Publicación:
Cultivo de limnospira (Arthrospira) maxima en laboratorio, expuesto a diferentes longitudes de onda y fuentes de nitrógeno, y en escala piloto, a condiciones ambientales

dc.audience
dc.contributor.advisorHerazo Cárdena, Diana Sofía
dc.contributor.advisorVallejo Isaza, Adriana
dc.contributor.authorCordero Ocampo, Jhony David
dc.contributor.authorGonzález Berrio, Marianella
dc.contributor.juryArango Rivas, Carolina
dc.contributor.juryJiménez Velasquez, César Augusto
dc.date.accessioned2023-11-10T14:01:24Z
dc.date.available2023-11-10T14:01:24Z
dc.date.issued2023-11-10
dc.description.abstractTeniendo en cuenta la necesidad de encontrar alimentos integrales, de fácil acceso para las comunidades y que garanticen la seguridad alimentaria, desde la década de 1950 se han explorado las cianobacterias como fuente alternativa de proteína, remontando su uso a la antigüedad, desde los pueblos africanos a los prehispánicos. Su accesible cultivo, fácil mantenimiento, requerimientos simples y producción de compuestos bioactivos y nutricionales como proteínas, lípidos, entre otros, hacen de estos organismos una herramienta importante en la bioprospección biotecnológica para investigaciones médicas, cosméticas, agrícolas e industriales. En esta investigación se evaluaron dos métodos de cultivo de Linmospira maxima; cultivos en laboratorio y en exteriores, determinando el crecimiento y el contenido de proteína en ambos ambientes. El cultivo de laboratorio fue expuesto a tres longitudes de onda diferentes (blanco 400 - 700 nm, azul 400 - 450 nm y rojo 625 - 700 nm) y dos fuentes de nitrógeno (NaNO3 y KNO3), incluido el control. spa
dc.description.degreelevelPregrado
dc.description.degreenameProfesional en Acuicultura
dc.description.modalityTrabajos de Investigación y/o Extensión
dc.description.tableofcontentsRESUMENspa
dc.description.tableofcontentsABSTRACTeng
dc.description.tableofcontents1 INTRODUCCIÓNspa
dc.description.tableofcontents2 OBJETIVOSspa
dc.description.tableofcontents2.1 OBJETIVO GENERALspa
dc.description.tableofcontents2.2 OBJETIVOS ESPECÍFICOSspa
dc.description.tableofcontents3 MARCO TEÓRICOspa
dc.description.tableofcontents3.1 CIANOBACTERIASspa
dc.description.tableofcontents3.2 LIMNOSPIRA MAXIMAspa
dc.description.tableofcontents3.2.1 Clasificación taxonómicaspa
dc.description.tableofcontents3.3 CICLO DE VIDAspa
dc.description.tableofcontents3.4 FASES DE CRECIMIENTOspa
dc.description.tableofcontents3.4.1 Fase de adaptación o fase lagspa
dc.description.tableofcontents3.4.2 Fase de aceleramientospa
dc.description.tableofcontents3.4.3 Fase exponencialspa
dc.description.tableofcontents3.4.4 Fase de desaceleraciónspa
dc.description.tableofcontents3.4.5 Fase estacionariaspa
dc.description.tableofcontents3.4.6 Fase de muertespa
dc.description.tableofcontents3.5 PERFIL NUTRICIONAL DE L. MAXIMA Y SUS APLICACIONESspa
dc.description.tableofcontents3.5.1 Proteínasspa
dc.description.tableofcontents3.5.2 Vitaminasspa
dc.description.tableofcontents3.5.3 Mineralesspa
dc.description.tableofcontents3.5.4 Carbohidratosspa
dc.description.tableofcontents3.5.5 Lípidos y ácidos grasosspa
dc.description.tableofcontents3.5.6 Ficobiliproteínasspa
dc.description.tableofcontents3.6 CONDICIONES DE CULTIVOspa
dc.description.tableofcontents3.6.1 Medios de cultivo utilizados en L. maximaspa
dc.description.tableofcontents3.6.2 Longitud de ondaspa
dc.description.tableofcontents3.6.3 Temperaturaspa
