Examinando por Materia "Semiconductor"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Caracterización de propiedades estructurales y electrónicas de la superficie de dióxido de titanio con impureza de cerio.(2023-03-03) Pajaro Polo, Lorena; Alcalá Varilla, Luis ArturoEn el presente trabajo de grado se determinaron las propiedades estructurales y electrónicas de superficie de dióxido de titanio (TiO2), con adición de impureza de cerio (Ce). Para ello, se realizaron simulaciones de primeros principios en el marco de la teoría de la funcional de la densidad (density functional theory, DFT) aplicando el método de pseudopotencial, implementado en el paquete computacional Quantum ESPRESSO. Para la interacción electrón–electrón se utilizó la aproximación de gradiente generalizado (Generalized Gradient Approximation: GGA) en la parametrización de Perdew - Burke - Ernzerhof (PBE) y se tuvo en cuenta la corrección de hubbard (U) para los átomos de titanio. Inicialmente, se optimizaron los parámetros estructurales; en esta instancia se determinó la energía del estado base de la superficie limpia y de la superficie dopada. Entre los resultados encontrados se evidencio el carácter semiconductor del TiO2 a partir de cálculos de la densidad de estados, además se pude determinar que al introducir un átomo de cerio en la superficie del dióxido de titanio podría proporcionar mayor actividad fotocatálitica en la degradación de contaminantes, reducir la banda de energía, brindando mejor aprovechamiento del espectro visible.Publicación Acceso abierto Correlación entre las propiedades estructurales y ópticas del óxido de zinc nanoestructurado dopado con cobalto(2020-12-18) Flórez Galván, Luis Alfonso; Beltrán Jiménez, Jailes JoaquínEl óxido de zinc es un material semiconductor tipo II-VI transparente en la región UV visible, con una banda prohibida de 3.37 eV a temperatura ambiente y una alta energía de enlace de excitones, 60 meV y otras importantes propiedades físico-químicas. Estas propiedades son el resultado de su poca simetría en su forma cristalina wurtzita y de su gran acoplamiento electromecánico, llegando a ser considerado en la actualidad un material optoelectrónico con cualidades muy promisorias para utilizarse en numerosas aplicaciones tecnológicas como, sensor de gases, varistores, lásers ultravioleta y visible, y componentes de celdas solares. La introducción de impurezas en la red cristalina del ZnO (dopaje) puede modificar sus propiedades estructurales y ópticas ampliando su rango de posibles aplicaciones. El principal objetivo de este trabajo es estudiar la variación de las propiedades estructurales y ópticas del ZnO dopado con Co (Zn1-xCoxO), para valores nominales de 0, 0.01, 0.03, 0.05 y encontrar alguna correlación entre ellas. Las muestras fueron sintetizadas por el método sol-gel modificado basado en la ruta del citrato y caracterizadas mediante análisis termogravimétrico, difracción de rayos X y espectroscopia UV-VIS-Reflectancia difusa. La temperatura mínima de descomposición y cristalización de los precursores poliméricos para la formación de ZnO y ZnO dopado con Co fue de 450 °C. Los parámetros a y c aumentaron con el contenido de Co, muy probablemente, debido a la presencia de iones Co2+ y Co3+ ocupando posiciones intersticiales, mientras el valor de la relación c/a encontrado podría indicar la presencia de vacancias de oxígeno en todas las muestras. El tamaño de cristalito disminuyó hasta una concentración de Co del 3% e incrementó cuando la concentración de Co fue igual al 5%. La brecha de banda mostró una disminución a medida que aumento la concentración de Co lo cual fue atribuido principalmente a las interacciones de intercambio entre los orbitales d correspondientes a los iones Co2+ y los orbitales s y p del ZnO, a la formación de vacancias de oxígeno y al incremento en el grado de distorsión de la celda unitaria. Por último, La banda prohibida (Eg) del ZnO disminuyo a medida que aumento el volumen de celda, el grado de distorsión de la celda y a medida que disminuyo la relación c/a.Publicación Acceso abierto Nanopartículas de sno2 dopado con cobalto preparado por descomposición térmica: un estudio de sus propiedades estructurales y ópticas(2021-02-02) Mendoza Ruíz, Camilo Andrés; Beltrán Jiménez, Jailes J.El SnO2 como material puro, conocido normalmente también como casiterita, es un semiconductor transparente tipo n, presenta gran estabilidad térmica y mecánica, una estructura cristalina tetragonal, perteneciente al grupo tipo rutilo, correspondiente a la clase 4/m2/m2/m, al grupo puntual D_4h y al grupo espacial p4/mnm, con una coordinación 6:3. Este semiconductor presenta una adecuada combinación de propiedades químicas, electrónicas y ópticas que lo hacen útil como material para sensores de gases, como electrodo transparente, como ánodo para baterías de litio, como transistor, catalizador, dispositivos optoelectrónicos, y celdas fotovoltaicas. Cuando se dopa con cobalto u otros metales de transición, puede ser más activo cuando se utiliza como catalizador, más sensible y selectivo como sensor de gases y más propicio para catálisis. El principal objetivo de este trabajo es estudiar las propiedades estructurales, cristalográficas, ópticas, de polvos de SnO2 dopados con Co e identificar las posibles correlaciones entre ellas. Las muestras fueron sintetizadas por el método de sol-gel modificado basado en la ruta del citrato y caracterizadas por medio de análisis termogravimétrico, difracción de rayos X y UV-Vis en modo de reflectancia difusa. Los parámetros de red aumentaron a medida que aumentaba la concentración del dopante muy probablemente a que la mayoría de los cationes Co2+ de alto espín este sustituyendo a los cationes de Sn4+ en el SnO2 tipo rutilo, mientras el tamaño del cristalito disminuyó, indicando que el dopante retrasa la velocidad de crecimiento del cristal. Utilizando medidas de espectroscopia UV-VIS con reflectancia difusa se observó que la muestra del 5% presenta Co3O4 como fase secundaria y que la introducción de estados electrónicos y superposición de orbitales d de los iones de Co2+ causan variaciones en el borde de absorción del SnO2. La brecha de banda Eg aumentó para x≤0.03, lo cual fue atribuido al efecto Burstein-Moss y luego disminuyó para x=5%, lo cual fue atribuido a la presencia de Co3+. Por último, se encontró una correlación directa entre la variación de los parámetros de red y la brecha de banda en las muestras de SnO2 sin presencia de fases secundarias a medida que aumentaba la concentración de Co.