Publicación: Evaluación de un intercambiador de calor para mejorar el proceso de calentamiento en el generador del sistema de refrigeración por absorción
dc.contributor.advisor | Vega González, Taylor de Jesús de la | |
dc.contributor.author | Fuentes Torres, Pedro José | |
dc.contributor.author | Machado Pomares, Juan David | |
dc.date.accessioned | 2021-10-11T18:07:27Z | |
dc.date.available | 2021-10-11T18:07:27Z | |
dc.date.issued | 2021-10-10 | |
dc.description.abstract | The present work aims to solve one of the few problems that absorption refrigeration systems present, which consists of the relatively long times to reach a pseudo-stable state, for this we studied what happens when the conventional generator is replaced by an exchanger heat through a dynamic simulation using the NH3-H20 mixture as a working torque in the Aspen Plus® software, in order to study the time it takes for the generation temperature to stabilize. Taking a system with a cooling capacity of 3.50 kW studied by (Viswanathan et al., 2013), found that when the temperature of the heat transfer fluid changes 10 ° C, the generation temperature takes a little less than 6 minutes with a generator, while with power generation was found to take less tan immediately for the system to stabilize. In addition, other tests were carried out that showed that the thermal accumulation is almost null in the proposed system. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Mecánico(a) | spa |
dc.description.modality | Monografía | spa |
dc.description.resumen | El presente trabajo pretende resolver uno de los pocos problemas que presentan los sistemas de refrigeración por absorción, el cual consiste en los tiempos relativamente altos en llegar a un estado seudoestable, para ello se estudió lo que ocurre cuando se sustituye el generador convencional por un intercambiador de calor mediante una simulación dinámica utilizando como par de trabajo la mezcla NH3-H20 en el software Aspen Plus®, con el fin de estudiar el tiempo en que tarda en estabilizarse la temperatura de generación. Tomando un sistema con una capacidad de refrigeración de 3,50 kW estudiado por (Viswanathan et al., 2013), encontraron que cuando la temperatura del fluido caloportador cambia 10 °C, la temperatura de generación tarda un poco menos de 6 minutos con un generador, mientras que se con la sustitución generador se encontró que el sistema tarda en estabilizarse inmediatamente. Además, se realizaron otras pruebas que demuestran como la acumulación térmica es casi nula en el sistema planteado. | spa |
dc.description.tableofcontents | 1. TABLA DE CONTENIDO. ............................................................................................ 3 | spa |
dc.description.tableofcontents | 1.1. LISTA DE FIGURAS: ............................................................................................. 4 | spa |
dc.description.tableofcontents | 1.2. LISTA DE TABLAS ............................................................................................... 4 | spa |
dc.description.tableofcontents | 1.3. RESUMEN Y ABSTRACT: ................................................................................... 5 | spa |
dc.description.tableofcontents | 2. INTRODUCCIÓN .......................................................................................................... 6 | spa |
dc.description.tableofcontents | 3. OBJETIVOS.................................................................................................................... 7 | spa |
dc.description.tableofcontents | 3.1. OBJETIVO GENERAL: .......................................................................................... 7 | spa |
dc.description.tableofcontents | 3.2. OBJETIVOS ESPECÍFICOS: ................................................................................. 7 | spa |
