Examinando por Autor "Velilla Díaz, Wilmer Segundo"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Modelación computacional de la deflexión en juntas soldadas por gtaw de acero inoxidable aisi 304, utilizando la técnica de análisis de elementos finitos(23-02-24) Lancheros Montiel, Miguel Ángel; Lancheros Montiel, Daniel Valery; Lancheros Suárez, Valery José; Velilla Díaz, Wilmer SegundoIn recent years, housing and building construction in Cordoba, more specifically in the municipality of Monteria "presents a steady growth rate of 1.6% per year of the city's fabric" (Pretelt Blanco & Territorial, 2015), a situation that is evidenced by the development of the region, new neighborhoods, new buildings, updating of facades and structures with new materials. Due to this, the demand for ornamentation works (protection grids, balcony railings, handrails in stairs and others) is rising proportionally to the mentioned rate. The stainless steel AISI 304, became one of the favorite materials of the users that require some type of these mentioned structures for their houses and/or buildings. One of the characteristics of the designs of this type of ornamental structures is that they visibly present a linear appearance (straight) in their total length and in any of the visualization or coordinate axes.Publicación Acceso abierto Simulación multiescala de un Aluminio fisurado implementando un método que integre MD y FEM(Universidad de Córdoba, 2023-03-01) Pacheco Agámez, Miguel José; Velilla Díaz, Wilmer Segundo; Lancheros Suárez, Valery JoséForty percent of the applications of Aluminum are made in its pure composition. In addition, fine grain size at the nanoscale shows ultimate tensile strength (UTS) on a scale of GPA. However, coarse grain size shows a UTS on MPa. This investigation studied the implementation of a multiscale method that couples molecular dynamics simulation results with the finite element method to estimate continuum properties. Atom-to-Continuum (ATC) method used positions and interatomic forces estimated from molecular dynamics simulations. The embedded atomic method for Aluminum proposed by Medelev was implemented in the simulation of a uniaxial tensile test in mode I for different grain sizes. ATC used a localization function that calculates the contribution of forces and positions on the estimation of stress on a material point. Local stress values estimated on material points (nodes) were interpolated with the lineal shape functions of the mesh. The ultimate tensile strength was compared with Hardy’s formulation. Results from different grain sizes showed a similar behavior but high relative differences values with Hardy's formulation. In addition, the investigation showed that grain size influences the strength of cracked single-crystal Aluminum.