FacebookTwitterYoutubeInstagramTiktok
División de Bibliotecas
  • Español
  • English
  • Iniciar sesión
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioRepositorio
institucional
  • Inicio
  • Comunidades
  • Navegar
    Directrices del Repositorio
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Local stability analysis"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Un modelo de vacunación para el SARS-CoV-2 con ecuaciones diferenciales con retardo discreto
    (Universidad de Córdoba, 2022-10-06) Sepúlveda Morelo, Gabriel Eduardo; Arenas Tawil, Abraham José
    Las ecuaciones diferenciales con retardo son una de las herramientas de modelado matemático más poderosas y surgen naturalmente en diversas aplicaciones, desde las ciencias de la vida hasta la ingeniería y la física, siempre que los retrasos temporales sean importantes. En términos abstractos, las ecuaciones diferenciales funcionales describen sistemas dinámicos, cuando su evolución depende de la solución en tiempos anteriores. Luego de forjar fuertes vínculos entre la teoría de las ecuaciones diferenciales con retraso, la teoría de estabilidad y los aspectos prácticos de la epidemiología matemática, la estructura general de nuestra investigación está fijada en plantear y justificar un Modelo de Vacunación para el SARS-CoV-2 con Ecuaciones Diferenciales con Retardo Discreto. Estudiamos un tipo de modelo dinámico con retraso en el tiempo con respecto a la aplicación de dos dosis de vacunación contra el SARS-CoV-2. En este orden de ideas, primero obtenemos el punto de equilibrio libre de enfermedad y el número básico de reproducción R0 utilizando el método de matriz de próxima generación. Seguidamente, el sistema tiene un punto de equilibrio endémico único cuando R0 > 1. Luego discutimos la estabilidad de los puntos de equilibrio libre de enfermedad y el equilibrio endémico. También encontramos el valor crítico τ∗ en los puntos de equilibrio y obtenemos las condiciones para que el sistema tenga una Bifurcación de Hopf en dichos puntos.
Carrera 6 No. 77- 305 Montería - Córdoba, Colombia  |  Código Postal: 230002   | | Nit: 891080031-3  |   contacto@correo.unicordoba.edu.co
La Universidad de Córdoba, es una Institución de educación superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.
Mapa de sitio, Ley de protección de datos, Política de privacidad, Transparencia y acceso a la información , PQRSyD contacto@correo.unicordoba.edu.co - notificacionesjudiciales@correo.unicordoba.edu.co.
Sistema DSPACE 7 - Metabiblioteca | logo