dc.description.tableofcontents | 4. MARCO TEÓRICO ........................................................................................................ 8 | spa |
dc.description.tableofcontents | 4.1. Sistema de Refrigeración por Absorción (SRA). ..................................................... 8 | spa |
dc.description.tableofcontents | 4.2. Intercambiadores de Calor (IC). .............................................................................. 9 | spa |
dc.description.tableofcontents | 4.3. Coeficiente de Rendimiento (COP). ...................................................................... 10 | spa |
dc.description.tableofcontents | 5. ANTECEDENTES ........................................................................................................ 12 | spa |
dc.description.tableofcontents | 6. DESARROLLO DEL TEMA ....................................................................................... 20 | spa |
dc.description.tableofcontents | 6.1. Metodología: .......................................................................................................... 20 | spa |
dc.description.tableofcontents | 6.2. Resultados y discusiones: ...................................................................................... 27 | spa |
dc.description.tableofcontents | 6.2.1. Validación del modelo: ................................................................................... 27 | spa |
dc.description.tableofcontents | 6.3. Observación Costo-beneficio. ................................................................................ 36 | spa |
dc.description.tableofcontents | 7. CONCLUSIONES ........................................................................................................ 38 | spa |
dc.description.tableofcontents | 8. BIBLIOGRAFÍA ........................................................................................................... 39 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unicordoba.edu.co/handle/ucordoba/4638 | |
dc.language.iso | spa | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Montería, Córdoba, Colombia | spa |
dc.publisher.program | Ingeniería Mecánica | spa |
dc.rights | Copyright Universidad de Córdoba, 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.keywords | NH3-H20 absorption refrigeration | eng |
dc.subject.keywords | Dynamic simulation | eng |
dc.subject.keywords | Aspen PLUS® | eng |
dc.subject.keywords | Desorber | eng |
dc.subject.keywords | Thermal inertia | eng |
dc.subject.proposal | Refrigeración por absorción NH3-H20 | spa |
dc.subject.proposal | Simulación dinámica | spa |
dc.subject.proposal | Aspen PLUS® | spa |
dc.subject.proposal | Desorber | spa |
dc.subject.proposal | Inercia térmica | spa |
dc.title | Evaluación de un intercambiador de calor para mejorar el proceso de calentamiento en el generador del sistema de refrigeración por absorción | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.references | Abbasian Arani, A. A., & Uosofvand, H. (2021). Double-pass shell-and-tube heat exchanger performance enhancement with new combined baffle and elliptical tube bundle arrangement. International Journal of Thermal Sciences, 167, 106999. https://doi.org/10.1016/j.ijthermalsci.2021.106999 | spa |
dcterms.references | Afshar, O., Saidur, R., Hasanuzzaman, M., & Jameel, M. (2012). A review of thermodynamics and heat transfer in solar refrigeration system. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 8, pp. 5639–5648). https://doi.org/10.1016/j.rser.2012.05.016 | spa |
dcterms.references | Ahn, H. S., Kim, K. M., Lim, S. T., Lee, C. H., Han, S. W., Choi, H., Koo, S., Kim, N., Jerng, D. W., & Wongwises, S. (2019). Anti-fouling performance of chevron plate heat exchanger by the surface modification. International Journal of Heat and Mass Transfer, 144. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118634 | spa |
dcterms.references | Al zahrani, S., Islam, M. S., & Saha, S. C. (2021). Heat transfer enhancement investigation in a novel flat plate heat exchanger. International Journal of Thermal Sciences, 161. https://doi.org/10.1016/j.ijthermalsci.2020.106763 | spa |
dcterms.references | Alahmer, A., & Ajib, S. (2020). Solar cooling technologies: State of art and perspectives. Energy Conversion and Management, 214(May). https://doi.org/10.1016/j.enconman.2020.112896 | spa |
dcterms.references | Alahmer, A., & Alsaqoor, S. (2018). Simulation and optimization of multi-split variable refrigerant flow systems. Ain Shams Engineering Journal, 9(4), 1705–1715. https://doi.org/10.1016/j.asej.2017.01.002 | spa |
dcterms.references | Altamirano, A., Pierrès, N. Le, & Stutz, B. (2019). Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: Theoretical, experimental and commercial cycles. In International Journal of Refrigeration (Vol. 106, pp. 350–373). Elsevier Ltd. https://doi.org/10.1016/j.ijrefrig.2019.06.033 | spa |
dcterms.references | Altun, A. F., & Kilic, M. (2020). Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey. Renewable Energy, 152, 75–93. https://doi.org/10.1016/j.renene.2020.01.055 | spa |
dcterms.references | Aprile, M., Toppi, T., Guerra, M., & Motta, M. (2016). Analysis of gas-fired NH3-H2O generator with cross flow gas burner. Applied Thermal Engineering, 93, 1216–1227. https://doi.org/10.1016/j.applthermaleng.2015.10.088 | spa |
dcterms.references | Boudéhenn, F., Demasles, H., Wyttenbach, J., Jobard, X., Chèze, D., & Papillon, P. (2012). Development of a 5 kW cooling capacity ammonia-water absorption chiller for solar cooling applications. Energy Procedia, 30, 35–43. https://doi.org/10.1016/j.egypro.2012.11.006 | spa |
dcterms.references | Brückner, S., Liu, S., Miró, L., Radspieler, M., Cabeza, L. F., & Lävemann, E. (2015). Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 151, 157–167. https://doi.org/10.1016/j.apenergy.2015.01.147 | spa |
dcterms.references | ÇENGEL, Y. A., & BOLES, M. A. (2011). TERMODINÁMICA (McGraw-Hill (ed.); 7th ed.). Thermodynamics. An Engineering Approach. | spa |
dcterms.references | Chahartaghi, M., Golmohammadi, H., & Shojaei, A. F. (2019). Performance analysis and optimization of new double effect lithium bromide–water absorption chiller with series and parallel flows. International Journal of Refrigeration, 97, 73–87. https://doi.org/10.1016/j.ijrefrig.2018.08.011 | spa |
dcterms.references | Cudok, F., Giannetti, N., Ciganda, J. L. C., Aoyama, J., Babu, P., Coronas, A., Fujii, T., Inoue, N., Saito, K., Yamaguchi, S., & Ziegler, F. (2021). Absorption heat transformer - state-of-the-art of industrial applications. In Renewable and Sustainable Energy Reviews (Vol. 141). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.110757 | spa |
dcterms.references | Cui, Z., Du, Q., Gao, J., Bie, R., & Li, D. (2020). Development of a direct contact heat exchanger for energy and water recovery from humid flue gas. Applied Thermal Engineering, 173. https://doi.org/10.1016/j.applthermaleng.2020.115214 | spa |
dcterms.references | Evola, G., Le Pierrès, N., Boudehenn, F., & Papillon, P. (2013). Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller. International Journal of Refrigeration, 36(3), 1015–1028. https://doi.org/10.1016/j.ijrefrig.2012.10.013 | spa |
dcterms.references | Garimella, S., Ponkala, M. J., Goyal, A., & Staedter, M. A. (2019). Waste-heat driven ammonia-water absorption chiller for severe ambient operation. Applied Thermal Engineering, 154, 442–449. https://doi.org/10.1016/j.applthermaleng.2019.03.098 | spa |
dcterms.references | Garone, S., Toppi, T., Guerra, M., & Motta, M. (2017). A water-ammonia heat transformer to upgrade low-temperature waste heat. Applied Thermal Engineering, 127, 748–757. https://doi.org/10.1016/j.applthermaleng.2017.08.082 | spa |
dcterms.references | Goyal, A., Staedter, M. A., Hoysall, D. C., Ponkala, M. J., & Garimella, S. (2017). Experimental evaluation of a small-capacity, waste-heat driven ammonia-water absorption chiller. International Journal of Refrigeration, 79, 89–100. https://doi.org/10.1016/j.ijrefrig.2017.04.006 | spa |
dcterms.references | Hirmiz, R., Lightstone, M. F., & Cotton, J. S. (2018). Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials. Applied Energy, 223, 11–29. https://doi.org/10.1016/j.apenergy.2018.04.029 | spa |
dcterms.references | Jiang, W., Li, S., Yang, L., & Du, K. (2019). Experimental investigation on enhancement of ammonia absorption process with TiO 2 nanoparticles in newly designed absorber. International Journal of Refrigeration, 100, 93–103. https://doi.org/10.1016/j.ijrefrig.2018.11.019 | spa |
dcterms.references | Jiménez-García, J. C., & Rivera, W. (2019). Parametric analysis on the experimental performance of an ammonia/water absorption cooling system built with plate heat exchangers. Applied Thermal Engineering, 148, 87–95. https://doi.org/10.1016/j.applthermaleng.2018.11.040 | spa |
dcterms.references | Jindal, S., Anand, S., Metzger, L., & Amamcharla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101(4), 2921–2926. https://doi.org/10.3168/jds.2017-14028 | spa |
dcterms.references | Ketfi, O., Merzouk, M., Merzouk, N. K., & Bourouis, M. (2017). Feasibility study and performance evaluation of low capacity water–LiBr absorption cooling systems functioning in different Algerian climate zones. International Journal of Refrigeration, 82, 36–50. https://doi.org/10.1016/j.ijrefrig.2017.07.002 | spa |
dcterms.references | Konwar, D., Gogoi, T. K., & Das, A. J. (2019). Multi-objective optimization of double effect series and parallel flow water–lithium chloride and water–lithium bromide absorption refrigeration systems. Energy Conversion and Management, 180, 425–441. https://doi.org/10.1016/j.enconman.2018.10.029 | spa |
dcterms.references | Lubis, A., Jeong, J., Giannetti, N., Yamaguchi, S., Saito, K., Yabase, H., Alhamid, M. I., & Nasruddin. (2018). Operation performance enhancement of single-double-effect absorption chiller. Applied Energy, 219, 299–311. https://doi.org/10.1016/j.apenergy.2018.03.046 | spa |
dcterms.references | Mansouri, R., Boukholda, I., Bourouis, M., & Bellagi, A. (2015). Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform. Energy, 93(Part 2), 2374–2383. https://doi.org/10.1016/j.energy.2015.10.081 | spa |
dcterms.references | Mansouri, R., Bourouis, M., & Bellagi, A. (2017). Experimental investigations and modelling of a small capacity diffusion-absorption refrigerator in dynamic mode. Applied Thermal Engineering, 113, 653–662. https://doi.org/10.1016/j.applthermaleng.2016.11.078 | spa |
dcterms.references | Merienne, R., Lynn, J., McSweeney, E., & O’Shaughnessy, S. M. (2019). Thermal cycling of thermoelectric generators: The effect of heating rate. Applied Energy, 237, 671–681. https://doi.org/10.1016/j.apenergy.2019.01.041 | spa |
dcterms.references | Mirl, N., Schmid, F., Bierling, B., & Spindler, K. (2020). Design and analysis of an ammonia-water absorption heat pump. Applied Thermal Engineering, 165. https://doi.org/10.1016/j.applthermaleng.2019.114531 | spa |
dcterms.references | Mohammadi, M. H., Abbasi, H. R., Yavarinasab, A., & Pourrahmani, H. (2020). Thermal optimization of shell and tube heat exchanger using porous baffles. Applied Thermal Engineering, 170. https://doi.org/10.1016/j.applthermaleng.2020.115005 | spa |
dcterms.references | Nikbakhti, R., Wang, X., Hussein, A. K., & Iranmanesh, A. (2020). Absorption cooling systems – Review of various techniques for energy performance enhancement. In Alexandria Engineering Journal (Vol. 59, Issue 2, pp. 707–738). Elsevier B.V. https://doi.org/10.1016/j.aej.2020.01.036 | spa |
dcterms.references | Nilpueng, K., Keawkamrop, T., Ahn, H. S., & Wongwises, S. (2018). Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger. International Communications in Heat and Mass Transfer, 91, 201–209. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.009 | spa |
dcterms.references | Ochoa, A. A. V., Dutra, J. C. C., Henríquez, J. R. G., dos Santos, C. A. C., & Rohatgi, J. (2017). The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O. Energy Conversion and Management, 136, 270–282. https://doi.org/10.1016/j.enconman.2017.01.020 | spa |
dcterms.references | Pandya, N. S., Shah, H., Molana, M., & Tiwari, A. K. (2020). Heat transfer enhancement with nanofluids in plate heat exchangers: A comprehensive review. In European Journal of Mechanics, B/Fluids (Vol. 81, pp. 173–190). Elsevier Ltd. https://doi.org/10.1016/j.euromechflu.2020.02.004 | spa |
dcterms.references | Pekař, L. (2020). Introduction to heat exchangers. In Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers (pp. 3–20). Elsevier. https://doi.org/10.1016/b978-0-12-819422-5.00001-3 | spa |
dcterms.references | Rincón Tabares, J. S., Perdomo-Hurtado, L., & Aragón, J. L. (2019). Study of Gasketed-Plate Heat Exchanger performance based on energy efficiency indexes. Applied Thermal Engineering, 159. https://doi.org/10.1016/j.applthermaleng.2019.113902 | spa |
dcterms.references | Sabbagh, A. A., & Gómez, J. M. (2018). Optimal control of single stage LiBr/water absorption chiller. International Journal of Refrigeration, 92, 1–9. https://doi.org/10.1016/j.ijrefrig.2018.05.007 | spa |
dcterms.references | Said, S. A. M., Spindler, K., El-Shaarawi, M. A., Siddiqui, M. U., Schmid, F., Bierling, B., & Khan, M. M. A. (2016). Design, construction and operation of a solar powered ammonia-water absorption refrigeration system in Saudi Arabia. International Journal of Refrigeration, 62, 222–231. https://doi.org/10.1016/j.ijrefrig.2015.10.026 | spa |
dcterms.references | Shokouhmand, H., & Hasanpour, M. (2020). Effect of number of plates on the thermal performance of a plate heat exchanger with considering flow maldistribution. Journal of Energy Storage, 32. https://doi.org/10.1016/j.est.2020.101907 | spa |
dcterms.references | Siddiqui, M. U., & Said, S. A. M. (2015). A review of solar powered absorption systems. In Renewable and Sustainable Energy Reviews (Vol. 42, pp. 93–115). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.014 | spa |
dcterms.references | Silva Ortega, J. I., Sagastume, A., Rodriguez Toscano, A., Amaris Castilla, C., & Arias Torres, D. (2020). Evaluación del potencial de la refrigeración por absorción en el sector industrial de Barranquilla. https://hdl.handle.net/11323/6950 | spa |
dcterms.references | Viswanathan, V. K., Rattner, A. S., Determan, M. D., & Garimella, S. (2013). Dynamic model for a small-capacity ammonia-water absorption chiller. HVAC and R Research, 19(7), 865–881. https://doi.org/10.1080/10789669.2013.833974 | spa |
dcterms.references | Wang, J., Shang, S., Li, X., Wang, B., Wu, W., & Shi, W. (2017). Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions. https://doi.org/10.3390/app7080797 | spa |
dcterms.references | Wu, W., Shi, W., Wang, J., Wang, B., & Li, X. (2016). Experimental investigation on NH3-H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources. Applied Energy, 176, 258–271. https://doi.org/10.1016/j.apenergy.2016.04.115 | spa |
dcterms.references | Xu, Y. jie, Zhang, S. jie, & Xiao, Y. han. (2016). Modeling the dynamic simulation and control of a single effect LiBr–H2O absorption chiller. Applied Thermal Engineering, 107, 1183–1191. https://doi.org/10.1016/j.applthermaleng.2016.06.043 | spa |
dcterms.references | Zhang, Y., Jiang, C., Shou, B., Zhou, W., Zhang, Z., Wang, S., & Bai, B. (2018). A quantitative energy efficiency evaluation and grading of plate heat exchangers. Energy, 142, 228–233. https://doi.org/10.1016/j.energy.2017.10.023 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 14.48 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: