Examinando por Materia "Modelo de Cox"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Efecto de la censura en modelos de regresión Weibull y regresión de Cox(Universidad de Córdoba, 2025-06-27) Yepes Ibarguen, Kevin Alejandro; Ramirez Montoya, Javier; Rocha de Medeiros, Rodrigo Matheus; Tovar-Falón, Roger; Martínez Flórez, GuillermoEl análisis de supervivencia constituye una herramienta estadística esencial en estudios donde el tiempo hasta la ocurrencia de un evento resulta de interés. Este tipo de análisis se caracteriza por la presencia frecuente de datos censurados, lo que exige la aplicación de métodos especializados que permitan una estimación precisa y robusta de los parámetros del modelo. En este contexto, los modelos de regresión de Cox y Weibull se han consolidado como enfoques ampliamente utilizados. El modelo de Cox, de naturaleza semiparamétrica, no asume una forma específica para la función de riesgo, mientras que el modelo de Weibull, de carácter paramétrico, impone una estructura determinada para dicha función, permitiendo interpretar el comportamiento del riesgo a lo largo del tiempo. El presente trabajo tuvo como objetivo comparar el desempeño de estos dos modelos bajo diferentes combinaciones de tamaño de muestra y porcentaje de censura, mediante un diseño de simulación estadística. La simulación consideró escenarios con tamaños muestrales entre 20 y 1000 observaciones, y niveles de censura del 0%, 15%, 30% y 60%, evaluando métricas como el error cuadrático medio (ECM) y el sesgo de estimación del coeficiente de riesgo. Los resultados mostraron que el modelo de Cox presenta un mejor desempeño en condiciones de censura elevada y tamaños de muestra pequeños o moderados, mientras que el modelo de Weibull mejora su rendimiento conforme aumenta el tamaño de la muestra, aunque mantiene cierta sensibilidad frente a la pérdida de información por censura. El presente trabajo tuvo como objetivo comparar el desempeño de estos dos modelos bajo diferentes combinaciones de tamaño de muestra y porcentaje de censura, mediante un diseño de simulación estadística. La simulación consideró escenarios con tamaños muestrales entre 20 y 1000 observaciones, y niveles de censura del 0%, 15%, 30% y 60%, evaluando métricas como el error cuadrático medio (ECM) y el sesgo de estimación del coeficiente de riesgo. Los resultados mostraron que el modelo de Cox presenta un mejor desempeño en condiciones de censura elevada y tamaños de muestra pequeños o moderados, mientras que el modelo de Weibull mejora su rendimiento conforme aumenta el tamaño de la muestra, aunque mantiene cierta sensibilidad frente a la pérdida de información por censura.Publicación Acceso abierto Implementación de un modelo para el análisis de la repitencia y su impacto en la sobrepermanencia en la Universidad de Córdoba(Universidad de Córdoba, 2024-07-10) Correa Vanegas, Emelis; Montes Montiel, Leandra; Martínez Flórez, Guillermo; Durango Suarez Luis Manuel; Morales Ospino, Victor Alfonso; Ramos Ramírez, Victor AlfonsoLa sobrepermanencia es un problema que afecta a diversas instituciones académicas,comprender e identificar los factores que la influyen es crucial para mejorar y desarrollar estrategias efectivas que mejoren las tasas de graduación y el rendimiento académico. En la Universidad de Córdoba, ciertos programas académicos presentan índices elevados de cancelación y pérdida de materias, lo que puede ser un indicativo de dificultades específicas en el currículo o en la preparación de los estudiantes. Por ejemplo, en la Facultad de Ingenierías, específicamente en el programa de Ingeniería de alimentos durante el período 2023, las materias con mayor índice de cancelación fueron microbiología general y cálculo integral, mientras que las materias más perdidas fueron operaciones unitarias II y cálculo integral. Similarmente, en la Facultad de Ciencias Básicas, en el programa de química, las materias más canceladas fueron cálculo II, ecuaciones diferenciales y química analítica. Estos patrones sugieren que ciertas asignaturas pueden representar obstáculos significativos para los estudiantes, contribuyendo a la sobrepermanencia.Por otro lado, para llevar a cabo este estudio, se siguió una metodología estructurada en varias etapas. En primer lugar, se realizó un análisis descriptivo de los datos académicos de diferentes programas para identificar las materias con mayor índice de cancelación y pérdida.Posteriormente, se seleccionaron y analizaron variables académicas relevantes como el número de créditos aprobados, el índice de cancelaciones y repitencia, y la nota final. Estas variables se consideraron clave para entender su relación con la sobrepermanencia estudiantil. Para modelar y cuantificar la influencia de estas variables en la sobrepermanencia, se implementaron dos modelos estadísticos: el modelo de Cox Lasso y el modelo Logístico Multinomial. Ambos modelos fueron evaluados por su capacidad de ajuste y precisión en la identificación de los factores que contribuyen a la sobrepermanencia. Finalmente, se analizaron los resultados de los modelos para interpretar las relaciones entre las variables estudiadas y la sobrepermanencia, proporcionando una visión clara de los factores que más influyen en este fenómeno.