Examinando por Materia "Grain size"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Simulación multiescala de un Aluminio fisurado implementando un método que integre MD y FEM(Universidad de Córdoba, 2023-03-01) Pacheco Agámez, Miguel José; Velilla Díaz, Wilmer Segundo; Lancheros Suárez, Valery JoséForty percent of the applications of Aluminum are made in its pure composition. In addition, fine grain size at the nanoscale shows ultimate tensile strength (UTS) on a scale of GPA. However, coarse grain size shows a UTS on MPa. This investigation studied the implementation of a multiscale method that couples molecular dynamics simulation results with the finite element method to estimate continuum properties. Atom-to-Continuum (ATC) method used positions and interatomic forces estimated from molecular dynamics simulations. The embedded atomic method for Aluminum proposed by Medelev was implemented in the simulation of a uniaxial tensile test in mode I for different grain sizes. ATC used a localization function that calculates the contribution of forces and positions on the estimation of stress on a material point. Local stress values estimated on material points (nodes) were interpolated with the lineal shape functions of the mesh. The ultimate tensile strength was compared with Hardy’s formulation. Results from different grain sizes showed a similar behavior but high relative differences values with Hardy's formulation. In addition, the investigation showed that grain size influences the strength of cracked single-crystal Aluminum.