Examinando por Materia "Maximum likelihood estimation"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Publicación Acceso abierto DistribuciónWeibull Unitaria Bivariada(2022-04-20) Páez Martínez, Luis Iván; Tovar Falón, Roger JesúsLos datos cuya respuesta se encuentran en el intervalo (0,1) tales como proporciones, tasas o índices surgen muchas veces en la investigaciones en diferentes áreas del conocimiento. La proporción de muertes causadas por el tabaquismo, la tasa de incidencia o prevalencia de una determinada enfermedad en una comunidad, el porcentaje de votos a favor de un candidato después de una campaña presidencial, él indice de desarrollo humano en un determinado país y la proporción de los ingresos que se gastan en educación, son algunos ejemplos de este tipo de respuestas. Para modelar este tipo de datos, existen varias propuestas, siendo la distribución beta la más conocida y aplicada en este tipo de situaciones. Entre otras propuestas, se incluyen las distribuciones Kurumaraswamy, Birmbaum-SaundersUnitaria, Weibull Unitaria, Normal-potencia unitaria y gamma unitaria, en cambio, en la teoría de distribuciones existe poca literatura estadística acerca de distribuciones para ajustar datosmultivariados cuyas respuestas se encuentran en el intervalo unitario. En este trabajo, se propone una extensión bivariada de la distribución univariada Weibull unitaria introducida porMazucheli,Menezes y Ghitany. [The Unit-Weibull distribution and Associated Inference. Journal of Applied Probability and Statistics, 13 (2018), págs. 1-22], la cual ha demostrado ser una alternativa viable a las otras distribuciones utilizadas para ajustar datos en el intervalo (0,1). La cópula de Farlie-Gumbel-Morgenstern y la distribución Weibull unitaria se utilizan para producir una distribución bivariada denominada distribución Weibull unitaria bivariada. Se estudian algunas propiedades de la distribución WUB tales como las funciones de: densidad de probabilidad conjunta, distribución acumulada, supervivencia, generadora demomentos, entre otras. En la estimación de los parámetros de la distribución propuesta se considera un enfoque clásico utilizando el método de máxima verosimilitud junto con el método de estimación por inferencia de funciones marginales (Joe, 2005). Para evaluar el desempeño de los estimadores de máxima verosimilitud de los parámetros en la distribución, se realiza un estudio de simulación de Monte Carlo y se presenta una aplicación con un conjunto de datos reales para mostrar la utilidad del modelo.Publicación Acceso abierto Extensiones de la distribución normal-potencia para datos bimodales asimétricos con soporte positivo(2022-07-21) Ceña Tapia, Isaías Enrique; Tovar Falón, Roger JesúsIn many fields of science it is assumed that the observations under study are normally distributed, which frequently generates errors in the results since this assumption does not always coincide with the characteristics that the data actually present. Additionally, in some cases, the data can have degrees of asymmetry and/or kurtosis greater or lower than the normal distribution can capture, and in others, the data can present two or more modes. Although an alternative to deal to the particular case of the asymmetric data is reparametrization or transformation, this can generate difficulties in the interpretation of the results. In this work, new families of asymmetric distributions to fit bimodal data with positive support and high and/or low degrees of kurtosis are presented. The new families are obtained from extensions of the power-model distribution (PN) introduced by Durrans (1992), called; bimodal log-power-normal distribution and elliptical bimodal log-power-normal distribution. For the proposed models, the main properties are studied such as: the probability density function, cumulative distribution function, survival function, hazard function; moments and moment-generating function. The process of estimating the parameters is carried out by using the maximum likelihood method, and the usefulness of the proposed distributions are illustrated using a data set consisting of 85 observations on nickel concentration in soil samples that have been analyzed at the Department of Mines of the University of Atacama, Chile.