Examinando por Materia "Estimación de máxima verosimiltud"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto DistribuciónWeibull Unitaria Bivariada(2022-04-20) Páez Martínez, Luis Iván; Tovar Falón, Roger JesúsLos datos cuya respuesta se encuentran en el intervalo (0,1) tales como proporciones, tasas o índices surgen muchas veces en la investigaciones en diferentes áreas del conocimiento. La proporción de muertes causadas por el tabaquismo, la tasa de incidencia o prevalencia de una determinada enfermedad en una comunidad, el porcentaje de votos a favor de un candidato después de una campaña presidencial, él indice de desarrollo humano en un determinado país y la proporción de los ingresos que se gastan en educación, son algunos ejemplos de este tipo de respuestas. Para modelar este tipo de datos, existen varias propuestas, siendo la distribución beta la más conocida y aplicada en este tipo de situaciones. Entre otras propuestas, se incluyen las distribuciones Kurumaraswamy, Birmbaum-SaundersUnitaria, Weibull Unitaria, Normal-potencia unitaria y gamma unitaria, en cambio, en la teoría de distribuciones existe poca literatura estadística acerca de distribuciones para ajustar datosmultivariados cuyas respuestas se encuentran en el intervalo unitario. En este trabajo, se propone una extensión bivariada de la distribución univariada Weibull unitaria introducida porMazucheli,Menezes y Ghitany. [The Unit-Weibull distribution and Associated Inference. Journal of Applied Probability and Statistics, 13 (2018), págs. 1-22], la cual ha demostrado ser una alternativa viable a las otras distribuciones utilizadas para ajustar datos en el intervalo (0,1). La cópula de Farlie-Gumbel-Morgenstern y la distribución Weibull unitaria se utilizan para producir una distribución bivariada denominada distribución Weibull unitaria bivariada. Se estudian algunas propiedades de la distribución WUB tales como las funciones de: densidad de probabilidad conjunta, distribución acumulada, supervivencia, generadora demomentos, entre otras. En la estimación de los parámetros de la distribución propuesta se considera un enfoque clásico utilizando el método de máxima verosimilitud junto con el método de estimación por inferencia de funciones marginales (Joe, 2005). Para evaluar el desempeño de los estimadores de máxima verosimilitud de los parámetros en la distribución, se realiza un estudio de simulación de Monte Carlo y se presenta una aplicación con un conjunto de datos reales para mostrar la utilidad del modelo.