Examinando por Materia "Monolayer"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Codopado estratégico para incrementar el magnetismo en la monocapa de nitruro aluminio hexagonal(Universidad de Córdoba, 2024-08-14) Pérez Rossi, Kevin David; Ortega López, Cesar; Espriella Vélez, Nicolás De la; Murillo García, Jean Fred; Meléndez Martínez, Raul Francisco; Lara Martínez, Ronald Steven; Arteaga Calderón, MarioEn este trabajo, se hace un estudio sobre los co-dopados con manganeso (Mn) y oxigeno (O) en la monocapa AlN hexagonal planar, en la geometría 4x4 (h-4x4-AlN (0001)). Los cálculos se ejecutan usando la Teoría del Funcional de la Densidad junto con pseudopotenciales atómicos y una base de ondas planas. La monocapa se modela usando el esquema del slab periódico. Aquí, se hacen, por separado, dos co-sustituciones de los átomos Al y N por Mn y O, respectivamente. En el primer caso, los átomos sustitutos, se colocan a una distancia lo suficiente grande de modo que las impurezas, no interactúen, es decir no forman la molécula Mn-O. En el segundo caso, los átomos sustitutos, se colocan a una distancia lo suficiente pequeña de modo que las impurezas, interactúen, es decir se forma la molécula Mn-O. Se encuentra que las propiedades estructurales de la monocapa con impurezas, no interactuantes, no cambian significativamente, con respecto a la monocapa prístina, mientras que, en el caso de las impurezas, interactuantes, sí cambian significativamente, con respecto a la monocapa prístina. En particular, la distancia optima entre las impurezas interactuantes del par atómico, es ≈2.4 Å, mientras que la longitud de enlace del par atómico, en las impurezas, no interactuantes, es ≈2.1 Å. En todos los casos, se establece la estabilidad termodinámica y analizan las propiedades electrónicas de la monocapa h-AlN con y sin impurezas de Mn y O, a través de cálculos de la energía de formación y DOS/carga Löwdin , respectivamente. En ambos casos, pares atómicos (Mn y O) interactuantes y no interactuantes, la monocapa presenta propiedades magnéticas, con una magnetización total de 5.0 μ_0/cell y 4.9 μ_0/cell, respectivamente. De estos resultados, se infiere que, en el caso en el que las impurezas interactúan, la magnetización en la monocapa AlN codopada, se incrementa significativamente, con respecto al caso en que las co-impurezas, no interactúan.Publicación Acceso abierto Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios(Universidad de Córdoba, 2024-01-30) Meléndez Martínez, Raúl Francisco; Ortega Lopez, Cesar; Casiano Jimenez, Gladys Rocio; Espitia Rico, Miguel; Alcalá Varilla, Luis; Espriella Vélez, Nicolás De laEn este trabajo, se hace un estudio de las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (densidad de estados (DOS), bandas y carga Bader) del sulfuro de galio (GaS) en su fase hexagonal (β-GaS), tanto en volumen como en la monocapa. Los cálculos se realizan utilizando la teoría del funcional de la densidad (DFT: del inglés Density Functional Theory) dentro de la aproximación del gradiente generalizado (GGA: del inglés Generalized Gradient Approximation) parametrizada por Perdew-Burke-Ernzerhof (PBE), junto con pseudopotenciales atómicos y una base de ondas planas implementada en el paquete QuantumESPRESSO. Para dar cuenta de las interacciones débiles de Van der Waals, se usan las correcciones de Grimme D2 y D3 (o GGA + D2 y GGA + D3)Publicación Acceso abierto Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio(Universidad de Córdoba, 2024-02-01) Arteaga Calderón, Mario Luis; Ortega López, Cesar; Casiano Jimenez, Gladys Rocio; Murillo García, Jean Fred; Espriella Vélez, Nicolas Antonio de laEn el presente trabajo se realizó el estudio de las propiedades estructurales, termodinámicas y electrónicas del dióxido de titanio en fase hexagonal y trigonal prístinas en volumen y monocapa, utilizando la Teoría del Funcional de la Densidad (DFT) en la aproximación de GGA-PBE junto a pseudopotenciales atómicos, una base de ondas planas y correcciones de dispersión D2 y D3 para dar cuenta de las interacciones de Van der Waals. Las monocapas se modelan utilizando el esquema de slab periódico. Una vez se optimizan los parámetros estructurales en cada fase, se determinan las propiedades estructurales, termodinámicas, electrónicas y magnéticas en cada fase en el volumen y monocapa. Los sistemas en volumen y monocapa muestran estabilidad energética y termodinámica por lo que su formación en el laboratorio teóricamente resulta posible. Se encontraron valores de energía de enlace intercapas de 18.384 meV/Å^2 y 12.519 meV/Å^2 y exfoliación de 18.500 meV/Å^2 y 12.519 meV/Å^2 para la fase hexagonal y trigonal, respectivamente. Las características electrónicas indican que el dióxido de titanio en fase hexagonal (H-TiO2) y trigonal (T-TiO2) es semiconductor de bandgap indirecto. En volumen, la fase hexagonal presenta un bandgap indirecto de 0.523 eV y la fase trigonal un bandgap indirecto de 2.487 eV. Las monocapas presentan un bandgap indirecto de 1.220 eV para la fase hexagonal y un bandgap indirecto de 2.660 eV para la fase trigonal, se observó que el bandgap de los sistemas variaba al disminuir la dimensionalidad.