dc.description.tableofcontents3.6.4 pHspa
dc.description.tableofcontents3.6.5 Agitación y aireaciónspa
dc.description.tableofcontents3.6.6 Salinidadspa
dc.description.tableofcontents3.6.7 Fuente de Nitrógenospa
dc.description.tableofcontents3.7 SISTEMAS DE CULTIVOspa
dc.description.tableofcontents3.7.1 Sistemas abiertosspa
dc.description.tableofcontents3.7.2 Sistemas cerradosspa
dc.description.tableofcontents4 MATERIALES Y MÉTODOSspa
dc.description.tableofcontents4.1 LOCALIZACIÓNspa
dc.description.tableofcontents4.2 MANTENIMIENTO DE LA CEPAspa
dc.description.tableofcontents4.3 METODOLOGÍAspa
dc.description.tableofcontents4.3.1 Montaje del experimento en laboratoriospa
dc.description.tableofcontents4.3.2 Montaje del experimento a escala piloto en Racewaysspa
dc.description.tableofcontents4.4 VARIABLES ANALIZADASspa
dc.description.tableofcontents4.4.1 Densidad óptica y peso secospa
dc.description.tableofcontents4.4.2 Proteínasspa
dc.description.tableofcontents4.4.3 Conteo celularspa
dc.description.tableofcontents4.5 EVALUACIÓN DEL EFECTO DE LA LONGITUD DE ONDA SOBRE LA PRODUCCIÓN DE L. MAXIMA EN LABORATORIOspa
dc.description.tableofcontents4.6 EVALUACIÓN DEL EFECTO DE LA FUENTE DE NITRÓGENO SOBRE LA PRODUCCIÓN DE L. MAXIMA EN LABORATORIOspa
dc.description.tableofcontents4.7 DETERMINACIÓN DE LA PRODUCCIÓN DE L. MAXIMA A ESCALA PILOTOspa
dc.description.tableofcontents4.8 ANÁLISIS ESTADÍSTICOspa
dc.description.tableofcontents5. RESULTADOS Y DISCUSIÓNspa
dc.description.tableofcontents5.1 EVALUACIÓN DE LA PRODUCCIÓN DE L. MAXIMA EN DIFERENTES LONGITUDES DE ONDAspa
dc.description.tableofcontents5.1.1 Densidad ópticaspa
dc.description.tableofcontents5.1.2 Biomasa seca - productividadspa
dc.description.tableofcontents5.1.3 Proteínas totalesspa
dc.description.tableofcontents5.2 EVALUACIÓN DE LA PRODUCCIÓN DE L. MAXIMA EN DIFERENTES FUENTES DE NITRÓGENOspa
dc.description.tableofcontents5.2.1 Densidad ópticaspa
dc.description.tableofcontents5.2.2 Biomasa seca- productividadspa
dc.description.tableofcontents5.2.3 Proteínas totalesspa
dc.description.tableofcontents5.3 EVALUACIÓN DE LA PRODUCCIÓN DE L. MAXIMA A ESCALA PILOTOspa
dc.description.tableofcontents5.3.1 Determinación de curvas y parámetros de crecimientospa
dc.description.tableofcontents5.4 PRODUCCIÓN DE BIOMASA SECA VS PROTEÍNAS TOTALESspa
dc.description.tableofcontents6 CONCLUSIONESspa
dc.description.tableofcontents7 RECOMENDACIONESspa
dc.description.tableofcontents8 BIBLIOGRAFÍAspa
dc.description.tableofcontentsANEXOSspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad de Córdoba
dc.identifier.reponameRepositorio universidad de Córdoba
dc.identifier.repourlhttps://repositorio.unicordoba.edu.co
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/7876
dc.language.isospa
dc.publisherUniversidad de Córdoba
dc.publisher.facultyFacultad de Medicina Veterinaria y Zootecnia
dc.publisher.placeMontería, Córdoba, Colombia
dc.publisher.programAcuicultura
dc.relation.referencesAlFadhly, N. K. Z., Alhelfi, N., Altemimi, A. B., Verma, D. K., & Cacciola, F. Tendencies Affecting the Growth and Cultivation of Genus Spirulina: An Investigative Review on Current Trends. Plants. 2022; 11 (22): 3063.
dc.relation.referencesArredondo Vega, Bertha Olivia y Domenico Voltolina. Métodos Y Herramientas Analíticas En La Evaluación De La Biomasa Microalgal. 1. ed. México: Centro de Investigaciones Biológicas del Noroeste, (CIBNOR). 2007.
dc.relation.referencesArredondo Vega, Bertha Olivia, Domenico Voltolina, Savín Zenteno, Mario Arce Montoya, y Gracia A. Gómez Anduro. Métodos Y Herramientas Analíticas En La Evaluación De La Biomasa Microalgal. 2. ed. México: Centro de Investigaciones Biológicas del Noroeste, (CIBNOR). 2017.
dc.relation.referencesBanco Nacional de Alimentos. Córdoba entre los cinco departamentos con más niños muertos de hambre. Diario La razón.co. 2022.
dc.relation.referencesBahman, M., Aghanoori, M., Jalili, H., Bozorg, A., Danaee, S., Bidhendi, M. E., & Amrane, A. Effect of light intensity and wavelength on nitrogen and phosphate removal from municipal wastewater by microalgae under semi-batch cultivation. Environmental Technology. 2022; 43 (9): 1352-1358.
dc.relation.referencesBarsanti, L., & Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology. 2014; Second Edition (2nd ed.). CRC Press.
dc.relation.referencesBecker EW. Microalgae for Human and Animal Nutrition [Internet]. Handbook of Microalgal Culture. Wiley. 2013; 461–503.
dc.relation.referencesBeltrán-Rocha JC, Guajardo-Barbosa C, Barceló-Quintal ID, López-Chuken UJ. Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2. Rev Biol Mar Oceanogr. 2017; 52(3):417–27.
dc.relation.referencesBennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973; 58(2):419–35.
dc.relation.referencesBraune, S., Krüger-Genge, A., Kammerer, S., Jung, F., & Küpper, J.-H. Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life.2021; 11(2), 1-14.
dc.relation.referencesCiferri, O. Spirulina, the edible microorganism. Microbiological Reviews.1983; 47(4), 551-578.
dc.relation.referencesCiferri O, Tiboni O. The biochemistry and industrial potential of Spirulina. Annu Rev Microbiol. 1985; 39(1):503–26.
dc.relation.referencesChen H-B, Wu J-Y, Wang C-F, Fu C-C, Shieh C-J, Chen C-I, et al. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J. 2010;53(1):52–6.
dc.relation.referencesChisti Y. Microalgae biotechnology: A brief introduction. En: Handbook of Microalgae-Based Processes and Products. Elsevier; 2020. p. 3–23.
dc.relation.referencesChoi, A., Kim, S. G., Yoon, B. D., Oh, H. M. Growth and amino acid contents of Spirulina platensis with different nitrogen sources. Biotechnology and Bioprocess Engineering. 2003; 8(6).
dc.relation.referencesColla L, Reinerhr C, Reichert C, Vieira J. Production of biomasa and netraceutical compounds by Spirulina platensis under different temperatura and nitrogen regimes. Bioresource technology. 2007; 1489-1493 p.
dc.relation.referencesda Fontoura D, Radmann EM, Duarte JH, De Morais MG, Vieira-Costa JA. Spirulina cultivated under different light emiting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology. 2018; 256:38–43.
dc.relation.referencesda Fontoura, D., Hartwig, J.D., Guidetti-Vendruscolo, R., Wagner, R., Ballus, C.A., DaSilva-Oliveira, W., Teixeira-Godoy, H., Teixeira-Barcia, M., Greque-de Morais, M., Radmann, E.M., Vieira-Costa J.A. Role of light emitting diode (LED) wavelengths on increase of protein productivity and free amino acid profile of Spirulina sp. cultures. Bioresource Technology. 2020.
dc.relation.referencesEncarnação T, Pais AA, Campos MG, Burrows HD. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci Prog. 2015; 98(Pt 2):145-68.
dc.relation.referencesEscribá Ortiz CB, Huamaní Alvarado G. Productividad de biomasa de Arthrospira platensis “espirulina”, de las cepas Orovilca y Paracas en biorreactores tipo raceways en Ica, enero-junio 2018. Universidad Nacional San Luis Gonzaga; 2021.
dc.relation.referencesFais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., Busutti, M., Broggi, G., Sanna, P., Castillo-Aleman, Y. M., Rivero-Jiménez, R. A., Bencomo-Hernandez, A. A., Ventura-Carmenate, Y., Altea, M., Pantaleo, A., Gabrielli, G., Biglioli, F., Cao, G., & Giannaccare, G. Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs. 2022; 20, 1-27.
dc.relation.referencesFAO, FIDA, OMS, PMA, & UNICEF. Versión resumida de El estado de la seguridad alimentaria y la nutrición en el mundo. (Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles). 2022.
dc.relation.referencesFernández-Robledo, A. Efecto de la composición espectral de la luz en el crecimiento y en la composición proximal de Scenedesmus obliquus. Tesis de Licenciatura. Universidad Autónoma de Baja California. Facultad de Ciencias Marinas. 2013; 48 pp.
dc.relation.referencesFogg GE, Stewart WDP, Fay P, Walsby AE. Marine blue-green algae. En: The Blue-green Algae. Elsevier. 1973; 298–310.
dc.relation.referencesGal, J. L., Cole, N. R., Eggett, D. L., & Johnson, S. M. Growth comparison of Arthrospira platensis in different vessels: Standard cylinder vs. Enhanced surface area at low light. Applied Phycology. 2023; 4(1), 1-14.
dc.relation.referencesGarcía-Álvarez E. Efecto de la composición espectral de la de la luz en la composición bioquímica y estandarización de procedimientos para el análisis de la expresión génica de Arthrospira (Spirulina) maxima. Tesis de Maestría en Ciencias. Vol. 87. Baja California; 2022.
dc.relation.referencesGarcía Calvo S., Bacteria’s simbióticas fijadoras de nitrógeno. 2011; CT 3 173-186.
dc.relation.referencesGarcía Morales, Jonathan, López Elías, José Antonio, Medina Félix, Diana, García Lagunas, Norma, & Fimbres Olivarría, Diana. Efecto del estrés por nitrógeno y salinidad en el contenido de β-caroteno de la microalga Dunaliella tertiolecta. Biotecnia.2020; 22(2), 13-19.
dc.relation.referencesGodínez-Ortega, J.L., Snoeijs, P., Robledo, D., Freile-Peregrín, Y. y Pedersén, M. Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities. Journal of Applied Phycology. 2008; 20(3):253-260.
dc.relation.referencesGodoy, E., Rangel-Yagui, C., Sato, S. & Monteiro, J. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology. 2011; 42, 362-373.
dc.relation.referencesGonzález-Fernández, C., & Ballesteros, M. Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology advances. 2012; 30(6), 1655-1661.
dc.relation.referencesGonzález-Torres, L., Téllez-Valencia, A., Sampedro, J. G., Nájera, H. Las proteínas en la nutrición. Revista salud pública y nutrición. 2007; 8(2). Recuperado el 20 de septiembre de 2022.
dc.relation.referencesGreen BR. What happened to the phycobilisome? Biomolecules. 2019; 9(11):748.
dc.relation.referencesGuedes, C. A., Katkam, N. G., Varela, J., Malcata, X. F. Photobioreactors for cyanobacterial culturing. En: Sharma, N. K., Rai, A. K., Stal, L. J. (Ed.). Cyanobacteria: an economic perspective. John Wiley and Sons.2014.
dc.relation.referencesGuiry MD, Guiry GM. Algae Base. 2023.
dc.relation.referencesGutiérrez-Salmean, Gabriela; Fabila-Castillo, Luis y Chamorro-Cevallos, Germán. Aspectos nutricionales y toxicológicos de Spirulina (Arthrospira). Nutr. Hosp. 2015; 32(1), 34-40.
dc.relation.referencesHachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. Biomolecules from 78 Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences. 2022;12(4), 1-26.
dc.relation.referencesHadiyanto, H., Muslihuddin, M., Khoironi, A., Pratiwi, W. Z., Fadlilah, M. N., Muhammad, F., Afiati, N., & Dianratri, I. The effect of salinity on the interaction between microplastic polyethylene terephthalate (PET) and microalgae Spirulina Sp. Environmental Science and Pollution Research. 2022; 29(5), 7877-7887.
dc.relation.referencesHargraves PE, Víquez R. <i>Spirulina subsalsa</i> Oersted en Costa Rica. Estructura y posible importancia comercial. Rev. Biol. Trop. 1981;29(2):304–308.
dc.relation.referencesHartig P, Grobbelaar JU, Soeder CJ, Groeneweg J. On the mass culture of microalgae: Areal density as an important factor for achieving maximal productivity. Biomass. 1988;15(4):211–21.
dc.relation.referencesHenrikson R. Microalga Spirulina super alimento del futuro: una notable alga azul que puede transformar su salud y nuestro planeta. 1th Ed. Barcelona: Urano. 1994.
dc.relation.referencesHill, R.W., Wyse, G.A. y Anderson, M. Fisiología animal. Médica Panamericana. España. 2006;1038 pp.
dc.relation.referencesHuarachi R, Yapo Ú, Dueñas Á, Gonzáles R, Condori J, Pacheco D, et al. Adaptabildad de Spirulina (Arthrospira) platensis (cyanophyta) en fotobiorreactores tubular cónico bajo condiciones ambientales. Idesia. 2015; 33(1): 103-112 p.
dc.relation.referencesHudson BJF, Karis IG. The lipids of the alga Spirulina. J Sci Food Agric. 1974;25(7):759–63.
dc.relation.referencesHynstova V, Sterbova D, Klejdus B, Hedbavny J, Huska D, Adam V. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography. J Pharm Biomed Anal. 2018; 148:108–18.
dc.relation.referencesIkaran Z, Suárez-Alvarez S, Urreta I, Castañón S. The effect of nitrogen limitation on the physiology and metabolism of chlorella vulgaris var L3. Algal Res. 2015; 10:134–44.
dc.relation.referencesJang, I. S., & Park, S. J. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4. Fisheries and Aquatic Sciences. 2016;19(1), 1-5.
dc.relation.referencesJourdan J.P. Manuel de culture artisanale pour la production de spiruline Par Jean-Paul Jourdan. 2006.
dc.relation.referencesJung CHG, Braune S, Waldeck P, Küpper J-H, Petrick I, Jung F. Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor. Life. 2021;11(6):536.
dc.relation.referencesJung CHG, Waldeck P, Sykora S, Braune S, Petrick I, Küpper J-H, et al. Influence of different light-emitting diode colors on growth and phycobiliprotein generation of Arthrospira platensis. Life (Basel). 2022; 12(6):895.
dc.relation.referencesKhazi MI, Demirel Z, Dalay MC. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. Journal of applied phycology 2018; 30:1513–23.
dc.relation.referencesKim, S.K. Handbook of marine microalgae: Biotechnology advances. Elsevier. Estados Unidos.2015. 604 pp.
dc.relation.referencesKumar S, Cheng J, Ali-Kubar A, Guo W, Song Y, Liu S, et al. Orange light spectra filtered through transparent colored polyvinyl chloride sheet enhanced pigment and growth of Athrospira cells. Bioresource Technology. 2021;319.
dc.relation.referencesLafarga-De la Cruz F, Valenzuela-Espinoza E, Millán-Núñez R, Trees CC, Santamaría-del-Ángel E, Núñez-Cebrero F. Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquacult Eng. 2006; 35(1):51–60.
dc.relation.referencesLafarga T, Mayre E, Echeverria G, Viñas I, Villaró S, Acién-Fernández FG, et al. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. Lebenson Wiss Technol. 2019;115(108439):108439.
dc.relation.referencesLima GM, Teixeira PCN, Teixeira CMLL, Filócomo D, Lage CLS. Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res. 2018; 31:157–66.
dc.relation.referencesLi T, Xu J, Gao B, Xiang W, Li A, Zhang C. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Res. 2016; 16:481–91.
dc.relation.referencesLi X, Li W, Zhai J, Wei H. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresour Technol. 2018; 263:555–61.
dc.relation.referencesLiu, Q., Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol. 2016 Aug;90(8):1817-40.
dc.relation.referencesLiu, Q., Yao, C., Sun, Y. et al. Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. Biotechnol Biofuels 12, 131 (2019).
dc.relation.referencesLopes-Amorim, M., Soares, J., Coimbra, Bezerra-Vierira, B.; Batista-Silva, W., Martins. Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition. 2021;61(12).
dc.relation.referencesLópez-Ortega, G.U. Evaluación del crecimiento y composición bioquímica de cianobacterias como alternativas nutricionales para humanos. Tesis de Maestría en Ciencias. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California.2023. 84 pp.
dc.relation.referencesLuimstra, V.M., Schuurmans, J.M., Hellingwerf, K.J., Matthijs, H.C.P., Huisman, J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechosystis sp. PCC 6803. Physiologia Plantarum. 2020:1-17.
dc.relation.referencesLüning K. The biology of seaweeds. En: En L, editor. Botanical Monographs. Blackwell Scientific Publications; 1981. p. 326–49.
dc.relation.referencesMarkou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31(8):1532–42.
dc.relation.referencesMarkou G. Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Appl Biochem Biotechno. 2014;172(5):2758–68.
dc.relation.referencesMarkou, G., Muylaert, K. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresource Technology. 2016; 216.
dc.relation.referencesMartínez Mazzei, A Hidrolizados enzimáticos de espirulina con actividad inhibitoria de la enzima convertidora de angiotensina-l. Tesis de grado. Montevideo: Universidad de la República (Uruguay). Facultad de Ciencias. 2022.
dc.relation.referencesMarriot, M.F.H., Blankenship, R.E. Evolution of photosynthesis. Annual Review of Plant Biology. 2011; 62;515-548.
dc.relation.referencesMatos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672–85.
dc.relation.referencesMateucci R. Efecto de diferentes fuentes de nitrógeno y de fósforo sobre la producción y la composición de la biomasa microalgal de Arthrospira (Spirulina) plantesis LMPA55. Escuela de Posgrado - Facultad Regional Buenos Aires; 2018.
dc.relation.referencesMcNichol J, Mcginn PJ. The science of algal fuels: phycology, geology, biophotonics, genomics and nanotechnology. Gordon E, y Sechback R, editores. Springer; 2012.
dc.relation.referencesMedina J, Piña V, Nieves S, Arzola G, Guerrero I. La importancia de las microalgas. Conabio Biodiversitas. 2012; 103:1–5.
dc.relation.referencesMexia-Bernal KH. Efecto de la salinidad e irradiancia en el crecimiento, fotosíntesis y composición bioquímica de Spirulina maxima para su utilización en la acuicultura. Sinaloa, México; 2011.
dc.relation.referencesMorales Pirajan Daniela. Diseño de fotobiorreactores para el cultivo de microorganismos a partir de estímulos lumínicos. 2018.
dc.relation.referencesMoreno-Cabezuela José Ángel, Gómez-Baena Guadalupe, Díez Jesús, García-Fernández José Manuel, “Integrated Proteomic and Metabolomic Analyses Show Differential Effects of Glucose Availability in Marine Synechococcus and Prochlorococcus”, Microbiology Spectrum, vol. 0, 2023.
dc.relation.referencesMouget J-L, Rosa P, Vachoux C, Tremblin G. Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol. 2005;17(5):437–45.
dc.relation.referencesMousavi, M., Mehrzad, J., Najafi, M. F., Zhiani, R., & Shamsian, S. A. A. Nitrate and ammonia: Two key nitrogen sources for biomass and phycocyanin production by Arthrospira (Spirulina) platensis. Journal of Applied Phycology. 2022; 34(5), 2271-2281.
dc.relation.referencesMukhtar R. B. Influence of Light Intensity on Early Growth of Adansonia digitata (L.). 2016; 5:5–9.
dc.relation.referencesMuñoz-Marín, M.d.C. Mixotrophy in depth. Nat Microbiol 7, 1949–1950 (2022).
dc.relation.referencesNowicka-Krawczyk, P., Mühlsteinová, R., & Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports. 2019; 9(1), 1-11.
dc.relation.referencesOgbonda, K.H., Aminigo, R.E., Abu, G.O. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour. Technol. 2007; 98, 2207–2211.
dc.relation.referencesOliveira, M.A., Monterio, M.P., Robbs, P.G., Leite, S.G. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International. 1999; 7:261-275.
dc.relation.referencesOtero A, Vicenzini M. Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. Journal of Phycology. 2004; 40: 74-81.
dc.relation.referencesOvando Claudia Anahite, Julio Cesar de Carvalho, Gilberto Vinícius de Melo Pereira, Philippe Jacques, Vanete Thomaz Soccol & Carlos Ricardo Soccol. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review, Food Reviews International. 2018; 34:1, 34-51.
dc.relation.referencesPagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances. 2019; 37(3), 422-443.
