulating fluidized bed gasifier. Journal of Thermal Analysis and Calorimetry, 141(6), 2635–2645. https://doi.org/10.1007/s10973-020-10108-zspa
dcterms.referencesMaluenda Garcia, M. J. (2019). MAIZ 2019/20. PRODUCCION RECORD Y DESCENSO DE STOCKS EN CAMPAÑAS CONSECUTIVAS. 1–7.spa
dcterms.referencesMcCormick. (2020). Todos los datos actualizados sobre la producción de maíz en el mundo. 14 de Mayo. https://www.mccormick.it/mx/todos-los-datos-actualizados-sobre-la-produccion-de-maiz-en-el-mundo/spa
dcterms.referencesMinagricultura. (2019). Maiz, Dirección de Cadenas Agrícolas y Forestales. Sioc, 24. https://sioc.minagricultura.gov.co/AlimentosBalanceados/Documentos/2019-03-30 Cifras Sectoriales Fríjol.pdf#search=frijolspa
dcterms.referencesMitrović, D. M., Stojanović, B. V., Janevski, J. N., Ignjatović, M. G., & Vučković, G. D. (2018). Exergy and exergoeconomic analysis of a steam boiler. Thermal Science, 22, S1601–S1612. https://doi.org/10.2298/TSCI18S5601Mspa
dcterms.referencesMojaver, P., Jafarmadar, S., Khalilarya, S., & Chitsaz, A. (2019). Study of synthesis gas composition, exergy assessment, and multi-criteria decision-making analysis of fluidized bed gasifier. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.08.240spa
dcterms.referencesNadir, M., & Ghenaiet, A. (2015). Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures. Energy. https://doi.org/10.1016/j.energy.2015.04.023spa
dcterms.referencesOhijeagbon, I. O., Waheed, M. A., & Jekayinfa, S. O. (2013). Methodology for the physical and chemical exergetic analysis of steam boilers. Energy, 53, 153–164. https://doi.org/10.1016/j.energy.2013.02.039spa
dcterms.referencesPala, L. P. R., Wang, Q., Kolb, G., & Hessel, V. (2017). Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen 64 Plus model. Renewable Energy. https://doi.org/10.1016/j.renene.2016.08.069spa
dcterms.referencesQuintero Lopez, L. A. (2017). EVALUACIÓN DE POTENCIAL ENERGÉTICO DE LA BIOMASA RESIDUAL DE PALMA AFRICANA EN EL DEPARTAMENTO DEL CESAR. Congreso Internacional De Energías Renovables CIERG - III Versión, 364–376.spa
dcterms.referencesRamos, V. F., Pinheiro, O. S., Ferreira da Costa, E., & Souza da Costa, A. O. (2019). A method for exergetic analysis of a real kraft biomass boiler. Energy, 183, 946–957. https://doi.org/10.1016/j.energy.2019.07.001spa
dcterms.referencesRhenals Julio, J. D., & Torres Montes, M. L. (2016). Análisis exergoeconómico de la gasificación de tusa de maíz empleando vapor de agua como agente gasificante, integrado a un sistema de generación de potencia. https://repositorio.unicordoba.edu.co/handle/ucordoba/669spa
dcterms.referencesRupesh, S., Muraleedharan, C., & Arun, P. (2020). Energy and exergy analysis of syngas production from different biomasses through air-steam gasification. Frontiers in Energy, 14(3), 607–619. https://doi.org/10.1007/s11708-016-0439-1spa
dcterms.referencesSánchez Ortega, I. (2014). Maíz I (Zea mays). Reduca (Biología). Serie Botánica, 7(2), 151–171. http://revistareduca.es/index.php/biologia/article/viewFile/1739/1776%0A%0Aspa
dcterms.referencesSusastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.03.112spa
dcterms.referencesTerhan, M., & Comakli, K. (2017). Energy and exergy analyses of natural gas-fired boilers in a district heating system. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.04.091spa
dcterms.referencesTLV. (2021). Aplicaciones Principales para el Vapor de Agua. Teoría Del Vapor. https://www.tlv.com/global/LA/steam-theory/principal-applications-for-steam.htmlspa
dcterms.referencesUcar, M., & Arslan, O. (2021). Assessment of improvement potential of a condensed combi boiler via advanced exergy analysis. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2021.100853spa
dcterms.referencesVilardi, G., Bassano, C., Deiana, P., & Verdone, N. (2020). Exergy and energy analysis of three biogas upgrading processes. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.113323spa
dcterms.referencesWang, H., Zhang, C., & Liu, X. (2020). Heat transfer calculation methods in three-dimensional CFD model for pulverized coal-fired boilers. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.114633spa
dcterms.referencesZhang, Q., Yi, H., Yu, Z., Gao, J., Wang, X., Lin, H., & Shen, B. (2018). Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.08.069spa
dcterms.referencesZhang, X., Li, K., Zhang, C., & Wang, A. (2020). Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads. Waste Management. https://doi.org/10.1016/j.wasman.2020.01.039spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
ArgumedoBeronaGermanElias-MoraAgamezManuelEnrique.pdf
Tamaño:
825.86 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de Autorizacion.pdf
Tamaño:
631.09 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexos - Trabajo Monografía - Argumedo&Mora.rar
Tamaño:
1.63 MB
Formato:
Unknown data format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: