Publicación:
Evaluación de un intercambiador de calor para mejorar el proceso de calentamiento en el generador del sistema de refrigeración por absorción

dc.contributor.advisorVega González, Taylor de Jesús de la
dc.contributor.authorFuentes Torres, Pedro José
dc.contributor.authorMachado Pomares, Juan David
dc.date.accessioned2021-10-11T18:07:27Z
dc.date.available2021-10-11T18:07:27Z
dc.date.issued2021-10-10
dc.description.abstractThe present work aims to solve one of the few problems that absorption refrigeration systems present, which consists of the relatively long times to reach a pseudo-stable state, for this we studied what happens when the conventional generator is replaced by an exchanger heat through a dynamic simulation using the NH3-H20 mixture as a working torque in the Aspen Plus® software, in order to study the time it takes for the generation temperature to stabilize. Taking a system with a cooling capacity of 3.50 kW studied by (Viswanathan et al., 2013), found that when the temperature of the heat transfer fluid changes 10 ° C, the generation temperature takes a little less than 6 minutes with a generator, while with power generation was found to take less tan immediately for the system to stabilize. In addition, other tests were carried out that showed that the thermal accumulation is almost null in the proposed system.eng
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Mecánico(a)spa
dc.description.modalityMonografíaspa
dc.description.resumenEl presente trabajo pretende resolver uno de los pocos problemas que presentan los sistemas de refrigeración por absorción, el cual consiste en los tiempos relativamente altos en llegar a un estado seudoestable, para ello se estudió lo que ocurre cuando se sustituye el generador convencional por un intercambiador de calor mediante una simulación dinámica utilizando como par de trabajo la mezcla NH3-H20 en el software Aspen Plus®, con el fin de estudiar el tiempo en que tarda en estabilizarse la temperatura de generación. Tomando un sistema con una capacidad de refrigeración de 3,50 kW estudiado por (Viswanathan et al., 2013), encontraron que cuando la temperatura del fluido caloportador cambia 10 °C, la temperatura de generación tarda un poco menos de 6 minutos con un generador, mientras que se con la sustitución generador se encontró que el sistema tarda en estabilizarse inmediatamente. Además, se realizaron otras pruebas que demuestran como la acumulación térmica es casi nula en el sistema planteado.spa
dc.description.tableofcontents1. TABLA DE CONTENIDO. ............................................................................................ 3spa
dc.description.tableofcontents1.1. LISTA DE FIGURAS: ............................................................................................. 4spa
dc.description.tableofcontents1.2. LISTA DE TABLAS ............................................................................................... 4spa
dc.description.tableofcontents1.3. RESUMEN Y ABSTRACT: ................................................................................... 5spa
dc.description.tableofcontents2. INTRODUCCIÓN .......................................................................................................... 6spa
dc.description.tableofcontents3. OBJETIVOS.................................................................................................................... 7spa
dc.description.tableofcontents3.1. OBJETIVO GENERAL: .......................................................................................... 7spa
dc.description.tableofcontents3.2. OBJETIVOS ESPECÍFICOS: ................................................................................. 7spa
dc.description.tableofcontents4. MARCO TEÓRICO ........................................................................................................ 8spa
dc.description.tableofcontents4.1. Sistema de Refrigeración por Absorción (SRA). ..................................................... 8spa
dc.description.tableofcontents4.2. Intercambiadores de Calor (IC). .............................................................................. 9spa
dc.description.tableofcontents4.3. Coeficiente de Rendimiento (COP). ...................................................................... 10spa
dc.description.tableofcontents5. ANTECEDENTES ........................................................................................................ 12spa
dc.description.tableofcontents6. DESARROLLO DEL TEMA ....................................................................................... 20spa
dc.description.tableofcontents6.1. Metodología: .......................................................................................................... 20spa
dc.description.tableofcontents6.2. Resultados y discusiones: ...................................................................................... 27spa
dc.description.tableofcontents6.2.1. Validación del modelo: ................................................................................... 27spa
dc.description.tableofcontents6.3. Observación Costo-beneficio. ................................................................................ 36spa
dc.description.tableofcontents7. CONCLUSIONES ........................................................................................................ 38spa
dc.description.tableofcontents8. BIBLIOGRAFÍA ........................................................................................................... 39spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4638
dc.language.isospaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programIngeniería Mecánicaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.keywordsNH3-H20 absorption refrigerationeng
dc.subject.keywordsDynamic simulationeng
dc.subject.keywordsAspen PLUS®eng
dc.subject.keywordsDesorbereng
dc.subject.keywordsThermal inertiaeng
dc.subject.proposalRefrigeración por absorción NH3-H20spa
dc.subject.proposalSimulación dinámicaspa
dc.subject.proposalAspen PLUS®spa
dc.subject.proposalDesorberspa
dc.subject.proposalInercia térmicaspa
dc.titleEvaluación de un intercambiador de calor para mejorar el proceso de calentamiento en el generador del sistema de refrigeración por absorciónspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.referencesAbbasian Arani, A. A., & Uosofvand, H. (2021). Double-pass shell-and-tube heat exchanger performance enhancement with new combined baffle and elliptical tube bundle arrangement. International Journal of Thermal Sciences, 167, 106999. https://doi.org/10.1016/j.ijthermalsci.2021.106999spa
dcterms.referencesAfshar, O., Saidur, R., Hasanuzzaman, M., & Jameel, M. (2012). A review of thermodynamics and heat transfer in solar refrigeration system. In Renewable and Sustainable Energy Reviews (Vol. 16, Issue 8, pp. 5639–5648). https://doi.org/10.1016/j.rser.2012.05.016spa
dcterms.referencesAhn, H. S., Kim, K. M., Lim, S. T., Lee, C. H., Han, S. W., Choi, H., Koo, S., Kim, N., Jerng, D. W., & Wongwises, S. (2019). Anti-fouling performance of chevron plate heat exchanger by the surface modification. International Journal of Heat and Mass Transfer, 144. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118634spa
dcterms.referencesAl zahrani, S., Islam, M. S., & Saha, S. C. (2021). Heat transfer enhancement investigation in a novel flat plate heat exchanger. International Journal of Thermal Sciences, 161. https://doi.org/10.1016/j.ijthermalsci.2020.106763spa
dcterms.referencesAlahmer, A., & Ajib, S. (2020). Solar cooling technologies: State of art and perspectives. Energy Conversion and Management, 214(May). https://doi.org/10.1016/j.enconman.2020.112896spa
dcterms.referencesAlahmer, A., & Alsaqoor, S. (2018). Simulation and optimization of multi-split variable refrigerant flow systems. Ain Shams Engineering Journal, 9(4), 1705–1715. https://doi.org/10.1016/j.asej.2017.01.002spa
dcterms.referencesAltamirano, A., Pierrès, N. Le, & Stutz, B. (2019). Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: Theoretical, experimental and commercial cycles. In International Journal of Refrigeration (Vol. 106, pp. 350–373). Elsevier Ltd. https://doi.org/10.1016/j.ijrefrig.2019.06.033spa
dcterms.referencesAltun, A. F., & Kilic, M. (2020). Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey. Renewable Energy, 152, 75–93. https://doi.org/10.1016/j.renene.2020.01.055spa
dcterms.referencesAprile, M., Toppi, T., Guerra, M., & Motta, M. (2016). Analysis of gas-fired NH3-H2O generator with cross flow gas burner. Applied Thermal Engineering, 93, 1216–1227. https://doi.org/10.1016/j.applthermaleng.2015.10.088spa
dcterms.referencesBoudéhenn, F., Demasles, H., Wyttenbach, J., Jobard, X., Chèze, D., & Papillon, P. (2012). Development of a 5 kW cooling capacity ammonia-water absorption chiller for solar cooling applications. Energy Procedia, 30, 35–43. https://doi.org/10.1016/j.egypro.2012.11.006spa
dcterms.referencesBrückner, S., Liu, S., Miró, L., Radspieler, M., Cabeza, L. F., & Lävemann, E. (2015). Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 151, 157–167. https://doi.org/10.1016/j.apenergy.2015.01.147spa
dcterms.referencesÇENGEL, Y. A., & BOLES, M. A. (2011). TERMODINÁMICA (McGraw-Hill (ed.); 7th ed.). Thermodynamics. An Engineering Approach.spa
dcterms.referencesChahartaghi, M., Golmohammadi, H., & Shojaei, A. F. (2019). Performance analysis and optimization of new double effect lithium bromide–water absorption chiller with series and parallel flows. International Journal of Refrigeration, 97, 73–87. https://doi.org/10.1016/j.ijrefrig.2018.08.011spa
dcterms.referencesCudok, F., Giannetti, N., Ciganda, J. L. C., Aoyama, J., Babu, P., Coronas, A., Fujii, T., Inoue, N., Saito, K., Yamaguchi, S., & Ziegler, F. (2021). Absorption heat transformer - state-of-the-art of industrial applications. In Renewable and Sustainable Energy Reviews (Vol. 141). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.110757spa
dcterms.referencesCui, Z., Du, Q., Gao, J., Bie, R., & Li, D. (2020). Development of a direct contact heat exchanger for energy and water recovery from humid flue gas. Applied Thermal Engineering, 173. https://doi.org/10.1016/j.applthermaleng.2020.115214spa
dcterms.referencesEvola, G., Le Pierrès, N., Boudehenn, F., & Papillon, P. (2013). Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller. International Journal of Refrigeration, 36(3), 1015–1028. https://doi.org/10.1016/j.ijrefrig.2012.10.013spa
dcterms.referencesGarimella, S., Ponkala, M. J., Goyal, A., & Staedter, M. A. (2019). Waste-heat driven ammonia-water absorption chiller for severe ambient operation. Applied Thermal Engineering, 154, 442–449. https://doi.org/10.1016/j.applthermaleng.2019.03.098spa
dcterms.referencesGarone, S., Toppi, T., Guerra, M., & Motta, M. (2017). A water-ammonia heat transformer to upgrade low-temperature waste heat. Applied Thermal Engineering, 127, 748–757. https://doi.org/10.1016/j.applthermaleng.2017.08.082spa
dcterms.referencesGoyal, A., Staedter, M. A., Hoysall, D. C., Ponkala, M. J., & Garimella, S. (2017). Experimental evaluation of a small-capacity, waste-heat driven ammonia-water absorption chiller. International Journal of Refrigeration, 79, 89–100. https://doi.org/10.1016/j.ijrefrig.2017.04.006spa
dcterms.referencesHirmiz, R., Lightstone, M. F., & Cotton, J. S. (2018). Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials. Applied Energy, 223, 11–29. https://doi.org/10.1016/j.apenergy.2018.04.029spa
dcterms.referencesJiang, W., Li, S., Yang, L., & Du, K. (2019). Experimental investigation on enhancement of ammonia absorption process with TiO 2 nanoparticles in newly designed absorber. International Journal of Refrigeration, 100, 93–103. https://doi.org/10.1016/j.ijrefrig.2018.11.019spa
dcterms.referencesJiménez-García, J. C., & Rivera, W. (2019). Parametric analysis on the experimental performance of an ammonia/water absorption cooling system built with plate heat exchangers. Applied Thermal Engineering, 148, 87–95. https://doi.org/10.1016/j.applthermaleng.2018.11.040spa
dcterms.referencesJindal, S., Anand, S., Metzger, L., & Amamcharla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101(4), 2921–2926. https://doi.org/10.3168/jds.2017-14028spa
dcterms.referencesKetfi, O., Merzouk, M., Merzouk, N. K., & Bourouis, M. (2017). Feasibility study and performance evaluation of low capacity water–LiBr absorption cooling systems functioning in different Algerian climate zones. International Journal of Refrigeration, 82, 36–50. https://doi.org/10.1016/j.ijrefrig.2017.07.002spa
dcterms.referencesKonwar, D., Gogoi, T. K., & Das, A. J. (2019). Multi-objective optimization of double effect series and parallel flow water–lithium chloride and water–lithium bromide absorption refrigeration systems. Energy Conversion and Management, 180, 425–441. https://doi.org/10.1016/j.enconman.2018.10.029spa
dcterms.referencesLubis, A., Jeong, J., Giannetti, N., Yamaguchi, S., Saito, K., Yabase, H., Alhamid, M. I., & Nasruddin. (2018). Operation performance enhancement of single-double-effect absorption chiller. Applied Energy, 219, 299–311. https://doi.org/10.1016/j.apenergy.2018.03.046spa
dcterms.referencesMansouri, R., Boukholda, I., Bourouis, M., & Bellagi, A. (2015). Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform. Energy, 93(Part 2), 2374–2383. https://doi.org/10.1016/j.energy.2015.10.081spa
dcterms.referencesMansouri, R., Bourouis, M., & Bellagi, A. (2017). Experimental investigations and modelling of a small capacity diffusion-absorption refrigerator in dynamic mode. Applied Thermal Engineering, 113, 653–662. https://doi.org/10.1016/j.applthermaleng.2016.11.078spa
dcterms.referencesMerienne, R., Lynn, J., McSweeney, E., & O’Shaughnessy, S. M. (2019). Thermal cycling of thermoelectric generators: The effect of heating rate. Applied Energy, 237, 671–681. https://doi.org/10.1016/j.apenergy.2019.01.041spa
dcterms.referencesMirl, N., Schmid, F., Bierling, B., & Spindler, K. (2020). Design and analysis of an ammonia-water absorption heat pump. Applied Thermal Engineering, 165. https://doi.org/10.1016/j.applthermaleng.2019.114531spa