dc.relation.referencesPagels, F., Lopes, G., Vasconcelos, V., Guedes, A.C. White and red LEDs as two-phase batch for cyanobacterial pigments production. Bioresource Technology. 2020.
dc.relation.referencesPancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2014; 156:146–54.
dc.relation.referencesPanjiar N, Mishra S, Yadav AN, Verma P. Functional foods from Cyanobacteria: An emerging source for functional food products of pharmaceutical importance. Microbial Functional Foods and Nutraceuticals. Wiley; 2017. p. 21–37.
dc.relation.referencesPedraza G. cultivo de Spirulina máxima para suplementación proteica. Liverstock Research for Rural Development. 1989.
dc.relation.referencesPineda Rodríguez, Y. Y. Respuestas fisiológicas y bioquímicas de Limnospira maxima a la exposición a diferentes espectros de luz y fuentes de nitrógeno. 2023.
dc.relation.referencesProsperi C. H, Cyanobacteria in human affaires. Interciencia. 2000;25(6):303-306.
dc.relation.referencesRagaza, J. A., Hossain, Md. S., Meiler, K. A., Velasquez, S. F., & Kumar, V. A review on Spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture. 2020; 12(4), 2371-2395.
dc.relation.referencesRavindran B, Gupta S, Cho W-M, Kim J, Lee S, Jeong K-H, et al. Microalgae potential and multiple roles—current progress and future prospects—an overview. Sustainability. 2016;8(12):1215.
dc.relation.referencesRajasekaran C, Ajeesh CPM, Balaji S, Shalini M, Siva R, Das R, et al. Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak Journal of Science and Technology. 2016;13(1):67–75.
dc.relation.referencesRendón Castrillón Leidy Johanna, Margarita Enid Ramírez Carmona y Yesid Hernán Vélez Salazar. Microalgas para la industria alimenticia Medellín: UPB., 2015 72 p.: 19 x 24 cm.
dc.relation.referencesRezanka T, Lukavský J, Nedbalová L, Sigler K. Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry. 2011;72(18):2342–51.
dc.relation.referencesRichmond A, Hu Q. Handbook of microalgal culture: Applied phycology and Biotechnology. Belay, A. Biology and Industrial Production of Arthrospira (Spirulina). 2° Ed. New Jersey: Wiley Blackwell; 2013.
dc.relation.referencesRosales-Loaiza, Néstor; Díaz, Laugeny; Aiello-Mazzarri, Cateryna; Morales-Avendaño, Ever. Cultivos a cielo abierto de las cianobacterias Nostoc LAUN0015 y Anabaena MOF015 para la producción de biomasa enriquecida. Pruebas piloto para cultivos masivos Revista CENIC. Ciencias Biológicas. 2017; 48: 81- 86.
dc.relation.referencesSafi C, Frances C, Ursu AV, Laroche C, Pouzet C, Vaca-Garcia C, et al. Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Res. 2015; 8:61–8.
dc.relation.referencesSánchez-Saavedra MP, Voltolina D. Effect of different photon fluence rates of blue-green light on the biomass quality of a coastal diatom in pilot scale semicontinuous cultures. Scientia Marina. 1996; 60:267–72.
dc.relation.referencesSánchez-Saavedra M del P, Voltolina D. The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacult Eng. 2006;35(2):161–5.
dc.relation.referencesSánchez-Saavedra, M.P., Maeda-Martínez, A.N. y Acosta-Galindo, S. Effect of different light spectra on the growth and biochemical composition of Tisochrysis lutea. Journal of Applied Phycology. 2015.
dc.relation.referencesSantos de Jesus Cristiane, Lívia da Silva Uebel, Samantha Serra Costa, Andréa Lobo Miranda, Etiele Greque de Morais, Michele Greque de Morais, Jorge Alberto Vieira Costa, Itaciara Larroza Nunes, Ederlan de Souza Ferreira, Janice Izabel Druzian, Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition, Bioresource Technology. 2018; vol. 256, Pages 86-94.
dc.relation.referencesSchulze, P.S., Barreira, L.A., Pereira, H.G., Perales, J.A., Varela, J.C. Light emitting diodes (LEDs) applied to microalgal production. Cell Press Trends in Biotechnology. 2014; 32(8):422-431.
dc.relation.referencesSetchell & N.L. Gardner, 1917 Setchell_Gardner_2017
dc.relation.referencesSimental-Trinidad JA, Sánchez-Saavedra MP, Correa-Reyes JG. Biochemical composition of benthic marine diatoms using as culture médium a common agricultural fertilizer. Journal of Shellfish Research. 2001;20(2):611–7.
dc.relation.referencesSingh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. Cyanobacteria: A Precious Bio- resource in Agriculture, Ecosystem, and Environmental Sustainability. Frontiers in Microbiology. 2016;7, 1-19.
dc.relation.referencesSoni, R. A., Sudhakar, K., & Rana, R. S. Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology. 2017; 69, 157-171.
dc.relation.referencesTorres-Ariño, A., Mora-Heredia, E. Isolation and characterization of potentially toxic and harmful cyanobacteria from Oaxaca and Chiapas, México. Journal of Environmental Sciene and Health. 2010; 45.
dc.relation.referencesVelasco LA, Barros-Gómez J, Ospina-Salazar GH, Trujillo CA. Efecto de la intensidad lumínica, temperatura y salinidad sobre el crecimiento de la microalga Isochrysis galbana (Clon T-ISO). Intropica. 2009;4(1):93-9.
dc.relation.referencesVieira-Costa, J. A., Cozza, K. L., Oliveira, L., Magagnin, G. Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World Journal of Microbiology and Biotechnology. 2001; 17(5).
dc.relation.referencesVonshak A. Spirulina Platensis (Arthrospira): Physiology, Cell-Biology And Biotechnology.1th. ed.USA: CRC Press Taylor & Francis group;1997.
dc.relation.referencesVonshak, A., & Tomaselli, L. Arthrospira (Spirulina): systematics and ecophysiology. In The ecology of cyanobacteria. Dordrecht: Kluwer Academic Publishers; 2006. p. 505–22.
dc.relation.referencesWalsh Gary. Proteins: Biochemistry and Biotechnology. Edición ilustrada, reimpresa. John Wiley & Sons. 2002; 547.
dc.relation.referencesWalter, A., Carvalho, J. C. D., Soccol, V. T., Faria, A. B. B. D., Ghiggi, V., & Soccol, C. R. Study of phycocyanin production from Spirulina platensis under different light spectra. Brazilian Archives of Biology and Technology. 2011; 54(4), 675-682.
dc.relation.referencesWang, C. Y., Fu, C. C., & Liu, Y. C. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal. 2007; 37(1), 21-25.
dc.relation.referencesYin, C., Daoust, K., Young, A., Tebbs, E., & Harper, D. Tackling community undernutrition at lake Bogoria, Kenya: The potential of spirulina (Arthrospira fusiformis) as a food supplement. African Journal of Food, Agriculture, Nutrition and Development. 2017; 17(1), 11603-11615.
dc.relation.referencesYu, J., Hu, Y., Xue, M., Dun, Y., Li, S., Peng, N., & Zhao, S. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. Journal of Microbiology and Biotechnology. 2016; 26(7), 1216-1223.
dc.relation.referencesZarrouk C. Contribution a L’etude D’une Cyanobacterie: Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Paris; 1966.
dc.rightsCopyright Universidad de Córdoba, 2023
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceUniversidad de Córdoba
dc.subject.keywordsCyanobacteria
dc.subject.keywordsMass culture
dc.subject.keywordsBioreactor
dc.subject.keywordsSpirulina
dc.subject.proposalCianobacteriaspa
dc.subject.proposalCultivo masivospa
dc.subject.proposalBiorreactorspa
dc.subject.proposalEspirulinaspa
dc.titleCultivo de limnospira (Arthrospira) maxima en laboratorio, expuesto a diferentes longitudes de onda y fuentes de nitrógeno, y en escala piloto, a condiciones ambientalesspa
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
oaire.arwardurihttps://repositorio.unicordoba.edu.co
Archivos
Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
CULTIVO DE Limnospira (Arthrospira) maxima EN LABORATORIO , EXPUESTO A DIFERENTES LONGITUDES DE ONDA Y FUENTES DE NITRÓGENO, Y EN ESCALA PILOTO, A CONDICIONES AMBIENTALES..pdf
Tamaño:
2.12 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
FORMATO DE AUTORIZACIÓN TESIS.pdf
Tamaño:
731.78 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: