Examinando por Materia "Espacios de Gevrey"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Buena colocación local para la ecuación de onda no lineal en espacios de Gevrey(2023) Verbel Naissir, Mairol Jose; Banquet Brango, Carlos AlbertoEn este trabajo primeramente se estudian los espacios L^p, la transformada de Fourier en R^n y los espacios de Sobolev en R^n. Luego se utiliza la teoría anterior para definir el espacio de Gevrey y demostrar algunas propiedades que serán necesarias al momento de obtener la buena colocación para la ecuación de onda no lineal en este mismo espacio, debido a que este es el problema principal que se quiere solucionar en el presente trabajo. Posteriormente, se considera el problema de valor inicial de la ecuación de onda general. con datos iniciales pertenecientes a estos espacios de Gevrey, luego usando transformada Fourier se obtiene la solución al problema lineal y mediante el principio de Duhamel se obtiene una ecuación integrodiferencial que es formalmente equivalente a la solución del problema original, es decir, se soluciona el problema que se obtiene vía transformada de Fourier, pero no se soluciona el problema que se considera antes de aplicar transformada. Finalmente, se usa un argumento de punto fijo para demostrar el teorema de buena colocación para la ecuación de onda no lineal en espacios de Gevrey, esto es, de forma corta que existe una solución única que depende continuamente de los datos iniciales.