dcterms.referencesMohammadi, M. H., Abbasi, H. R., Yavarinasab, A., & Pourrahmani, H. (2020). Thermal optimization of shell and tube heat exchanger using porous baffles. Applied Thermal Engineering, 170. https://doi.org/10.1016/j.applthermaleng.2020.115005spa
dcterms.referencesNikbakhti, R., Wang, X., Hussein, A. K., & Iranmanesh, A. (2020). Absorption cooling systems – Review of various techniques for energy performance enhancement. In Alexandria Engineering Journal (Vol. 59, Issue 2, pp. 707–738). Elsevier B.V. https://doi.org/10.1016/j.aej.2020.01.036spa
dcterms.referencesNilpueng, K., Keawkamrop, T., Ahn, H. S., & Wongwises, S. (2018). Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger. International Communications in Heat and Mass Transfer, 91, 201–209. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.009spa
dcterms.referencesOchoa, A. A. V., Dutra, J. C. C., Henríquez, J. R. G., dos Santos, C. A. C., & Rohatgi, J. (2017). The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O. Energy Conversion and Management, 136, 270–282. https://doi.org/10.1016/j.enconman.2017.01.020spa
dcterms.referencesPandya, N. S., Shah, H., Molana, M., & Tiwari, A. K. (2020). Heat transfer enhancement with nanofluids in plate heat exchangers: A comprehensive review. In European Journal of Mechanics, B/Fluids (Vol. 81, pp. 173–190). Elsevier Ltd. https://doi.org/10.1016/j.euromechflu.2020.02.004spa
dcterms.referencesPekař, L. (2020). Introduction to heat exchangers. In Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers (pp. 3–20). Elsevier. https://doi.org/10.1016/b978-0-12-819422-5.00001-3spa
dcterms.referencesRincón Tabares, J. S., Perdomo-Hurtado, L., & Aragón, J. L. (2019). Study of Gasketed-Plate Heat Exchanger performance based on energy efficiency indexes. Applied Thermal Engineering, 159. https://doi.org/10.1016/j.applthermaleng.2019.113902spa
dcterms.referencesSabbagh, A. A., & Gómez, J. M. (2018). Optimal control of single stage LiBr/water absorption chiller. International Journal of Refrigeration, 92, 1–9. https://doi.org/10.1016/j.ijrefrig.2018.05.007spa
dcterms.referencesSaid, S. A. M., Spindler, K., El-Shaarawi, M. A., Siddiqui, M. U., Schmid, F., Bierling, B., & Khan, M. M. A. (2016). Design, construction and operation of a solar powered ammonia-water absorption refrigeration system in Saudi Arabia. International Journal of Refrigeration, 62, 222–231. https://doi.org/10.1016/j.ijrefrig.2015.10.026spa
dcterms.referencesShokouhmand, H., & Hasanpour, M. (2020). Effect of number of plates on the thermal performance of a plate heat exchanger with considering flow maldistribution. Journal of Energy Storage, 32. https://doi.org/10.1016/j.est.2020.101907spa
dcterms.referencesSiddiqui, M. U., & Said, S. A. M. (2015). A review of solar powered absorption systems. In Renewable and Sustainable Energy Reviews (Vol. 42, pp. 93–115). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.014spa
dcterms.referencesSilva Ortega, J. I., Sagastume, A., Rodriguez Toscano, A., Amaris Castilla, C., & Arias Torres, D. (2020). Evaluación del potencial de la refrigeración por absorción en el sector industrial de Barranquilla. https://hdl.handle.net/11323/6950spa
dcterms.referencesViswanathan, V. K., Rattner, A. S., Determan, M. D., & Garimella, S. (2013). Dynamic model for a small-capacity ammonia-water absorption chiller. HVAC and R Research, 19(7), 865–881. https://doi.org/10.1080/10789669.2013.833974spa
dcterms.referencesWang, J., Shang, S., Li, X., Wang, B., Wu, W., & Shi, W. (2017). Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions. https://doi.org/10.3390/app7080797spa
dcterms.referencesWu, W., Shi, W., Wang, J., Wang, B., & Li, X. (2016). Experimental investigation on NH3-H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources. Applied Energy, 176, 258–271. https://doi.org/10.1016/j.apenergy.2016.04.115spa
dcterms.referencesXu, Y. jie, Zhang, S. jie, & Xiao, Y. han. (2016). Modeling the dynamic simulation and control of a single effect LiBr–H2O absorption chiller. Applied Thermal Engineering, 107, 1183–1191. https://doi.org/10.1016/j.applthermaleng.2016.06.043spa
dcterms.referencesZhang, Y., Jiang, C., Shou, B., Zhou, W., Zhang, Z., Wang, S., & Bai, B. (2018). A quantitative energy efficiency evaluation and grading of plate heat exchangers. Energy, 142, 228–233. https://doi.org/10.1016/j.energy.2017.10.023spa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
Archivos
Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
fuentestorrespedrojose-machadopomaresjuandavid.pdf
Tamaño:
1.18 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Formato de autorización.pdf
Tamaño:
237.92 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: